File: gnuplot.texi

package info (click to toggle)
gnuplot 4.4.0-1.1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 13,168 kB
  • ctags: 8,165
  • sloc: ansic: 79,287; lisp: 5,017; cpp: 3,521; sh: 1,059; makefile: 905; objc: 647; asm: 539; csh: 297; perl: 253; awk: 235; pascal: 194; tcl: 88
file content (21349 lines) | stat: -rw-r--r-- 712,419 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20840
20841
20842
20843
20844
20845
20846
20847
20848
20849
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20880
20881
20882
20883
20884
20885
20886
20887
20888
20889
20890
20891
20892
20893
20894
20895
20896
20897
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
20914
20915
20916
20917
20918
20919
20920
20921
20922
20923
20924
20925
20926
20927
20928
20929
20930
20931
20932
20933
20934
20935
20936
20937
20938
20939
20940
20941
20942
20943
20944
20945
20946
20947
20948
20949
20950
20951
20952
20953
20954
20955
20956
20957
20958
20959
20960
20961
20962
20963
20964
20965
20966
20967
20968
20969
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20980
20981
20982
20983
20984
20985
20986
20987
20988
20989
20990
20991
20992
20993
20994
20995
20996
20997
20998
20999
21000
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023
21024
21025
21026
21027
21028
21029
21030
21031
21032
21033
21034
21035
21036
21037
21038
21039
21040
21041
21042
21043
21044
21045
21046
21047
21048
21049
21050
21051
21052
21053
21054
21055
21056
21057
21058
21059
21060
21061
21062
21063
21064
21065
21066
21067
21068
21069
21070
21071
21072
21073
21074
21075
21076
21077
21078
21079
21080
21081
21082
21083
21084
21085
21086
21087
21088
21089
21090
21091
21092
21093
21094
21095
21096
21097
21098
21099
21100
21101
21102
21103
21104
21105
21106
21107
21108
21109
21110
21111
21112
21113
21114
21115
21116
21117
21118
21119
21120
21121
21122
21123
21124
21125
21126
21127
21128
21129
21130
21131
21132
21133
21134
21135
21136
21137
21138
21139
21140
21141
21142
21143
21144
21145
21146
21147
21148
21149
21150
21151
21152
21153
21154
21155
21156
21157
21158
21159
21160
21161
21162
21163
21164
21165
21166
21167
21168
21169
21170
21171
21172
21173
21174
21175
21176
21177
21178
21179
21180
21181
21182
21183
21184
21185
21186
21187
21188
21189
21190
21191
21192
21193
21194
21195
21196
21197
21198
21199
21200
21201
21202
21203
21204
21205
21206
21207
21208
21209
21210
21211
21212
21213
21214
21215
21216
21217
21218
21219
21220
21221
21222
21223
21224
21225
21226
21227
21228
21229
21230
21231
21232
21233
21234
21235
21236
21237
21238
21239
21240
21241
21242
21243
21244
21245
21246
21247
21248
21249
21250
21251
21252
21253
21254
21255
21256
21257
21258
21259
21260
21261
21262
21263
21264
21265
21266
21267
21268
21269
21270
21271
21272
21273
21274
21275
21276
21277
21278
21279
21280
21281
21282
21283
21284
21285
21286
21287
21288
21289
21290
21291
21292
21293
21294
21295
21296
21297
21298
21299
21300
21301
21302
21303
21304
21305
21306
21307
21308
21309
21310
21311
21312
21313
21314
21315
21316
21317
21318
21319
21320
21321
21322
21323
21324
21325
21326
21327
21328
21329
21330
21331
21332
21333
21334
21335
21336
21337
21338
21339
21340
21341
21342
21343
21344
21345
21346
21347
21348
21349
\input texinfo   @c -*-texinfo-*-

@c %**start of header
@setfilename gnuplot.info
@settitle Gnuplot: An Interactive Plotting Program
@setchapternewpage odd
@c %**end of header

@c define the command and options indeces
@defindex cm
@defindex op
@defindex tm

@dircategory Math
@direntry
* GNUPLOT: (gnuplot).             An Interactive Plotting Program
@end direntry

@ifnottex
@node Top, gnuplot, (dir), (dir)
@top Master Menu
@end ifnottex

@example
                       GNUPLOT

            An Interactive Plotting Program
             Thomas Williams & Colin Kelley
                Version 4.4 organized by:
    Hans-Bernhard Broeker, Ethan A Merritt, and others

   Copyright (C) 1986 - 1993, 1998, 2004   Thomas Williams, Colin Kelley
           Copyright (C) 2004 - 2009  various authors

       Mailing list for comments: gnuplot-info@@lists.sourceforge.net
     Mailing list for bug reports: gnuplot-bugs@@lists.sourceforge.net

         This manual was originally prepared by Dick Crawford
                   Version 4.4 - 31 May 2009


Major contributors (alphabetic order):
@end example

@c ^ <h2> An Interactive Plotting Program </h2><p>
@c ^ <h2>  Thomas Williams & Colin Kelley</h2><p>
@c ^ <h2>  Version 4.4 organized by Ethan A Merritt and others</h2><p>
@c ^ <h2>Major contributors (alphabetic order):</h2>

@itemize @bullet
@item
Hans-Bernhard Broeker
@item
John Campbell
@item
Robert Cunningham
@item
David Denholm
@item
Gershon Elber
@item
Roger Fearick
@item
Carsten Grammes
@item
Lucas Hart
@item
Lars Hecking
@item
Thomas Koenig
@item
David Kotz
@item
Ed Kubaitis
@item
Russell Lang
@item
Alexander Lehmann
@item
Alexander Mai
@item
Ethan A Merritt
@item
Petr Mikulik
@item
Carsten Steger
@item
Tom Tkacik
@item
Jos Van der Woude
@item
Alex Woo
@item
James R. Van Zandt
@item
Johannes Zellner
@end itemize

@c ^<h2>  Copyright (C) 1986 - 1993, 1998 - 2004   Thomas Williams, Colin Kelley<p>
@c ^   Mailing list for comments: gnuplot-info@@lists.sourceforge.net <p>
@c ^   Mailing list for bug reports: gnuplot-bugs@@lists.sourceforge.net <p>
@c ^</h2><p>
@c ^<h3> This manual was originally prepared by Dick Crawford</h3><p>
@c ^<h3> Last revised: March 2009</h3><p>
@c ^<hr>

@menu
* gnuplot::                     
* plotting_styles::             
* Commands::                    
* Terminal_types::              
* Graphical_User_Interfaces::   
* Bugs::                        
* Concept_Index::               
* Command_Index::               
* Options_Index::               
* Function_Index::              
* Terminal_Index::              
@end menu

@node gnuplot, plotting_styles, Top, Top
@chapter gnuplot


@menu
* Copyright::                   
* Introduction::                
* Seeking-assistance::          
* New_features_introduced_in_version_4.4::  
* Backwards_compatibility::     
* Batch/Interactive_Operation::  
* Command-line-editing::        
* Comments::                    
* Coordinates::                 
* Datastrings::                 
* Enhanced_text_mode::          
* Environment::                 
* Expressions::                 
* Fonts::                       
* Glossary::                    
* linetype::                    
* mouse_input::                 
* Plotting::                    
* Start-up::                    
* String_constants_and_string_variables::  
* Substitution_and_Command_line_macros::  
* Syntax::                      
* Time/Date_data::              
@end menu

@node Copyright, Introduction, gnuplot, gnuplot
@section Copyright

@cindex copyright

@cindex license

@example
    Copyright (C) 1986 - 1993, 1998, 2004, 2007  Thomas Williams, Colin Kelley

@end example

Permission to use, copy, and distribute this software and its
documentation for any purpose with or without fee is hereby granted,
provided that the above copyright notice appear in all copies and
that both that copyright notice and this permission notice appear
in supporting documentation.

Permission to modify the software is granted, but not the right to
distribute the complete modified source code.  Modifications are to
be distributed as patches to the released version.  Permission to
distribute binaries produced by compiling modified sources is granted,
provided you
@example
  1. distribute the corresponding source modifications from the
   released version in the form of a patch file along with the binaries,
  2. add special version identification to distinguish your version
   in addition to the base release version number,
  3. provide your name and address as the primary contact for the
   support of your modified version, and
  4. retain our contact information in regard to use of the base
   software.
@end example

Permission to distribute the released version of the source code along
with corresponding source modifications in the form of a patch file is
granted with same provisions 2 through 4 for binary distributions.

This software is provided "as is" without express or implied warranty
to the extent permitted by applicable law.


@example
      AUTHORS

@end example

@example
      Original Software:
         Thomas Williams,  Colin Kelley.

@end example

@example
      Gnuplot 2.0 additions:
         Russell Lang, Dave Kotz, John Campbell.

@end example

@example
      Gnuplot 3.0 additions:
         Gershon Elber and many others.

@end example

@example
      Gnuplot 4.0 additions:
         See list of contributors at head of this document.

@end example

@node Introduction, Seeking-assistance, Copyright, gnuplot
@section Introduction

@cindex introduction

@c ?
`Gnuplot` is a portable command-line driven graphing utility for Linux, OS/2,
MS Windows, OSX, VMS, and many other platforms. The source code is copyrighted
but freely distributed (i.e., you don't have to pay for it). It was originally
created to allow scientists and students to visualize mathematical functions
and data interactively, but has grown to support many non-interactive uses
such as web scripting. It is also used as a plotting engine by third-party
applications like Octave. Gnuplot has been supported and under active
development since 1986. 

Gnuplot supports many types of plots in either 2D and 3D. It can draw using
lines, points, boxes, contours, vector fields, surfaces, and various
associated text. It also supports various specialized plot types.

Gnuplot supports many different types of output: interactive screen terminals
(with mouse and hotkey input), direct output to pen plotters or modern
printers, and output to many file formats (eps, fig, jpeg, LaTeX, metafont,
pbm, pdf, png, postscript, svg, ...). Gnuplot is easily extensible to include
new output modes. Recent additions include interactive terminals based on
aquaterm (OSX) and wxWidgets (multiple platforms). 

The command language of `gnuplot` is case sensitive, i.e. commands and
function names written in lowercase are not the same as those written in
capitals. All command names may be abbreviated as long as the abbreviation is
not ambiguous. Any number of commands may appear on a line, separated by
semicolons (;). Strings may be set off by either single or double quotes,
although there are some subtle differences.  See `syntax` and `quotes` for
more details. Examples:

@example
      load "filename"
      cd 'dir'

@end example

Many `gnuplot` commands have multiple options. Version 4 is less sensitive
to the order of these options than earlier versions, but some order-dependence
remains. If you see error messages about unrecognized options, please try
again using the exact order listed in the documentation.

Commands may extend over several input lines by ending each line but the last
with a backslash (\).  The backslash must be the _last_ character on each
line.  The effect is as if the backslash and newline were not there.  That
is, no white space is implied, nor is a comment terminated.  Therefore,
commenting out a continued line comments out the entire command
(see `comments`).  But note that if an error occurs somewhere on a multi-line
command, the parser may not be able to locate precisely where the error is
and in that case will not necessarily point to the correct line.

In this document, curly braces (@{@}) denote optional arguments and a vertical
bar (|) separates mutually exclusive choices.  `Gnuplot` keywords or @ref{help}
topics are indicated by backquotes or `boldface` (where available).  Angle
brackets (<>) are used to mark replaceable tokens.  In many cases, a default
value of the token will be taken for optional arguments if the token is
omitted, but these cases are not always denoted with braces around the angle
brackets.

For built-in help on any topic, type @ref{help} followed by the name of the topic
or `help ?` to get a menu of available topics.

The new `gnuplot` user should begin by reading about `plotting` (if in an
interactive session, type `help plotting`).

See the simple.dem demo, also available together with other demos on the web page
@uref{http://www.gnuplot.info/demo/,http://www.gnuplot.info/demo/
}
`Gnuplot` can be started from a command line or from an icon according to the
desktop environment. Running it from command line can take the syntax
@example
      gnuplot @{OPTIONS@} file1 file2 ...
@end example

where file1, file2, etc. are input file as in the `load` command.
On X11-based systems, you can use
@example
      gnuplot @{X11OPTIONS@} @{OPTIONS@} file1 file2 ...
@end example

see your X11 documentation or rather `x11` in this document.

Options interpreted by gnuplot may come anywhere on the line.  Files are
executed in the order specified, as are commands supplied by the -e option,
for example
@example
      gnuplot   file1.in   -e "reset"   file2.in

@end example

The special filename "-" is used to force reading from stdin.  `Gnuplot` exits
after the last file is processed.  If no load files are named, `Gnuplot` takes
interactive input from stdin.  See help `batch/interactive` for more details.
The options specific to gnuplot can be listed by typing
@example
      gnuplot --help
@end example

See `command line options` for more details.

Hit 'h' for help about `hotkeys` and `mousing` features in interactive screen
terminals (`pm`, `windows`, `wxt`, `x11`).

Section `seeking-assistance` will help you to find further information, help
and FAQ.

@node Seeking-assistance, New_features_introduced_in_version_4.4, Introduction, gnuplot
@section Seeking-assistance

@cindex help-desk

@cindex seeking-assistance

@c ^ <a name="Seeking-assistance"></a>
The canonical gnuplot web page can be found at
@uref{http://www.gnuplot.info,http://www.gnuplot.info
}

Before seeking help, please check file FAQ.pdf or the above website for
@uref{http://www.gnuplot.info/faq/,FAQ (Frequently Asked Questions) list.
}

If you need help as a gnuplot user, please use the newsgroup
@example
          comp.graphics.apps.gnuplot
@end example

We prefer that you read the messages through the newsgroup rather than
subscribing to the mailing list which is also available and carries the same
set of messages. Instructions for subscribing to gnuplot mailing lists may be
found via the gnuplot development website on SourceForge
@uref{http://sourceforge.net/projects/gnuplot,http://sourceforge.net/projects/gnuplot
}

The address for mailing to list members is:
@example
          gnuplot-info@@lists.sourceforge.net

@end example

Bug reports and code contributions should be uploaded to the trackers at
@example
          http://sourceforge.net/projects/gnuplot/support
@end example

Please check previous bug reports if the bug you want to report has not been
already fixed in a newer version of gnuplot.

The list of those interested in development version of gnuplot is:
@example
          gnuplot-beta@@lists.sourceforge.net

@end example

When posting a question, please include full details of the version of
`gnuplot`, the machine, and operating system you are using.  A _small_ script
demonstrating the problem may be useful.  Function plots are preferable to
datafile plots.  If email-ing to gnuplot-info, please state whether or not
you are subscribed to the list, so that users who use news will know to email
a reply to you.  There is a form for such postings on the website.


@node New_features_introduced_in_version_4.4, Backwards_compatibility, Seeking-assistance, gnuplot
@section New features introduced in version 4.4

@cindex new-features

Gnuplot version 4.4 offers many new features introduced since the preceding
official version 4.2. This section lists major additions and gives a partial
list of changes and minor new features. For a more exhaustive list, see the
NEWS file.


@menu
* Internationalization::        
* Transparency::                
* Volatile_Data::               
* Canvas_size::                 
* New_plot_elements::           
* New_or_revised_terminal_drivers::  
* New_smoothing_algorithms::    
@end menu

@node Internationalization, Transparency, New_features_introduced_in_version_4.4, New_features_introduced_in_version_4.4
@subsection Internationalization

Gnuplot 4.4 contains significantly improved support for locale settings and for
UTF-8 character encodings. See @ref{locale}, @ref{encoding}, @ref{decimalsign}.


@node Transparency, Volatile_Data, Internationalization, New_features_introduced_in_version_4.4
@subsection Transparency

Gnuplot now supports several forms of transparency. Any object or plot
element that uses a fill style can be assigned a transparency from fully opaque
to fully transparent. Image or matrix data can be plotted with an alpha channel
using the new plot style @ref{rgbalpha}. See `fillstyle`, @ref{rgbalpha}.


@node Volatile_Data, Canvas_size, Transparency, New_features_introduced_in_version_4.4
@subsection Volatile Data

The new command @ref{refresh} is similar to @ref{replot} except that it uses the
previously-stored input data values rather than rereading the input data file.
Mouse operations (zoom, rotate) will automatically use @ref{refresh} rather than
@ref{replot} if the input data stream is marked `volatile`.  Piped or in-line data
is automatically treated as volatile.  See @ref{refresh}, `plot datafile volatile`.


@node Canvas_size, New_plot_elements, Volatile_Data, New_features_introduced_in_version_4.4
@subsection Canvas size

@c ?canvas size
@cindex canvas

@c ?set term size

In earlier versions of gnuplot, some terminal types used the values from
@ref{size} to control also the size of the output canvas; others did not.
The use of 'set size' for this purpose was deprecated in version 4.2.
In version 4.4 almost all terminals now behave as follows:

`set term <terminal_type> size <XX>, <YY>` controls the size of the output
file, or "canvas". Please see individual terminal documentation for allowed
values of the size parameters.  By default, the plot will fill this canvas.

`set size <XX>, <YY>` scales the plot itself relative to the size of the
canvas.  Scale values less than 1 will cause the plot to not fill the entire
canvas.  Scale values larger than 1 will cause only a portion of the plot to
fit on the canvas.  Please be aware that setting scale values larger than 1
may cause problems on some terminal types.

The major exception to this convention is the PostScript driver, which
by default continues to act as it has in earlier versions. Be warned that
the next version of gnuplot may change the default behaviour of the
PostScript driver as well.

Example:

@example
      set size 0.5, 0.5
      set term png size 600, 400
      set output "figure.png"
      plot "data" with lines

@end example

These commands will produce an output file "figure.png" that is 600 pixels
wide and 400 pixels tall. The plot will fill the lower left quarter of this
canvas.  This is consistent with the way multiplot mode has always worked,
however it is a change in the way the png driver worked for single plots in
version 4.0.


@node New_plot_elements, New_or_revised_terminal_drivers, Canvas_size, New_features_introduced_in_version_4.4
@subsection New plot elements

@cindex circles

@cindex ellipse

@cindex polygon

The @ref{object} command can now be used to define fixed circles, ellipses, and
polygons as well as rectangles. There is a corresponding new plot style
@ref{circles}.  See `circle`, @ref{ellipse} and @ref{polygon}.


@node New_or_revised_terminal_drivers, New_smoothing_algorithms, New_plot_elements, New_features_introduced_in_version_4.4
@subsection New or revised terminal drivers

Two new drivers based on the cairo and pango libraries are included,
`pngcairo` and `pdfcairo`.  These are alternatives to the older libgd-based
png driver and the older PDFLib-based pdf driver.  The figures in the pdf
version of this manual were prepared using the pdfcairo terminal driver.

The `canvas` terminal driver produces javascript output that draws onto the
HTML canvas element of a web page.  It can produce either a complete web page
containing a single plot, or a script that can be embedded as part of an
externally generated HTML document that perhaps contains multiple plots.
The embedded plots support browser-side mousing, including zoom/unzoom.

The `lua` terminal driver creates an data intended to be further processed
by a script in the lua programming language.  At this point only one such
lua script, gnuplot-tikz.lua, is available.  It produces a TeX document
suitable for use with the latex TikZ package.  Other lua scripts could be
written to process the gnuplot output for use with other TeX packages,
or with other non-TeX tools.

`Set term tikz` is shorthand for `set term lua tikz`.  As decribed above, it
uses the generic lua terminal and an external lua script to produce a latex
document.


@node New_smoothing_algorithms,  , New_or_revised_terminal_drivers, New_features_introduced_in_version_4.4
@subsection New smoothing algorithms

@cindex kdensity

@cindex cumulative

New smoothing algorithms have been added for both 2- and 3-dimensional plots.
`smooth kdensity` and `smooth cumul` can be used with `plot` to draw 
smooth histograms and cumulative distribution functions, resp. For use
with `splot` several new smoothing kernels have been added to @ref{dgrid3d}.
See @ref{smooth} @ref{dgrid3d}.


@node Backwards_compatibility, Batch/Interactive_Operation, New_features_introduced_in_version_4.4, gnuplot
@section Backwards compatibility

@c ?backwards compatibility
@cindex compatibility

Gnuplot version 4.0 deprecated certain syntax used in earlier versions, but
continued to recognize it.  This is now under the control of a configuration
option, and can be disabled as follows:

@example
      ./configure --disable-backwards-compatibility

@end example

Notice: Deprecated syntax items may be disabled permanently in some future
version of gnuplot.

One major difference is the introduction of keywords to disambiguate complex
commands, particularly commands containing string variables. A notable issue
was the use of bare numbers to specify offsets, line and point types.
Illustrative examples:

Deprecated:
@example
      set title "Old" 0,-1
      set data linespoints
      plot 1 2 4               # horizontal line at y=1
@end example

New:
@example
      TITLE = "New"
      set title TITLE offset char 0, char -1
      set style data linespoints
      plot 1 linetype 2 pointtype 4

@end example


@node Batch/Interactive_Operation, Command-line-editing, Backwards_compatibility, gnuplot
@section Batch/Interactive Operation

@cindex batch/interactive

@c ?command line options
`Gnuplot` may be executed in either batch or interactive modes, and the two
may even be mixed together on many systems.

Any command-line arguments are assumed to be either program options (first
character is -) or names of files containing `gnuplot` commands. The option
-e "command" may be used to force execution of a gnuplot command. Each file
or command string will be executed in the order specified.  The special
filename "-" is indicates that commands are to be read from stdin.
`Gnuplot` exits after the last file is processed.  If no load files and no 
command strings are specified, `gnuplot` accepts interactive input from
stdin.

Both the @ref{exit} and @ref{quit} commands terminate the current command file and
`load` the next one, until all have been processed.

Examples:

To launch an interactive session:
@example
      gnuplot

@end example

To launch a batch session using two command files "input1" and "input2":
@example
      gnuplot input1 input2

@end example

To launch an interactive session after an initialization file "header" and
followed by another command file "trailer":
@example
      gnuplot header - trailer

@end example

To give `gnuplot` commands directly in the command line, using the "-persist"
option so that the plot remains on the screen afterwards:
@example
      gnuplot -persist -e "set title 'Sine curve'; plot sin(x)"

@end example

To set user-defined variables a and s prior to executing commands from a file:
@example
      gnuplot -e "a=2; s='file.png'" input.gpl

@end example



@node Command-line-editing, Comments, Batch/Interactive_Operation, gnuplot
@section Command-line-editing

@cindex line-editing

@cindex editing

@cindex command-line-editing

Command-line editing and command history are supported using either an
external gnu readline library, an external BSD libedit library,  or a
built-in equivalent.  This choice is a configuration option at the time
gnuplot is built.

The editing commands of the built-in version are given below. The gnu
readline and BSD libedit libraries have their own documentation.


@example
      `Line-editing`:

@end example

@example
      ^B    moves back a single character.
      ^F    moves forward a single character.
      ^A    moves to the beginning of the line.
      ^E    moves to the end of the line.
      ^H    and DEL delete the previous character.
      ^D    deletes the current character.
      ^K    deletes from current position to the end of line.
      ^L,^R redraws line in case it gets trashed.
      ^U    deletes the entire line.
      ^W    deletes from the current word to the end of line.

@end example

@example
      `History`:

@end example

@example
      ^P    moves back through history.
      ^N    moves forward through history.

@end example


@node Comments, Coordinates, Command-line-editing, gnuplot
@section Comments

@cindex comments

Comments are supported as follows: a `#` may appear in most places in a line
and `gnuplot` will ignore the rest of the line.  It will not have this effect
inside quotes, inside numbers (including complex numbers), inside command
substitutions, etc.  In short, it works anywhere it makes sense to work.

See also `set datafile commentschars` for specifying comment characters in
data files.  Note that if a comment line ends in '\' then the subsequent
line is also treated as a comment.

@node Coordinates, Datastrings, Comments, gnuplot
@section Coordinates

@cindex coordinates

@cindex axes

The commands @ref{arrow}, `set key`, `set label` and @ref{object} allow you
to draw something at an arbitrary position on the graph.  This position is
specified by the syntax:

@example
      @{<system>@} <x>, @{<system>@} <y> @{,@{<system>@} <z>@}

@end example

Each <system> can either be `first`, `second`, `graph`, `screen`, or
`character`.

`first` places the x, y, or z coordinate in the system defined by the left
and bottom axes; `second` places it in the system defined by the second axes
(top and right); `graph` specifies the area within the axes---0,0 is bottom
left and 1,1 is top right (for splot, 0,0,0 is bottom left of plotting area;
use negative z to get to the base---see @ref{xyplane}); `screen`
specifies the screen area (the entire area---not just the portion selected by
@ref{size}), with 0,0 at bottom left and 1,1 at top right; and `character`
gives the position in character widths and heights from the bottom left of
the screen area (screen 0,0), `character` coordinates depend on the chosen
font size.

If the coordinate system for x is not specified, `first` is used.  If the
system for y is not specified, the one used for x is adopted.

In some cases, the given coordinate is not an absolute position but a
relative value (e.g., the second position in @ref{arrow} ... `rto`).  In
most cases, the given value serves as difference to the first position.
If the given coordinate resides in a logarithmic axis the value is
interpreted as factor. For example,

@example
      set logscale x
      set arrow 100,5 rto 10,2

@end example

plots an arrow from position 100,5 to position 1000,7 since the x axis is
logarithmic while the y axis is linear.

If one (or more) axis is timeseries, the appropriate coordinate should
be given as a quoted time string according to the @ref{timefmt} format string.
See @ref{xdata} and @ref{timefmt}.  `Gnuplot` will also accept an integer
expression, which will be interpreted as seconds from 1 January 2000.

@node Datastrings, Enhanced_text_mode, Coordinates, gnuplot
@section Datastrings

@cindex datastrings

Data files may contain string data consisting of either an arbitrary string
of printable characters containing no whitespace or an arbitrary string of
characters, possibly including whitespace, delimited by double quotes.
The following sample line from a datafile is interpreted to contain four
columns, with a text field in column 3:

@example
  1.000 2.000 "Third column is all of this text" 4.00

@end example

Text fields can be positioned within a 2-D or 3-D plot using the commands:

@example
  plot 'datafile' using 1:2:4 with labels
  splot 'datafile using 1:2:3:4 with labels

@end example

A column of text data can also be used to label the ticmarks along one or more
of the plot axes. The example below plots a line through a series of points
with (X,Y) coordinates taken from columns 3 and 4 of the input datafile.
However, rather than generating regularly spaced tics along the x axis
labeled numerically, gnuplot will position a tic mark along the x axis at the
X coordinate of each point and label the tic mark with text taken from column
1 of the input datafile.

@example
  set xtics
  plot 'datafile' using 3:4:xticlabels(1) with linespoints

@end example

@cindex columnheader

There is also an option that will interpret the first entry in a column of
input data (i.e. the column heading) as a text field, and use it as the key
title for data plotted from that column. The example given below will use the
first entry in column 2 to generate a title in the key box, while processing
the remainder of columns 2 and 4 to draw the required line:

@example
  plot 'datafile' using 1:(f($2)/$4) with lines title columnhead(2)

@end example

See @ref{labels}, `using xticlabels`, @ref{title}, @ref{using}.

@node Enhanced_text_mode, Environment, Datastrings, gnuplot
@section Enhanced text mode

@c ?enhanced text
@cindex enhanced

Many terminal types support an enhanced text mode in which additional
formatting information is embedded in the text string.  For example, "x^2"
will write x-squared as we are used to seeing it, with a superscript 2.
This mode is normally selected when you set the terminal, e.g.
"set term png enhanced", but may also be toggled afterward using
"set termoption enhanced", or by marking individual strings as in
"set label 'x_2' noenhanced".


@example
 Control      Examples        Explanation
  ^           a^x             superscript
  _           a_x             subscript
  @@           @@x or a@@^b_@{cd@} phantom box (occupies no width)
  &           &@{space@}        inserts space of specified length
  ~           ~a@{.8-@}         overprints '-' on 'a', raised by .8
                              times the current fontsize

@end example


Braces can be used to place multiple-character text where a single character
is expected (e.g., 2^@{10@}).  To change the font and/or size, use the full form:
@{/[fontname][=fontsize | *fontscale] text@}.  Thus @{/Symbol=20 G@} is a 20 pt
GAMMA and @{/*0.75 K@} is a K at three-quarters of whatever fontsize is currently
in effect.  (The '/' character MUST be the first character after the '@{'.)

The phantom box is useful for a@@^b_c to align superscripts and subscripts
but does not work well for overwriting an accent on a letter.  For the latter,
it is much better to use an encoding  (e.g. iso_8859_1 or utf8) that contains
a large variety of letters with accents or other diacritical marks.  See
@ref{encoding}. Since the box is non-spacing, it is sensible to put the shorter
of the subscript or superscript in the box (that is, after the @@).

Space equal in length to a string can be inserted using the '&' character.
Thus
@example
        'abc&@{def@}ghi'
@end example

would produce
@example
        'abc   ghi'.

@end example

The '~' character causes the next character or bracketed text to be
overprinted by the following character or bracketed text.  The second text
will be horizontally centered on the first.  Thus '~a/' will result in an 'a'
with a slash through it.  You can also shift the second text vertically by
preceding the second text with a number, which will define the fraction of the
current fontsize by which the text will be raised or lowered.  In this case
the number and text must be enclosed in brackets because more than one
character is necessary.  If the overprinted text begins with a number, put a
space between the vertical offset and the text ('~@{abc@}@{.5 000@}'); otherwise
no space is needed ('~@{abc@}@{.5---@}').  You can change the font for one or
both strings ('~a@{.5 /*.2 o@}'---an 'a' with a one-fifth-size 'o' on top---and
the space between the number and the slash is necessary), but you can't
change it after the beginning of the string.  Neither can you use any other
special syntax within either string.  You can, of course, use control
characters by escaping them (see below), such as '~a@{\^@}'

You can access special symbols numerically by specifying \character-code (in
octal), e.g., @{/Symbol \245@} is the symbol for infinity. This does not work
for multibyte encodings like UTF-8, however.  In a UTF-8 environment, you
should be able to enter multibyte sequences implicitly by typing or otherwise
selecting the character you want.

You can escape control characters using \, e.g.,  \\, \@{, and so on.

But be aware that strings in double-quotes are parsed differently than those
enclosed in single-quotes.  The major difference is that backslashes may need
to be doubled when in double-quoted strings.

Examples (these are hard to describe in words---try them!):
@example
      set xlabel 'Time (10^6 @{/Symbol m@}s)'
      set title '@{/Symbol=18 \\362@@_@{/=9.6 0@}^@{/=12 x@}@} \\
                 @{/Helvetica e^@{-@{/Symbol m@}^2/2@} d@}@{/Symbol m@}'

@end example

The file "ps_guide.ps" in the /docs/psdoc subdirectory of the gnuplot source
distribution contains more examples of the enhanced syntax.

@node Environment, Expressions, Enhanced_text_mode, gnuplot
@section Environment

@cindex environment

A number of shell environment variables are understood by `gnuplot`.  None of
these are required, but may be useful.

If GNUTERM is defined, it is used as the name of the terminal type to be
used.  This overrides any terminal type sensed by `gnuplot` on start-up, but
is itself overridden by the .gnuplot (or equivalent) start-up file
(see `start-up`) and, of course, by later explicit changes.

GNUHELP may be defined to be the pathname of the HELP file (gnuplot.gih).

On VMS, the logical name GNUPLOT$HELP should be defined as the name of the
help library for `gnuplot`.  The `gnuplot` help can be put inside any system
help library, allowing access to help from both within and outside `gnuplot`
if desired.

On Unix, HOME is used as the name of a directory to search for a .gnuplot
file if none is found in the current directory.  On AmigaOS,
MS-DOS, Windows and OS/2, GNUPLOT is used.  On Windows, the NT-specific
variable USERPROFILE is tried, too. VMS, SYS$LOGIN: is used. Type `help
start-up`.

On Unix, PAGER is used as an output filter for help messages.

On Unix and AmigaOS, SHELL is used for the @ref{shell} command.  On
MS-DOS and OS/2, COMSPEC is used for the @ref{shell} command.

FIT_SCRIPT may be used to specify a `gnuplot` command to be executed when a
fit is interrupted---see @ref{fit}.  FIT_LOG specifies the default filename of the
logfile maintained by fit.

GNUPLOT_LIB may be used to define additional search directories for data
and command files. The variable may contain a single directory name, or
a list of directories separated by a platform-specific path separator,
eg. ':' on Unix, or ';' on DOS/Windows/OS/2/Amiga platforms. The contents
of GNUPLOT_LIB are appended to the @ref{loadpath} variable, but not saved
with the @ref{save} and `save set` commands.

Several gnuplot terminal drivers access TrueType fonts via the gd library.
For these drivers the font search path is controlled by the environmental
variable GDFONTPATH.  Furthermore, a default font for these drivers may be
set via the environmental variable GNUPLOT_DEFAULT_GDFONT.

The postscript terminal uses its own font search path. It is controlled by
the environmental variable GNUPLOT_FONTPATH. The format is the same as for
GNUPLOT_LIB. The contents of GNUPLOT_FONTPATH are appended to the @ref{fontpath}
variable, but not saved with the @ref{save} and `save set` commands.

GNUPLOT_PS_DIR is used by the postscript driver to use external prologue
files. Depending on the build process, gnuplot contains either a builtin
copy of those files or simply a default hardcoded path. Use this variable
to test the postscript terminal with custom prologue files. See
`postscript prologue`.

@node Expressions, Fonts, Environment, gnuplot
@section Expressions

@cindex expressions

In general, any mathematical expression accepted by C, FORTRAN, Pascal, or
BASIC is valid.  The precedence of these operators is determined by the
specifications of the C programming language.  White space (spaces and tabs)
is ignored inside expressions.

Complex constants are expressed as @{<real>,<imag>@}, where <real> and <imag>
must be numerical constants.  For example, @{3,2@} represents 3 + 2i; @{0,1@}
represents 'i' itself.  The curly braces are explicitly required here.

@cindex division

Note that gnuplot uses both "real" and "integer" arithmetic, like FORTRAN and
C.  Integers are entered as "1", "-10", etc; reals as "1.0", "-10.0", "1e1",
3.5e-1, etc.  The most important difference between the two forms is in
division: division of integers truncates: 5/2 = 2; division of reals does
not: 5.0/2.0 = 2.5.  In mixed expressions, integers are "promoted" to reals
before evaluation: 5/2e0 = 2.5.  The result of division of a negative integer
by a positive one may vary among compilers.  Try a test like "print -5/2" to
determine if your system chooses -2 or -3 as the answer.

The integer expression "1/0" may be used to generate an "undefined" flag,
which causes a point to ignored; the `ternary` operator gives an example.
Or you can use the pre-defined variable NaN to achieve the same result.
@cindex NaN


The real and imaginary parts of complex expressions are always real, whatever
the form in which they are entered: in @{3,2@} the "3" and "2" are reals, not
integers.

Gnuplot can also perform simple operations on strings and string variables.
For example, the expression ("A" . "B" eq "AB") evaluates as true, illustrating
the string concatenation operator and the string equality operator.

A string which contains a numerical value is promoted to the corresponding
integer or real value if used in a numerical expression. Thus ("3" + "4" == 7)
and (6.78 == "6.78") both evaluate to true.  An integer, but not a real or
complex value, is promoted to a string if used in string concatenation.
A typical case is the use of integers to construct file names or other strings;
e.g. ("file" . 4 eq "file4") is true.

Substrings can be specified using a postfixed range descriptor [beg:end].
For example, "ABCDEF"[3:4] == "CD"   and   "ABCDEF"[4:*] == "DEF"
The syntax "string"[beg:end] is exactly equivalent to calling the built-in
string-valued function substr("string",beg,end), except that you cannot
omit either beg or end from the function call.

@menu
* Functions::                   
* Operators::                   
* Gnuplot-defined_variables::   
* User-defined_variables_and_functions::  
@end menu

@node Functions, Operators, Expressions, Expressions
@subsection Functions

@c ?expressions functions
@cindex functions
@opindex functions


The functions in `gnuplot` are the same as the corresponding functions in
the Unix math library, except that all functions accept integer, real, and
complex arguments, unless otherwise noted.

For those functions that accept or return angles that may be given in either
degrees or radians (sin(x), cos(x), tan(x), asin(x), acos(x), atan(x),
atan2(x) and arg(z)), the unit may be selected by @ref{angles}, which
defaults to radians.



@menu
* abs::                         
* acos::                        
* acosh::                       
* arg::                         
* asin::                        
* asinh::                       
* atan::                        
* atan2::                       
* atanh::                       
* EllipticK::                   
* EllipticE::                   
* EllipticPi::                  
* besj0::                       
* besj1::                       
* besy0::                       
* besy1::                       
* ceil::                        
* cos::                         
* cosh::                        
* erf::                         
* erfc::                        
* exp::                         
* floor::                       
* gamma::                       
* ibeta::                       
* inverf::                      
* igamma::                      
* imag::                        
* invnorm::                     
* int::                         
* lambertw::                    
* lgamma::                      
* log::                         
* log10::                       
* norm::                        
* rand::                        
* real::                        
* sgn::                         
* sin::                         
* sinh::                        
* sqrt::                        
* tan::                         
* tanh::                        
* gprintf::                     
* sprintf::                     
* strlen::                      
* strstrt::                     
* substr::                      
* strftime::                    
* strptime::                    
* system::                      
* word::                        
* words::                       
* column::                      
* defined::                     
* exists::                      
* stringcolumn::                
* timecolumn::                  
* tm_hour::                     
* tm_mday::                     
* tm_min::                      
* tm_mon::                      
* tm_sec::                      
* tm_wday::                     
* tm_yday::                     
* tm_year::                     
* valid::                       
* elliptic_integrals::          
* Random_number_generator::     
@end menu

@node abs, acos, Functions, Functions
@subsubsection abs

@c ?expressions functions abs
@c ?functions abs
@cindex abs
@findex abs


The `abs(x)` function returns the absolute value of its argument.  The
returned value is of the same type as the argument.

For complex arguments, abs(x) is defined as the length of x in the complex
plane [i.e.,  sqrt(real(x)**2 + imag(x)**2) ].

@node acos, acosh, abs, Functions
@subsubsection acos

@c ?expressions functions acos
@c ?functions acos
@cindex acos
@findex acos


The `acos(x)` function returns the arc cosine (inverse cosine) of its
argument.  `acos` returns its argument in radians or degrees, as selected by
@ref{angles}.

@node acosh, arg, acos, Functions
@subsubsection acosh

@c ?expressions functions acosh
@c ?functions acosh
@cindex acosh
@findex acosh


The `acosh(x)` function returns the inverse hyperbolic cosine of its argument
in radians.

@node arg, asin, acosh, Functions
@subsubsection arg

@c ?expressions functions arg
@c ?functions arg
@cindex arg
@findex arg


The `arg(x)` function returns the phase of a complex number in radians or
degrees, as selected by @ref{angles}.

@node asin, asinh, arg, Functions
@subsubsection asin

@c ?expressions functions asin
@c ?functions asin
@cindex asin
@findex asin


The `asin(x)` function returns the arc sin (inverse sin) of its argument.
`asin` returns its argument in radians or degrees, as selected by @ref{angles}.

@node asinh, atan, asin, Functions
@subsubsection asinh

@c ?expressions functions asinh
@c ?functions asinh
@cindex asinh
@findex asinh


The `asinh(x)` function returns the inverse hyperbolic sin of its argument in
radians.

@node atan, atan2, asinh, Functions
@subsubsection atan

@c ?expressions functions atan
@c ?functions atan
@cindex atan
@findex atan


The `atan(x)` function returns the arc tangent (inverse tangent) of its
argument.  `atan` returns its argument in radians or degrees, as selected by
@ref{angles}.

@node atan2, atanh, atan, Functions
@subsubsection atan2

@c ?expressions functions atan2
@c ?functions atan2
@cindex atan2
@findex atan2


The `atan2(y,x)` function returns the arc tangent (inverse tangent) of the
ratio of the real parts of its arguments.  @ref{atan2} returns its argument in
radians or degrees, as selected by @ref{angles}, in the correct quadrant.

@node atanh, EllipticK, atan2, Functions
@subsubsection atanh

@c ?expressions functions atanh
@c ?functions atanh
@cindex atanh
@findex atanh


The `atanh(x)` function returns the inverse hyperbolic tangent of its
argument in radians.

@node EllipticK, EllipticE, atanh, Functions
@subsubsection EllipticK

See `elliptic integrals`.

@node EllipticE, EllipticPi, EllipticK, Functions
@subsubsection EllipticE

See `elliptic integrals`.

@node EllipticPi, besj0, EllipticE, Functions
@subsubsection EllipticPi

See `elliptic integrals`.

@node besj0, besj1, EllipticPi, Functions
@subsubsection besj0

@c ?expressions functions besj0
@c ?functions besj0
@cindex besj0
@findex besj0


The `besj0(x)` function returns the j0th Bessel function of its argument.
@ref{besj0} expects its argument to be in radians.

@node besj1, besy0, besj0, Functions
@subsubsection besj1

@c ?expressions functions besj1
@c ?functions besj1
@cindex besj1
@findex besj1


The `besj1(x)` function returns the j1st Bessel function of its argument.
@ref{besj1} expects its argument to be in radians.

@node besy0, besy1, besj1, Functions
@subsubsection besy0

@c ?expressions functions besy0
@c ?functions besy0
@cindex besy0
@findex besy0


The `besy0(x)` function returns the y0th Bessel function of its argument.
@ref{besy0} expects its argument to be in radians.

@node besy1, ceil, besy0, Functions
@subsubsection besy1

@c ?expressions functions besy1
@c ?functions besy1
@cindex besy1
@findex besy1


The `besy1(x)` function returns the y1st Bessel function of its argument.
@ref{besy1} expects its argument to be in radians.

@node ceil, cos, besy1, Functions
@subsubsection ceil

@c ?expressions functions ceil
@c ?functions ceil
@cindex ceil
@findex ceil


The `ceil(x)` function returns the smallest integer that is not less than its
argument.  For complex numbers, @ref{ceil} returns the smallest integer not less
than the real part of its argument.

@node cos, cosh, ceil, Functions
@subsubsection cos

@c ?expressions functions cos
@c ?functions cos
@cindex cos
@findex cos


The `cos(x)` function returns the cosine of its argument.  `cos` accepts its
argument in radians or degrees, as selected by @ref{angles}.

@node cosh, erf, cos, Functions
@subsubsection cosh

@c ?expressions functions cosh
@c ?functions cosh
@cindex cosh
@findex cosh


The `cosh(x)` function returns the hyperbolic cosine of its argument.  @ref{cosh}
expects its argument to be in radians.

@node erf, erfc, cosh, Functions
@subsubsection erf

@c ?expressions functions erf
@c ?functions erf
@cindex erf
@findex erf


The `erf(x)` function returns the error function of the real part of its
argument.  If the argument is a complex value, the imaginary component is
ignored.  See @ref{erfc}, @ref{inverf}, and @ref{norm}.

@node erfc, exp, erf, Functions
@subsubsection erfc

@c ?expressions functions erfc
@c ?functions erfc
@cindex erfc
@findex erfc


The `erfc(x)` function returns 1.0 - the error function of the real part of
its argument.  If the argument is a complex value, the imaginary component is
ignored.  See `erf`, @ref{inverf}, and @ref{norm}.

@node exp, floor, erfc, Functions
@subsubsection exp

@c ?expressions functions exp
@c ?functions exp
@cindex exp
@findex exp


The `exp(x)` function returns the exponential function of its argument (`e`
raised to the power of its argument).  On some implementations (notably
suns), exp(-x) returns undefined for very large x.  A user-defined function
like safe(x) = x<-100 ? 0 : exp(x) might prove useful in these cases.

@node floor, gamma, exp, Functions
@subsubsection floor

@c ?expressions functions floor
@c ?functions floor
@cindex floor
@findex floor


The `floor(x)` function returns the largest integer not greater than its
argument.  For complex numbers, @ref{floor} returns the largest integer not
greater than the real part of its argument.

@node gamma, ibeta, floor, Functions
@subsubsection gamma

@c ?expressions functions gamma
@c ?functions gamma
@cindex gamma
@findex gamma


The `gamma(x)` function returns the gamma function of the real part of its
argument.  For integer n, gamma(n+1) = n!.  If the argument is a complex
value, the imaginary component is ignored.

@node ibeta, inverf, gamma, Functions
@subsubsection ibeta

@c ?expressions functions ibeta
@c ?functions ibeta
@cindex ibeta
@findex ibeta


The `ibeta(p,q,x)` function returns the incomplete beta function of the real
parts of its arguments. p, q > 0 and x in [0:1].  If the arguments are
complex, the imaginary components are ignored.  The function is approximated by
the method of continued fractions (Abramowitz and Stegun, 1964).
The approximation is only accurate in the region x < (p-1)/(p+q-2). 

@node inverf, igamma, ibeta, Functions
@subsubsection inverf

@c ?expressions functions inverf
@c ?functions inverf
@cindex inverf
@findex inverf


The `inverf(x)` function returns the inverse error function of the real part
of its argument.   See `erf` and @ref{invnorm}.

@node igamma, imag, inverf, Functions
@subsubsection igamma

@c ?expressions functions igamma
@c ?functions igamma
@cindex igamma
@findex igamma


The `igamma(a,x)` function returns the normalized incomplete gamma
function of the real parts of its arguments, where a > 0 and x >= 0.
The standard notation is P(a,x), e.g. Abramowitz and Stegun (6.5.1),
with limiting value of 1 as x approaches infinity.  If the arguments
are complex, the imaginary components are ignored.

@node imag, invnorm, igamma, Functions
@subsubsection imag

@c ?expressions functions imag
@c ?functions imag
@cindex imag
@findex imag


The `imag(x)` function returns the imaginary part of its argument as a real
number.

@node invnorm, int, imag, Functions
@subsubsection invnorm

@c ?expressions functions invnorm
@c ?functions invnorm
@cindex invnorm
@findex invnorm


The `invnorm(x)` function returns the inverse cumulative normal (Gaussian)
distribution function of the real part of its argument.  See @ref{norm}.

@node int, lambertw, invnorm, Functions
@subsubsection int

@c ?expressions functions int
@c ?functions int
@cindex int
@findex int


The `int(x)` function returns the integer part of its argument, truncated
toward zero.

@node lambertw, lgamma, int, Functions
@subsubsection lambertw

@c ?expressions functions lambertw
@c ?functions lambertw
@cindex lambertw
@findex lambertw


The lambertw function returns the value of the principal branch of
Lambert's W function, which is defined by the equation (W(z)*exp(W(z))=z.
z must be a real number with z >= -exp(-1).

@node lgamma, log, lambertw, Functions
@subsubsection lgamma

@c ?expressions functions lgamma
@c ?functions lgamma
@cindex lgamma
@findex lgamma


The `lgamma(x)` function returns the natural logarithm of the gamma function
of the real part of its argument.  If the argument is a complex value, the
imaginary component is ignored.

@node log, log10, lgamma, Functions
@subsubsection log

@c ?expressions functions log
@c ?functions log
@cindex log
@findex log


The `log(x)` function returns the natural logarithm (base `e`) of its
argument.  See @ref{log10}.

@node log10, norm, log, Functions
@subsubsection log10

@c ?expressions functions log10
@c ?functions log10
@cindex log10
@findex log10


The `log10(x)` function returns the logarithm (base 10) of its argument.

@node norm, rand, log10, Functions
@subsubsection norm

@c ?expressions functions norm
@c ?functions norm
@cindex norm
@findex norm


The `norm(x)` function returns the cumulative normal (Gaussian) distribution
function of the real part of its argument.   See @ref{invnorm}, `erf` and @ref{erfc}.

@node rand, real, norm, Functions
@subsubsection rand

@c ?expressions functions rand
@c ?functions rand
@cindex rand
@findex rand


`rand(0)`  returns a pseudo random number in the interval [0:1] generated
@example
           from the current value of two internal 32-bit seeds.
@end example

`rand(-1)` resets both seeds to a standard value.
`rand(x)`  for x>0 sets both seeds to a value based on the value of x.
`rand(@{x,y@})` for x>0 sets seed1 to x and seed2 to y.

@node real, sgn, rand, Functions
@subsubsection real

@c ?expressions functions real
@c ?functions real
@cindex real
@findex real


The `real(x)` function returns the real part of its argument.

@node sgn, sin, real, Functions
@subsubsection sgn

@c ?expressions functions sgn
@c ?functions sgn
@cindex sgn
@findex sgn


The `sgn(x)` function returns 1 if its argument is positive, -1 if its
argument is negative, and 0 if its argument is 0.  If the argument is a
complex value, the imaginary component is ignored.

@node sin, sinh, sgn, Functions
@subsubsection sin

@c ?expressions functions sin
@c ?functions sin
@cindex sin
@findex sin


The `sin(x)` function returns the sine of its argument.  `sin` expects its
argument to be in radians or degrees, as selected by @ref{angles}.

@node sinh, sqrt, sin, Functions
@subsubsection sinh

@c ?expressions functions sinh
@c ?functions sinh
@cindex sinh
@findex sinh


The `sinh(x)` function returns the hyperbolic sine of its argument.  @ref{sinh}
expects its argument to be in radians.

@node sqrt, tan, sinh, Functions
@subsubsection sqrt

@c ?expressions functions sqrt
@c ?functions sqrt
@cindex sqrt
@findex sqrt


The `sqrt(x)` function returns the square root of its argument.

@node tan, tanh, sqrt, Functions
@subsubsection tan

@c ?expressions functions tan
@c ?functions tan
@cindex tan
@findex tan


The `tan(x)` function returns the tangent of its argument.  `tan` expects
its argument to be in radians or degrees, as selected by @ref{angles}.

@node tanh, gprintf, tan, Functions
@subsubsection tanh

@c ?expressions functions tanh
@c ?functions tanh
@cindex tanh
@findex tanh


The `tanh(x)` function returns the hyperbolic tangent of its argument.  @ref{tanh}
expects its argument to be in radians.




@node gprintf, sprintf, tanh, Functions
@subsubsection gprintf

@c ?expressions functions gprintf
@c ?functions gprintf
`gprintf("format",x)` applies gnuplot's own format specifiers to the single
variable x and returns the resulting string. If you want standard C-language
format specifiers, you must instead use `sprintf("format",x)`.
See `format specifiers`.

@node sprintf, strlen, gprintf, Functions
@subsubsection sprintf

@c ?expressions functions sprintf
@c ?functions sprintf
@cindex sprintf
@findex sprintf


`sprintf("format",var1,var2,...)` applies standard C-language format specifiers
to multiple arguments and returns the resulting string. If you want to
use gnuplot's own format specifiers, you must instead call `gprintf()`.
For information on sprintf format specifiers, please see standard C-language
documentation or the unix sprintf man page.

@node strlen, strstrt, sprintf, Functions
@subsubsection strlen

@c ?expressions functions strlen
@c ?functions strlen
@cindex strlen
@findex strlen


`strlen("string")` returns the number of characters in the string.

@node strstrt, substr, strlen, Functions
@subsubsection strstrt

@c ?expressions functions strstrt
@c ?functions strstrt
@cindex strstrt
@findex strstrt


`strstrt("string","key")` searches for the character string "key" in "string"
and returns the index to the first character of "key". If "key" is not found,
returns 0. Similar to C library function strstr except that it returns an
index rather than a string pointer. strstrt("hayneedlestack","needle") = 4.

@node substr, strftime, strstrt, Functions
@subsubsection substr

@c ?expressions functions substr
@c ?functions substr
@cindex substr
@findex substr


@cindex substring

`substr("string",beg,end)` returns the substring consisting of characters
beg through end of the original string. This is exactly equivalent to the
expression "string"[beg:end] except that you do not have the option of
omitting beg or end.

@node strftime, strptime, substr, Functions
@subsubsection strftime

@c ?expressions functions strftime
@c ?functions strftime
@cindex strftime
@findex strftime


`strftime("timeformat",t)` applies the timeformat specifiers to the time t
given in seconds since the year 2000.
See `time_specifiers` and @ref{strptime}.

@node strptime, system, strftime, Functions
@subsubsection strptime

@c ?expressions functions strptime
@c ?functions strptime
@cindex strptime
@findex strptime


`strptime("timeformat",s)` reads the time from the string s using the
timeformat specifiers and converts it into seconds since the year 2000.
See `time_specifiers` and @ref{strftime}.

@node system, word, strptime, Functions
@subsubsection system

@c ?expressions functions system
@c ?functions system
@cindex system
@cmindex system


`system("command")` executes "command" using the standard shell and returns
the resulting character stream from stdout as string variable.
One optional trailing newline is ignored.

This can be used to import external functions into gnuplot scripts using
'f(x) = real(system(sprintf("somecommand %f", x)))'.

@node word, words, system, Functions
@subsubsection word

@c ?expressions functions word
@c ?functions word
@cindex word
@findex word


@cindex word
@findex word


`word("string",n)` returns the nth word in string. For example,
`word("one two three",2)` returns the string "two".

@node words, column, word, Functions
@subsubsection words

@c ?expressions functions words
@c ?functions words
@cindex words
@findex words


@cindex words
@findex words


`words("string")` returns the number of words in string. For example,
`words(" a b c d")` returns the 4.




@node column, defined, words, Functions
@subsubsection column

@c ?expressions functions column
@c ?functions column
@cindex column
@findex column


`column(x)` may be used only in expressions as part of @ref{using} manipulations
to fits or datafile plots.  It evaluates to the numerical value of the contents
of column x. See @ref{using}.

@node defined, exists, column, Functions
@subsubsection defined

@c ?expressions functions defined
@c ?functions defined
@cindex defined
@findex defined


`defined(X)` [DEPRECATED] returns 1 if a variable named X has been defined, otherwise
it returns 0.

@node exists, stringcolumn, defined, Functions
@subsubsection exists

@c ?expressions functions exists
@c ?functions exists
@cindex exists
@findex exists


The argument to exists() is a string constant or a string variable;
if the string contains the name of a defined variable, the function returns 1.
Otherwise the function returns 0.

@node stringcolumn, timecolumn, exists, Functions
@subsubsection stringcolumn

@c ?expressions functions stringcolumn
@c ?functions stringcolumn
@cindex stringcolumn
@findex stringcolumn


@c ?expressions functions strcol
@c ?functions strcol
@cindex strcol

`stringcolumn(x)` may be used only in expressions as part of @ref{using} manipulations
to fits or datafile plots.  It returns the content of column x as a string variable.
See @ref{using}.

@node timecolumn, tm_hour, stringcolumn, Functions
@subsubsection timecolumn

@c ?expressions functions timecolumn
@c ?functions timecolumn
@cindex timecolumn
@findex timecolumn


`timecolumn(x)` may be used only in expressions as part of @ref{using}
manipulations to fits or datafile plots.   See @ref{using}.

It reads the data starting at that column as a time/date value and
returns its value in gnuplot's internal time representation of
"seconds since the millennium".

To find the right @ref{timefmt} string to use, @ref{timecolumn} searches for a
@ref{using} specification with the same column number as its argument.
If one is found, @ref{timefmt} pattern of the target axis for this specifier
is used.  Otherwise, @ref{timecolumn} chooses the x axis @ref{timefmt} per default.

@node tm_hour, tm_mday, timecolumn, Functions
@subsubsection tm_hour

@c ?expressions tm_hour
@findex tm_hour
@c ?functions tm_hour
@cindex tm_hour
@findex tm_hour


The @ref{tm_hour} function interprets its argument as a time, in seconds from
1 Jan 2000.  It returns the hour (an integer in the range 0--23) as a real.

@node tm_mday, tm_min, tm_hour, Functions
@subsubsection tm_mday

@c ?expressions tm_mday
@findex tm_mday
@c ?functions tm_mday
@cindex tm_mday
@findex tm_mday


The @ref{tm_mday} function interprets its argument as a time, in seconds from
1 Jan 2000.  It returns the day of the month (an integer in the range 1--31)
as a real.

@node tm_min, tm_mon, tm_mday, Functions
@subsubsection tm_min

@c ?expressions tm_min
@findex tm_min
@c ?functions tm_min
@cindex tm_min
@findex tm_min


The @ref{tm_min} function interprets its argument as a time, in seconds from
1 Jan 2000.  It returns the minute (an integer in the range 0--59) as a real.

@node tm_mon, tm_sec, tm_min, Functions
@subsubsection tm_mon

@c ?expressions tm_mon
@findex tm_mon
@c ?functions tm_mon
@cindex tm_mon
@findex tm_mon


The @ref{tm_mon} function interprets its argument as a time, in seconds from
1 Jan 2000.  It returns the month (an integer in the range 0--11) as a real.

@node tm_sec, tm_wday, tm_mon, Functions
@subsubsection tm_sec

@c ?expressions tm_sec
@findex tm_sec
@c ?functions tm_sec
@cindex tm_sec
@findex tm_sec


The @ref{tm_sec} function interprets its argument as a time, in seconds from
1 Jan 2000.  It returns the second (an integer in the range 0--59) as a real.

@node tm_wday, tm_yday, tm_sec, Functions
@subsubsection tm_wday

@c ?expressions tm_wday
@findex tm_wday
@c ?functions tm_wday
@cindex tm_wday
@findex tm_wday


The @ref{tm_wday} function interprets its argument as a time, in seconds from
1 Jan 2000.  It returns the day of the week (an integer in the range 0--6) as
a real.

@node tm_yday, tm_year, tm_wday, Functions
@subsubsection tm_yday

@c ?expressions tm_yday
@findex tm_yday
@c ?functions tm_yday
@cindex tm_yday
@findex tm_yday


The @ref{tm_yday} function interprets its argument as a time, in seconds from
1 Jan 2000.  It returns the day of the year (an integer in the range 1--366)
as a real.

@node tm_year, valid, tm_yday, Functions
@subsubsection tm_year

@c ?expressions tm_year
@findex tm_year
@c ?functions tm_year
@cindex tm_year
@findex tm_year


The @ref{tm_year} function interprets its argument as a time, in seconds from
1 Jan 2000.  It returns the year (an integer) as a real.

@node valid, elliptic_integrals, tm_year, Functions
@subsubsection valid

@c ?expressions functions valid
@c ?functions valid
@cindex valid
@findex valid


`valid(x)` may be used only in expressions as part of @ref{using} manipulations
to fits or datafile plots.  See @ref{using}.



@node elliptic_integrals, Random_number_generator, valid, Functions
@subsubsection elliptic integrals

@c ?expressions functions elliptic integrals
@c ?functions elliptic integrals
@c ?elliptic integrals
@cindex elliptic integrals
@findex elliptic integrals


The `EllipticK(k)` function returns the complete elliptic integral of the first
kind, i.e. the definite integral between 0 and pi/2 of the function
`(1-(k*sin(p))**2)**(-0.5)`.  The domain of `k` is -1 to 1 (exclusive).

The `EllipticE(k)` function returns the complete elliptic integral of the
second kind, i.e. the definite integral between 0 and pi/2 of the function
`(1-(k*sin(p))**2)**0.5`.  The domain of `k` is -1 to 1 (inclusive).

The `EllipticPi(n,k)` function returns the complete elliptic integral of the
third kind, i.e. the definite integral between 0 and pi/2 of the function 
`(1-(k*sin(p))**2)**(-0.5)/(1-n*sin(p)**2)`.  The parameter `n` must be less
than 1, while `k` must lie between -1 and 1 (exclusive).  Note that by
definition EllipticPi(0,k) == EllipticK(k) for all possible values of `k`.

@node Random_number_generator,  , elliptic_integrals, Functions
@subsubsection Random number generator

@c ?expressions random
@c ?functions random
@cindex random

Some older versions of gnuplot used rand(x>0) to produce sequential
pseudo-random numbers.  The current behavior is as follows:
@example
 `rand(0)`  returns a pseudo random number in the interval [0:1] generated
            from the current value of two internal 32-bit seeds.
 `rand(-1)` resets both seeds to a standard value.
 `rand(x)`  for x>0 sets both seeds to a value based on the value of x.
 `rand(@{x,y@})` for x>0 sets seed1 to x and seed2 to y.

@end example


@node Operators, Gnuplot-defined_variables, Functions, Expressions
@subsection Operators

@c ?expressions operators
@cindex operators

The operators in `gnuplot` are the same as the corresponding operators in the
C programming language, except that all operators accept integer, real, and
complex arguments, unless otherwise noted.  The ** operator (exponentiation)
is supported, as in FORTRAN.

Parentheses may be used to change order of evaluation.

@menu
* Unary::                       
* Binary::                      
* Ternary::                     
@end menu

@node Unary, Binary, Operators, Operators
@subsubsection Unary

@c ?expressions operators unary
@c ?operators unary
@cindex unary

The following is a list of all the unary operators and their usages:


@example
    Symbol      Example    Explanation
      -           -a          unary minus
      +           +a          unary plus (no-operation)
      ~           ~a        * one's complement
      !           !a        * logical negation
      !           a!        * factorial
      $           $3        * call arg/column during @ref{using} manipulation
@end example

@cindex factorial

@cindex negation

@cindex one's complement

@cindex operator precedence


(*) Starred explanations indicate that the operator requires an integer
argument.

Operator precedence is the same as in Fortran and C.  As in those languages,
parentheses may be used to change the order of operation.  Thus -2**2 = -4,
but (-2)**2 = 4.

The factorial operator returns a real number to allow a greater range.

@node Binary, Ternary, Unary, Operators
@subsubsection Binary

@c ?expressions operators binary
@c ?operators binary
The following is a list of all the binary operators and their usages:


@example
    Symbol       Example      Explanation
      **          a**b          exponentiation
      *           a*b           multiplication
      /           a/b           division
      %           a%b         * modulo
      +           a+b           addition
      -           a-b           subtraction
      ==          a==b          equality
      !=          a!=b          inequality
      <           a<b           less than
      <=          a<=b          less than or equal to
      >           a>b           greater than
      >=          a>=b          greater than or equal to
      &           a&b         * bitwise AND
      ^           a^b         * bitwise exclusive OR
      |           a|b         * bitwise inclusive OR
      &&          a&&b        * logical AND
      ||          a||b        * logical OR
      =           a = b         assignment
      ,           (a,b)         serial evaluation
      .           A.B           string concatenation
      eq          A eq B        string equality
      ne          A ne B        string inequality
@end example

@cindex bitwise operators

@cindex string operators

@cindex modulo

@cindex exponentiation



(*) Starred explanations indicate that the operator requires integer
arguments.
Capital letters A and B indicate that the operator requires string arguments.

Logical AND (&&) and OR (||) short-circuit the way they do in C.  That is,
the second `&&` operand is not evaluated if the first is false; the second
`||` operand is not evaluated if the first is true.

Serial evaluation occurs only in parentheses and is guaranteed to proceed
in left to right order.  The value of the rightmost subexpression is returned.

@node Ternary,  , Binary, Operators
@subsubsection Ternary

@c ?expressions operators ternary
@c ?operators ternary
@cindex ternary

There is a single ternary operator:


@example
    Symbol       Example      Explanation
      ?:          a?b:c     ternary operation

@end example


The ternary operator behaves as it does in C.  The first argument (a), which
must be an integer, is evaluated.  If it is true (non-zero), the second
argument (b) is evaluated and returned; otherwise the third argument (c) is
evaluated and returned.

The ternary operator is very useful both in constructing piecewise functions
and in plotting points only when certain conditions are met.

Examples:

Plot a function that is to equal sin(x) for 0 <= x < 1, 1/x for 1 <= x < 2,
and undefined elsewhere:
@example
      f(x) = 0<=x && x<1 ? sin(x) : 1<=x && x<2 ? 1/x : 1/0
      plot f(x)
@end example

@c ^ <img align=bottom src="http://www.gnuplot.info/doc/ternary.gif" alt="[ternary.gif]" width=640 height=480>
Note that `gnuplot` quietly ignores undefined values, so the final branch of
the function (1/0) will produce no plottable points.  Note also that f(x)
will be plotted as a continuous function across the discontinuity if a line
style is used.  To plot it discontinuously, create separate functions for the
two pieces.  (Parametric functions are also useful for this purpose.)

For data in a file, plot the average of the data in columns 2 and 3 against
the datum in column 1, but only if the datum in column 4 is non-negative:

@example
      plot 'file' using 1:( $4<0 ? 1/0 : ($2+$3)/2 )

@end example

For an explanation of the @ref{using} syntax, please see @ref{using}.


@node Gnuplot-defined_variables, User-defined_variables_and_functions, Operators, Expressions
@subsection Gnuplot-defined variables

@c ?gnuplot-defined variables
Gnuplot maintains a number of read-only variables that reflect the current
internal state of the program and the most recent plot. These variables begin
with the prefix "GPVAL_".
Examples include GPVAL_TERM, GPVAL_X_MIN, GPVAL_X_MAX, GPVAL_Y_MIN.
Type `show variables all` to display the complete list and current values.
Values related to axes parameters (ranges, log base) are values used during the
last plot, not those currently `set`.

@cindex errors

@cindex error state

The read-only variable GPVAL_ERRNO is set to a non-zero value if any gnuplot
command terminates early due to an error.  The most recent error message is
stored in the string variable GPVAL_ERRMSG.  Both GPVAL_ERRNO and GPVAL_ERRMSG
can be cleared using the command `reset errors`.

Interactive terminals with `mouse` functionality maintain read-only variables
with the prefix "MOUSE_".  See @ref{variables} for details.

The @ref{fit} mechanism uses several variables with names that begin "FIT_".  It
is safest to avoid using such names.  "FIT_LIMIT", however, is one that you
may wish to redefine. Under `set fit errorvariables`, the error for each
fitted parameter will be stored in a variable named like the parameter, but
with "_err" appended. See the documentation on @ref{fit} for details.

See @ref{variables}, `reset errors`, @ref{variables}, and @ref{fit}.


@node User-defined_variables_and_functions,  , Gnuplot-defined_variables, Expressions
@subsection User-defined variables and functions

@c ?expressions user-defined
@c ?user-defined variables
@cindex user-defined

@cindex variables
@opindex variables


New user-defined variables and functions of one through twelve variables may
be declared and used anywhere, including on the `plot` command itself.

User-defined function syntax:
@example
      <func-name>( <dummy1> @{,<dummy2>@} ... @{,<dummy12>@} ) = <expression>

@end example

where <expression> is defined in terms of <dummy1> through <dummy12>.

User-defined variable syntax:
@example
      <variable-name> = <constant-expression>

@end example

Examples:
@example
      w = 2
      q = floor(tan(pi/2 - 0.1))
      f(x) = sin(w*x)
      sinc(x) = sin(pi*x)/(pi*x)
      delta(t) = (t == 0)
      ramp(t) = (t > 0) ? t : 0
      min(a,b) = (a < b) ? a : b
      comb(n,k) = n!/(k!*(n-k)!)
      len3d(x,y,z) = sqrt(x*x+y*y+z*z)
      plot f(x) = sin(x*a), a = 0.2, f(x), a = 0.4, f(x)

@end example

@example
      file = "mydata.inp"
      file(n) = sprintf("run_%d.dat",n)

@end example

@c ^ <img align=bottom src="http://www.gnuplot.info/doc/userdefined.gif" alt="[userdefined.gif]" width=640 height=480>
The final two examples illustrate a user-defined string variable and a
user-defined string function.

@cindex NaN

@cindex pi

Note that the variables `pi` (3.14159...) and `NaN` (IEEE "Not a Number") are
already defined.  You can redefine these to something else if you really need
to. The original values can be recovered by setting:

@example
      NaN = GPVAL_NaN
      pi  = GPVAL_pi

@end example

Other variables may be defined under various gnuplot operations like mousing in
interactive terminals or fitting; see @ref{variables} for details.

You can check for existence of a given variable V by the exists("V")
expression. For example
@example
      a = 10
      if (exists("a")) print "a is defined"
      if (!exists("b")) print "b is not defined"

@end example

Valid names are the same as in most programming languages: they must begin
with a letter, but subsequent characters may be letters, digits, or "_".

Each function definition is made available as a special string-valued
variable with the prefix 'GPFUN_'.

Example:
@example
      set label GPFUN_sinc at graph .05,.95

@end example

See @ref{functions}, @ref{functions}, @ref{variables}, @ref{macros}.

@node Fonts, Glossary, Expressions, gnuplot
@section Fonts

@cindex fonts

Gnuplot does not provide any fonts of its own. It relies on external font
handling, the details of which unfortunately vary from one terminal type to
another. Brief documentation of font mechanisms that apply to more than one
terminal type is given here. For information on font use by other individual
terminals, see the documentation for that terminal.

@menu
* cairo_(pdfcairo::             
* gd_(png::                     
* postscript__(also_encapsulated_postscript_*.eps)::  
@end menu

@node cairo_(pdfcairo, gd_(png, Fonts, Fonts
@subsection cairo (pdfcairo, pngcairo, wxt terminals)

@c ?fonts cairo
@cindex fonts

@cindex pdf
@tmindex pdf


@cindex png
@tmindex png


@cindex wxt
@tmindex wxt


Sorry, this section is under construction.
These terminals find and access fonts using the external fontconfig tool set.
Please see the
@uref{http://fontconfig.org/fontconfig-user.html,fontconfig user manual.
}
It is usually sufficient in gnuplot to request a font by a generic name and
size, letting fontconfig substitute a similar font if necessary. The following
will probably all work:
@example
     set term pdfcairo font "sans,12"
     set term pdfcairo font "Times,12"
     set term pdfcairo font "Times-New-Roman,12"

@end example


@node gd_(png, postscript__(also_encapsulated_postscript_*.eps), cairo_(pdfcairo, Fonts
@subsection gd (png, gif, jpeg terminals)

@cindex gd

@c ?fonts gd
@cindex fonts

@cindex png
@tmindex png


@cindex jpeg

@cindex gif

Font handling for the png, gif, and jpeg terminals is done by the external
library libgd.  Five basic fonts are provided directly by libgd. These are
`tiny` (5x8 pixels), `small` (6x12 pixels), `medium`, (7x13 Bold), `large`
(8x16) or `giant` (9x15 pixels). These fonts cannot be scaled or rotated.
Use one of these keywords instead of the `font` keyword. E.g.
@example
     set term png tiny

@end example

On most systems libgd also provides access to Adobe Type 1 fonts (*.pfa) and
TrueType fonts (*.ttf). You must give the name of the font file, not the name
of the font inside it, in the form "<face> @{,<pointsize>@}".
<face> is either the full pathname to the font file, or the first part of a
filename in one of the directories listed in the GDFONTPATH environmental
variable. That is, 'set term png font "Face"' will look for a font file named
either <somedirectory>/Face.ttf or <somedirectory>/Face.pfa.
For example, if GDFONTPATH contains `/usr/local/fonts/ttf:/usr/local/fonts/pfa`
then the following pairs of commands are equivalent
@example
     set term png font "arial"
     set term png font "/usr/local/fonts/ttf/arial.ttf"
     set term png font "Helvetica"
     set term png font "/usr/local/fonts/pfa/Helvetica.pfa"
@end example

To request a default font size at the same time:
@example
     set term png font "arial,11"

@end example

Both TrueType and Adobe Type 1 fonts are fully scalable and rotatable.
If no specific font is requested in the "set term" command, gnuplot checks
the environmental variable GNUPLOT_DEFAULT_GDFONT to see if there is a
preferred default font.

@node postscript__(also_encapsulated_postscript_*.eps),  , gd_(png, Fonts
@subsection postscript  (also encapsulated postscript *.eps)

@c ?fonts postscript
@cindex fonts

@cindex postscript

@cindex eps

PostScript font handling is done by the printer or viewing program.
Gnuplot can create valid PostScript or encapsulated PostScript (*.eps) even if
no fonts at all are installed on your computer.  Gnuplot simply refers to the
font by name in the output file, and assumes that the printer or viewing
program will know how to find or approximate a font by that name.

All PostScript printers or viewers should know about the standard set of Adobe
fonts `Times-Roman`, `Helvetica`, `Courier`, and `Symbol`.  It is likely that
many additional fonts are also available, but the specific set depends on your
system or printer configuration. Gnuplot does not know or care about this;
the output *.ps or *.eps files that it creates will simply refer to whatever
font names you request.

Thus
@example
     set term postscript eps font "Times-Roman,12"
@end example

will produce output that is suitable for all printers and viewers.

On the other hand
@example
     set term postscript eps font "Garamond-Premier-Pro-Italic"
@end example

will produce an output file that contains valid PostScript, but since it
refers to a specialized font, only some printers or viewers will be able to
display the specific font that was requested.  Most will substitute a
different font.

However, it is possible to embed a specific font in the output file so that
all printers will be able to use it. This requires that the a suitable font
description file is available on your system. Note that some font files require
specific licensing if they are to be embedded in this way.
See `postscript fontfile` for more detailed description and examples.

@node Glossary, linetype, Fonts, gnuplot
@section Glossary

@cindex glossary

Throughout this document an attempt has been made to maintain consistency of
nomenclature.  This cannot be wholly successful because as `gnuplot` has
evolved over time, certain command and keyword names have been adopted that
preclude such perfection.  This section contains explanations of the way
some of these terms are used.

A "page" or "screen" or "canvas" is the entire area addressable by `gnuplot`.
On a desktop it is a full window; on a plotter, it is a single sheet of paper;
in svga mode it is the full monitor screen.

A screen may contain one or more "plots".  A plot is defined by an abscissa
and an ordinate, although these need not actually appear on it, as well as
the margins and any text written therein.

A plot contains one "graph".  A graph is defined by an abscissa and an
ordinate, although these need not actually appear on it.

A graph may contain one or more "lines".  A line is a single function or
data set.  "Line" is also a plotting style.  The word will also be used in
sense "a line of text".  Presumably the context will remove any ambiguity.

The lines on a graph may have individual names.  These may be listed
together with a sample of the plotting style used to represent them in
the "key", sometimes also called the "legend".

The word "title" occurs with multiple meanings in `gnuplot`.  In this
document, it will always be preceded by the adjective "plot", "line", or
"key" to differentiate among them.
A 2D graph may have up to four labelled @ref{axes}.  The names of the four axes
are "x" for the axis along the bottom border of the plot, "y" for the axis
along the left border, "x2" for the top border, and "y2" for the right border.
See @ref{axes}.

A 3D graph may have up to three labelled @ref{axes} -- "x", "y" and "z".  It is
not possible to say where on the graph any particular axis will fall because
you can change the direction from which the graph is seen with @ref{view}.

When discussing data files, the term "record" will be resurrected and used
to denote a single line of text in the file, that is, the characters between
newline or end-of-record characters.  A "point" is the datum extracted from
a single record.  A "datablock" is a set of points from consecutive records,
delimited by blank records.  A line, when referred to in the context of a
data file, is a subset of a datablock.

@node linetype, mouse_input, Glossary, gnuplot
@section linetype, colors, and styles

@cindex linetype

@cindex colors

Each gnuplot terminal type provides a set of distinct "linetypes". These may
differ in color, in thickness, in dot/dash pattern, or in some combination of
color and dot/dash. The default linetypes for a particular terminal can be
previewed by issuing the @ref{test} command after setting the terminal type.
The pre-defined colors and dot/dash patterns are not guaranteed to be
consistent for all terminal types, but all terminals use the special linetype
-1 to mean a solid line in the primary foreground color (normally black).
By default, successive functions or datafiles plotted by a single command will
be assigned successive linetypes.  You can override this default by specifying
a particular linetype for any function, datafile, or plot element.

Examples:

@example
     plot "foo", "bar"                 # plot two files using linetypes 1, 2
     plot sin(x) linetype 4            # terminal-specific linetype color 4
     plot sin(x) lt -1                 # black

@end example

@cindex colors

For many terminal types it is also possible to assign user-defined colors
using explicit rgb (red, green, blue) values, named colors, or color values
that refer to the current PM3D palette.

Examples:

@example
     plot sin(x) lt rgb "violet"       # one of gnuplot's named colors
     plot sin(x) lt rgb "#FF00FF"      # explicit RGB triple in hexadecimal
     plot sin(x) lt palette cb -45     # whatever color corresponds to -45
                                       # in the current cbrange of the palette
     plot sin(x) lt palette frac 0.3   # fractional value along the palette

@end example

See @ref{colornames}, @ref{palette}, @ref{cbrange}.

For terminals that support dot/dash patterns, each default linetype has both
a dot-dash pattern and a default color. However, you can override the default
color by using the keyword `linecolor`, abbreviated `lc`.  For example, the
postscript terminal provides a dashed blue line as linetype 3.  The plot
commands below use this same dash pattern for three plots, one in blue (the
default), another in red (the default for linetype 1), and a third in gold.

Example:

@example
     set term postscript dashed color
     plot 'foo' lt 3, 'baz' lt 3 linecolor 1, 'bar' lt 3 lc rgb 'gold'

@end example

Lines can have additional properties such as linewidth.  You can associate
these various properties, as well as equivalent properties for point symbols,
into user-defined "line styles" using the command `set style line`.  Once
you have defined a linestyle, you can use it in a plot command to control
the appearance of one or more plot elements.

Examples:

@example
     # define a new line style with terminal-independent color cyan,
     # linewidth 3, and associated point type 6 (a circle with a dot in it).
     set style line 5 lt rgb "cyan" lw 3 pt 6
     plot sin(x) with linespoints ls 5          # user-defined line style 5

@end example

See `linestyle`, `set style line`.

@menu
* colorspec::                   
@end menu

@node colorspec,  , linetype, linetype
@subsection colorspec

@cindex colorspec

@cindex rgbcolor

@cindex colors

@cindex lc

@cindex linecolor

@cindex tc

@cindex textcolor

Many commands allow you to specify a linetype with an explicit color.
Terminal-independent color choice is only possible for terminals that support
RGB color or pm3d palettes.

Syntax:

@example
      ... @{linecolor | lc@} @{<colorspec> | <n>@}
      ... @{textcolor | tc@} @{<colorspec> | @{linetype | lt@} <n>@}

@end example

where <colorspec> has one of the following forms:

@example
      rgbcolor "colorname"
      rgbcolor "#RRGGBB"
      rgbcolor variable       # color is read from input file
      palette frac <val>      # <val> runs from 0 to 1
      palette cb <value>      # <val> lies within cbrange
      palette z
      variable                # color index is read from input file

@end example

The "<n>" is the linetype number the color of which is used, see @ref{test}.

"colorname" refers to one of the color names built in to gnuplot. For a list
of the available names, see @ref{colornames}.

"#RRGGBB" is a hexadecimal constant preceded by the "#" symbol. The RRGGBB
represents the red, green, and blue components of the color, each on a scale
from 0 - 255.  For example, magenta = full-scale red + full-scale blue would
be represented by #FF00FF, which is the hexadecimal representation of
(255 << 16) + (0 << 8) + (255).

The color palette is a linear gradient of colors that smoothly maps a
single numerical value onto a particular color.  Two such mappings are always
in effect. `palette frac`  maps a fractional value between 0 and 1 onto the
full range of the color palette.  `palette cb` maps the range of the color
axis onto the same palette.  See @ref{cbrange}.  See also `set colorbox`.
You can use either of these to select a constant color from the current
palette.

"palette z" maps the z value of each plot segment or plot element into the
cbrange mapping of the palette. This allows smoothly-varying color along a
3d line or surface. It also allows coloring 2D plots by palette values read
from an extra column of data (not all 2D plot styles allow an extra column).

@menu
* rgbcolor_variable::           
* linecolor_variable::          
@end menu

@node rgbcolor_variable, linecolor_variable, colorspec, colorspec
@subsubsection rgbcolor variable

@c ?rgbcolor variable
@c ?lc rgbcolor variable
@c ?tc rgbcolor variable
Most plot commands assign a single color (linetype) to each element of the
plot.  If there are multiple plots on a single graph, the default color
(linetype) is incremented sequentially.  You can instead assign a separate
color for each data point, line segment, or label based on additional 
information in the input data file.  This is indicated by the colorspec
keyword `variable`.  

`lc rgbcolor variable` tells the program to use a 24-bit RGB color from a
separate column in the data file. This requires a corresponding additional
column in the @ref{using} specifier.  The extra column is interpreted as a 24-bit
packed RGB triple. These are most easily specified as hexidecimal values
(see `rgbcolor`). Text colors are similarly set using `tc rgbcolor variable`.

Example:

@example
      # Place colored points in 3D at the x,y,z coordinates corresponding to
      # their red, green, and blue components
      rgb(r,g,b) = 65536 * int(r) + 256 * int(g) + int(b)
      splot "data" using 1:2:3:(rgb($1,$2,$3)) with points lc rgb variable

@end example


@node linecolor_variable,  , rgbcolor_variable, colorspec
@subsubsection linecolor variable

@c ?linecolor variable
@c ?lc variable
@c ?textcolor variable
@c ?tc variable
Most plot commands assign a single color (linetype) to each element of the
plot.  If there are multiple plots on a single graph, the default color
(linetype) is incremented sequentially.  You can instead assign a separate
color for each data point, line segment, or label based on additional 
information in the input data file.  This is indicated by the colorspec
keyword `variable`. 

`lc variable` tells the program to use the value read from one column of the
input data as a linestyle index, and use the color belonging to that linestyle.
This requires a corresponding additional column in the @ref{using} specifier.
Text colors can be set similarly using `tc variable`.

A single data file may contain multiple sets of data, separated by two blank
lines. Each of these separate sets is assigned an index value (see @ref{index})
that can be retrieved via the using specifier column(-2). See `pseudocolumns`.
All data in the file is drawn with the same color/linestyle/pointtype
properties by default.  The command `lc variable` can be used to assign
different colors to each data set in the file by using the index value from
pseudocolumn -2.

Examples:
@example
      # Use the third column of data to assign colors to individual points
      plot 'data' using 1:2:3 with points lc variable

@end example

@example
      # Use the data set index to choose a linestyle color
      plot 'data' using 1:2:(column(-2)) with lines lc variable

@end example


@node mouse_input, Plotting, linetype, gnuplot
@section mouse input

@c ?mouse input
The `x11`, `pm`, `windows`, `ggi`, and `wxt` terminals allow interaction with
the current plot using the mouse. They also support the definition of hotkeys
to activate pre-defined functions by hitting a single key while the mouse
focus is in the active plot window.  It is even possible to combine mouse
input with `batch` command scripts, by invoking the command `pause mouse`
and then using the mouse variables returned by mouse clicking as parameters
for subsequent scripted actions. See `bind` and @ref{variables}.
See also the command `set mouse`.

@menu
* bind::                        
* Mouse_variables::             
@end menu

@node bind, Mouse_variables, mouse_input, mouse_input
@subsection bind

@c ?commands bind
@cindex hotkey

@cindex hotkeys

@cindex bind
@opindex bind


Syntax:
@example
      bind @{allwindows@} [<key-sequence>] ["<gnuplot commands>"]
      bind <key-sequence> ""
      reset bind

@end example

The `bind` allows defining or redefining a hotkey, i.e. a sequence of gnuplot
commands which will be executed when a certain key or key sequence is pressed
while the driver's window has the input focus. Note that `bind` is only
available if gnuplot was compiled with `mouse` support and it is used by all
mouse-capable terminals. A user-specified binding supersedes any builtin
bindings, except that <space> and 'q' cannot normally be rebound. For an
exception, see `bind space`.

Mouse buttons cannot be rebound.

You get the list of all hotkeys by typing `show bind` or `bind` or by typing
the hotkey 'h' in the graph window.

Key bindings are restored to their default state by `reset bind`.

Note that multikey-bindings with modifiers must be given in quotes.

Normally hotkeys are only recognized when the currently active plot window
has focus. `bind allwindows <key> ...` (short form: `bind all <key> ...`)
causes the binding for <key> to apply to all gnuplot plot windows, active
or not.  In this case gnuplot variable MOUSE_KEY_WINDOW is set to the ID
of the originating window, and may be used by the bound command.

Examples:

- set bindings:

@example
    bind a "replot"
    bind "ctrl-a" "plot x*x"
    bind "ctrl-alt-a" 'print "great"'
    bind Home "set view 60,30; replot"
    bind all Home 'print "This is window ",MOUSE_KEY_WINDOW'

@end example

- show bindings:
@example
    bind "ctrl-a"          # shows the binding for ctrl-a
    bind                   # shows all bindings
    show bind              # show all bindings

@end example

- remove bindings:
@example
    bind "ctrl-alt-a" ""   # removes binding for ctrl-alt-a
                             (note that builtins cannot be removed)
    reset bind             # installs default (builtin) bindings
    bind!                  # deprecated form of "reset bind"

@end example

- bind a key to toggle something:
@example
  v=0
  bind "ctrl-r" "v=v+1;if(v%2)set term x11 noraise; else set term x11 raise"

@end example

Modifiers (ctrl / alt) are case insensitive, keys not:
@example
    ctrl-alt-a == CtRl-alT-a
    ctrl-alt-a != ctrl-alt-A

@end example

List of modifiers (alt == meta):
@example
    ctrl, alt

@end example

List of supported special keys:

@example
   "BackSpace", "Tab", "Linefeed", "Clear", "Return", "Pause", "Scroll_Lock",
   "Sys_Req", "Escape", "Delete", "Home", "Left", "Up", "Right", "Down",
   "PageUp", "PageDown", "End", "Begin",

@end example

@example
   "KP_Space", "KP_Tab", "KP_Enter", "KP_F1", "KP_F2", "KP_F3", "KP_F4",
   "KP_Home", "KP_Left", "KP_Up", "KP_Right", "KP_Down", "KP_PageUp",
   "KP_PageDown", "KP_End", "KP_Begin", "KP_Insert", "KP_Delete", "KP_Equal",
   "KP_Multiply", "KP_Add", "KP_Separator", "KP_Subtract", "KP_Decimal",
   "KP_Divide",

@end example

@example
   "KP_1" - "KP_9", "F1" - "F12"

@end example

The following are window events rather than actual keys

@example
   "Close"

@end example

See also help for `mouse` and @ref{if}.

@menu
* bind_space::                  
@end menu

@node bind_space,  , bind, bind
@subsubsection bind space

@c ?commands bind space
@c ?bind space
If gnuplot was built with configuration option --enable-raise-console, then
typing <space> in the plot window raises gnuplot's command window. This hotkey
can be changed to ctrl-space by starting gnuplot as 'gnuplot -ctrlq', or by
setting the XResource 'gnuplot*ctrlq'.  See `x11 command-line-options`.

@node Mouse_variables,  , bind, mouse_input
@subsection Mouse variables

@c ?mouse variables
When `mousing` is active, clicking in the active window will set several user
variables that can be accessed from the gnuplot command line. The coordinates
of the mouse at the time of the click are stored in MOUSE_X MOUSE_Y MOUSE_X2
and MOUSE_Y2. The mouse button clicked, and any meta-keys active at that time,
are stored in MOUSE_BUTTON MOUSE_SHIFT MOUSE_ALT and MOUSE_CTRL.  These
variables are set to undefined at the start of every plot, and only become
defined in the event of a mouse click in the active plot window. To determine
from a script if the mouse has been clicked in the active plot window, it is
sufficient to test for any one of these variables being defined.

@example
      plot 'something'
      pause mouse
      if (defined(MOUSE_BUTTON)) call 'something_else'; \
      else print "No mouse click."

@end example

It is also possible to track keystrokes in the plot window using the mousing
code.

@example
      plot 'something'
      pause mouse keypress
      print "Keystroke ", MOUSE_KEY, " at ", MOUSE_X, " ", MOUSE_Y

@end example

When `pause mouse keypress` is terminated by a keypress, then MOUSE_KEY will
contain the ascii character value of the key that was pressed. MOUSE_CHAR will
contain the character itself as a string variable.  If the pause command is
terminated abnormally (e.g. by ctrl-C or by externally closing the plot window)
then MOUSE_KEY will equal -1.

Note that after a zoom by mouse, you can read the new ranges as GPVAL_X_MIN,
GPVAL_X_MAX, GPVAL_Y_MIN, and GPVAL_Y_MAX, see @ref{variables}.



@node Plotting, Start-up, mouse_input, gnuplot
@section Plotting

@cindex plotting

There are three `gnuplot` commands which actually create a plot: `plot`,
`splot` and @ref{replot}.  `plot` generates 2D plots, `splot` generates 3-d
plots (actually 2D projections, of course), and @ref{replot} appends its
arguments to the previous `plot` or `splot` and executes the modified
command.

Much of the general information about plotting can be found in the discussion
of `plot`; information specific to 3D can be found in the `splot` section.

`plot` operates in either rectangular or polar coordinates -- see `set polar`
for details of the latter.  `splot` operates only in rectangular coordinates,
but the @ref{mapping} command allows for a few other coordinate systems to be
treated.  In addition, the @ref{using} option allows both `plot` and `splot` to
treat almost any coordinate system you'd care to define.

@cindex axes

`plot` also lets you use each of the four borders -- x (bottom), x2 (top), y
(left) and y2 (right) -- as an independent axis.  The @ref{axes} option lets you
choose which pair of axes a given function or data set is plotted against.  A
full complement of `set` commands exists to give you complete control over
the scales and labelling of each axis.  Some commands have the name of an
axis built into their names, such as @ref{xlabel}.  Other commands have one
or more axis names as options, such as `set logscale xy`.  Commands and
options controlling the z axis have no effect on 2D graphs.

`splot` can plot surfaces and contours in addition to points and/or lines.
In addition to `splot`, see @ref{isosamples} for information about defining
the grid for a 3D function;  @ref{datafile} for information about the
requisite file structure for 3D data values; and @ref{contour} and
@ref{cntrparam} for information about contours.

In `splot`, control over the scales and labels of the axes are the same as
with `plot`, except that commands and options controlling the x2 and y2 axes
have no effect whereas of course those controlling the z axis do take effect.

@node Start-up, String_constants_and_string_variables, Plotting, gnuplot
@section Start-up

@cindex startup

@cindex start

@cindex .gnuplot

@c ^ <a name="start-up"></a>
When `gnuplot` is run, it looks for an initialization file to load.
This file is called `.gnuplot` on Unix and AmigaOS systems, and
`GNUPLOT.INI` on other systems.  If this file is not found in the
current directory, the program will look for it in the HOME directory
(under AmigaOS, MS-DOS, Windows and OS/2, the
environment variable `GNUPLOT` should contain the name of this
directory; on Windows NT, it will use `USERPROFILE` if GNUPLOT isn't
defined).  Note: if NOCWDRC is defined during the installation,
`gnuplot` will not read from the current directory.

If the initialization file is found, `gnuplot` executes the commands in it.
These may be any legal `gnuplot` commands, but typically they are limited to
setting the terminal and defining frequently-used functions or variables.

@node String_constants_and_string_variables, Substitution_and_Command_line_macros, Start-up, gnuplot
@section String constants and string variables

@cindex strings

@c ?string variables
In addition to string constants, most gnuplot commands also accept a string
variable, a string expression, or a function that returns a string.
For example, the following four methods of creating a plot all result in the
same plot title:

@example
      four = "4"
      graph4 = "Title for plot #4"
      graph(n) = sprintf("Title for plot #%d",n)

@end example

@example
      plot 'data.4' title "Title for plot #4"
      plot 'data.4' title graph4
      plot 'data.4' title "Title for plot #".four
      plot 'data.4' title graph(4)

@end example

Since integers are promoted to strings when operated on by the string
concatenation operator, the following method also works:

@example
      N = 4
      plot 'data.'.N title "Title for plot #".N

@end example

In general, elements on the command line will only be evaluated as possible
string variables if they are not otherwise recognizable as part of the normal
gnuplot syntax. So the following sequence of commands is legal, although
probably should be avoided so as not to cause confusion:

@example
      plot = "my_datafile.dat"
      title = "My Title"
      plot plot title title

@end example

There are three binary operators that require string operands: the string
concatenation operator ".", the string equality operator "eq" and the string
inequality operator "ne".  The following example will print TRUE.

@example
     if ("A"."B" eq "AB") print "TRUE"

@end example

See also the two string formatting functions @ref{gprintf} and @ref{sprintf}.

@cindex substring

Substrings can be specified by appending a range specifier to any string,
string variable, or string-valued function.  The range specifier has the
form [begin:end], where begin is the index of the first character of the
substring and end is the index of the last character of the substring.
The first character has index 1.  The begin or end fields may be empty, or
contain '*', to indicate the true start or end of the original string.
E.g.  str[:] and str[*:*] both describe the full string str.

@node Substitution_and_Command_line_macros, Syntax, String_constants_and_string_variables, gnuplot
@section Substitution and Command line macros

@cindex substitution

When a command line to gnuplot is first read, i.e. before it is interpreted
or executed, two forms of lexical substitution are performed. These are
triggered by the presence of text in backquotes (ascii character 96) or
preceded by @@ (ascii character 64).

@menu
* Substitution_of_system_commands_in_backquotes::  
* Substitution_of_string_variables_as_macros::  
* String_variables::            
@end menu

@node Substitution_of_system_commands_in_backquotes, Substitution_of_string_variables_as_macros, Substitution_and_Command_line_macros, Substitution_and_Command_line_macros
@subsection Substitution of system commands in backquotes

@c ?substitution backquotes
@cindex backquotes

@c ?shell commands
Command-line substitution is specified by a system command enclosed in
backquotes.  This command is spawned and the output it produces replaces
the backquoted text on the command line.  Some implementations also support
pipes;  see @ref{special-filenames}.

Command-line substitution can be used anywhere on the `gnuplot` command
line, except inside strings delimited by single quotes.

Example:

This will run the program `leastsq` and replace `leastsq` (including
backquotes) on the command line with its output:
@example
      f(x) = `leastsq`

@end example

or, in VMS
@example
      f(x) = `run leastsq`

@end example

These will generate labels with the current time and userid:
@example
      set label "generated on `date +%Y-%m-%d` by `whoami`" at 1,1
      set timestamp "generated on %Y-%m-%d by `whoami`"

@end example

@node Substitution_of_string_variables_as_macros, String_variables, Substitution_of_system_commands_in_backquotes, Substitution_and_Command_line_macros
@subsection Substitution of string variables as macros

@c ?substitution macros
@cindex macros
@opindex macros


@cindex exists
@findex exists


Substitution of command line macros is disabled by default, but may be
enabled using the @ref{macros} command.  If macro substitution is enabled,
the character @@ is used to trigger substitution of the current value of a
string variable into the command line. The text in the string variable may
contain any number of lexical elements.  This allows string variables to be
used as command line macros.  Only string constants may be expanded using this
mechanism, not string-valued expressions.
For example:

@example
      set macros
      style1 = "lines lt 4 lw 2"
      style2 = "points lt 3 pt 5 ps 2"
      range1 = "using 1:3"
      range2 = "using 1:5"
      plot "foo" @@range1 with @@style1, "bar" @@range2 with @@style2

@end example

The line containing @@ symbols is expanded on input, so that by the time it is
executed the effect is identical to having typed in full

@example
      plot "foo" using 1:3 with lines lt 4 lw 2, \
           "bar" using 1:5 with points lt 3 pt 5 ps 2

@end example

The function exists() may be useful in connection with macro evaluation.
The following example checks that C can safely be expanded as the name of
a user-defined variable:

@example
      C = "pi"
      if (exists(C)) print C," = ", @@C

@end example

Macro expansion does not occur inside either single or double quotes.
However macro expansion does occur inside backquotes.

For execution of complete commands the @ref{evaluate} command may also be handy.

@node String_variables,  , Substitution_of_string_variables_as_macros, Substitution_and_Command_line_macros
@subsection String variables, macros, and command line substitution

@cindex mixing_macros_backquotes

@c ?substitution mixing_macros_backquotes
The interaction of string variables, backquotes and macro substitution is
somewhat complicated.  Backquotes do not block macro substitution, so

@example
      filename = "mydata.inp"
      lines = ` wc --lines @@filename | sed "s/ .*//" `

@end example

results in the number of lines in mydata.inp being stored in the integer
variable lines. And double quotes do not block backquote substitution, so

@example
      mycomputer = "`uname -n`"

@end example

results in the string returned by the system command `uname -n` being stored
in the string variable mycomputer.

However, macro substitution is not performed inside double quotes, so you
cannot define a system command as a macro and then use both macro and backquote
substitution at the same time.

@example
       machine_id = "uname -n"
       mycomputer = "`@@machine_id`"  # doesn't work!!

@end example

This fails because the double quotes prevent @@machine_id from being interpreted
as a macro. To store a system command as a macro and execute it later you must
instead include the backquotes as part of the macro itself.  This is
accomplished by defining the macro as shown below.  Notice that the sprintf
format nests all three types of quotes.

@example
      machine_id = sprintf('"`uname -n`"')
      mycomputer = @@machine_id

@end example

@node Syntax, Time/Date_data, Substitution_and_Command_line_macros, gnuplot
@section Syntax

@cindex syntax

@cindex specify

@cindex punctuation

Version 4 of gnuplot is much less sensitive than earlier versions to the
order of keywords and suboptions. However, if you get error messages from
specifying options that you think should work, please try rearranging them
into the exact order listed by the documentation.

Options and any accompanying parameters are separated by spaces whereas lists
and coordinates are separated by commas.  Ranges are separated by colons and
enclosed in brackets [], text and file names are enclosed in quotes, and a
few miscellaneous things are enclosed in parentheses.  Braces @{@} are used for
a few special purposes.

Commas are used to separate coordinates on the `set` commands @ref{arrow},
`key`, and `label`; the list of variables being fitted (the list after the
`via` keyword on the @ref{fit} command); lists of discrete contours or the loop
parameters which specify them on the @ref{cntrparam} command; the arguments
of the `set` commands @ref{dgrid3d}, @ref{dummy}, @ref{isosamples}, @ref{offsets}, @ref{origin},
@ref{samples}, @ref{size}, `time`, and @ref{view}; lists of tics or the loop parameters
which specify them; the offsets for titles and axis labels; parametric
functions to be used to calculate the x, y, and z coordinates on the `plot`,
@ref{replot} and `splot` commands; and the complete sets of keywords specifying
individual plots (data sets or functions) on the `plot`, @ref{replot} and `splot`
commands.

Parentheses are used to delimit sets of explicit tics (as opposed to loop
parameters) and to indicate computations in the @ref{using} filter of the @ref{fit},
`plot`, @ref{replot} and `splot` commands.

(Parentheses and commas are also used as usual in function notation.)

Square brackets are used to delimit ranges given in `set`, `plot`
or `splot` commands.

Colons are used to separate extrema in `range` specifications (whether they
are given on `set`, `plot` or `splot` commands) and to separate entries in
the @ref{using} filter of the `plot`, @ref{replot}, `splot` and @ref{fit} commands.

Semicolons are used to separate commands given on a single command line.

Braces are used in text to be specially processed by some terminals, like
`postscript`.  They are also used to denote complex numbers: @{3,2@} = 3 + 2i.

At present you should not embed \n inside @{@} when using the PostScript
terminal in `enhanced text` mode.

The EEPIC, Imagen, Uniplex, LaTeX, and TPIC drivers allow a newline to be
specified by \\ in a single-quoted string or \\\\ in a double-quoted string.

@menu
* Quote_Marks::                 
@end menu

@node Quote_Marks,  , Syntax, Syntax
@subsection Quote Marks

@cindex quotes

@c ?syntax quotes
Gnuplot uses three forms of quote marks for delimiting text strings,
double-quote (ascii 34), single-quote (ascii 39), and backquote (ascii 96).

Filenames may be entered with either single- or double-quotes.  In this
manual the command examples generally single-quote filenames and double-quote
other string tokens for clarity.

String constants and text strings used for labels, titles, or other plot
elements may be enclosed in either single quotes or double quotes. Further
processing of the quoted text depends on the choice of quote marks.

Backslash processing of special characters like \n (newline) and
\345 (octal character code) is performed for double-quoted strings.  In
single-quoted strings, backslashes are just ordinary characters.  To get
a single-quote (ascii 39) in a single-quoted string, it has to be doubled.
Thus the strings "d\" s' b\\" and 'd" s'' b\' are completely equivalent.

Text justification is the same for each line of a multi-line string.
Thus the center-justified string
@example
      "This is the first line of text.\nThis is the second line."
@end example

will produce
@example
                       This is the first line of text.
                          This is the second line.
@end example

but
@example
      'This is the first line of text.\nThis is the second line.'
@end example

will produce
@example
          This is the first line of text.\nThis is the second line.

@end example

Enhanced text processing is performed for both double-quoted text and
single-quoted text, but only by terminals supporting this mode.
See `enhanced text`.

Back-quotes are used to enclose system commands for substitution into the
command line.  See `substitution`.

@node Time/Date_data,  , Syntax, gnuplot
@section Time/Date data

@cindex time/date

@c ^ <a name="Time/Date data"></a>
@c ^ <a name="Time/date"></a>
`gnuplot` supports the use of time and/or date information as input data.
This feature is activated by the commands `set xdata time`, `set ydata time`,
etc.

Internally all times and dates are converted to the number of seconds from
the year 2000.  The command @ref{timefmt} defines the format for all inputs:
data files, ranges, tics, label positions---in short, anything that accepts a
data value must receive it in this format.  Since only one input format can
be in force at a given time, all time/date quantities being input at the same
time must be presented in the same format.  Thus if both x and y data in a
file are time/date, they must be in the same format.

The conversion to and from seconds assumes Universal Time (which is the same
as Greenwich Standard Time).  There is no provision for changing the time
zone or for daylight savings.  If all your data refer to the same time zone
(and are all either daylight or standard) you don't need to worry about these
things.  But if the absolute time is crucial for your application, you'll
need to convert to UT yourself.

Commands like @ref{xrange} will re-interpret the integer according to
@ref{timefmt}.  If you change @ref{timefmt}, and then `show` the quantity again, it
will be displayed in the new @ref{timefmt}.  For that matter, if you give the
deactivation command (like @ref{xdata}), the quantity will be shown in its
numerical form.

The commands `set format` or `set tics format` define the format that will be
used for tic labels, whether or not the specified axis is time/date.

If time/date information is to be plotted from a file, the @ref{using} option
_must_ be used on the `plot` or `splot` command.  These commands simply use
white space to separate columns, but white space may be embedded within the
time/date string.  If you use tabs as a separator, some trial-and-error may
be necessary to discover how your system treats them.

The following example demonstrates time/date plotting.

Suppose the file "data" contains records like

@example
      03/21/95 10:00  6.02e23

@end example

This file can be plotted by

@example
      set xdata time
      set timefmt "%m/%d/%y"
      set xrange ["03/21/95":"03/22/95"]
      set format x "%m/%d"
      set timefmt "%m/%d/%y %H:%M"
      plot "data" using 1:3

@end example

which will produce xtic labels that look like "03/21".

See the descriptions of each command for more details.

@node plotting_styles, Commands, gnuplot, Top
@chapter plotting styles

@c ?plotting styles

There are many plotting styles available in gnuplot.
They are listed alphabetically below.
The commands `set style data` and `set style function` change the
default plotting style for subsequent `plot` and `splot` commands.

You also have the option to specify the plot style explicitly as part of
the `plot` or `splot` command.  If you want to mix plot styles within a
single plot, you must specify the plot style for each component.

Example:

@example
     plot 'data' with boxes, sin(x) with lines

@end example

Each plot style has its own expected set of data entries in a data file.
For example by default the `lines` style expects either a single column of
y values (with implicit x ordering) or a pair of columns with x in the first
and y in the second.  For more information on how to fine-tune how columns in a
file are interpreted as plot data, see @ref{using}.


@menu
* boxerrorbars::                
* boxes::                       
* boxxyerrorbars::              
* candlesticks::                
* circles::                     
* dots::                        
* filledcurves::                
* financebars::                 
* fsteps::                      
* histeps::                     
* histograms::                  
* image::                       
* impulses::                    
* labels::                      
* lines::                       
* linespoints::                 
* points::                      
* steps::                       
* rgbalpha::                    
* rgbimage::                    
* vectors::                     
* xerrorbars::                  
* xyerrorbars::                 
* yerrorbars::                  
* xerrorlines::                 
* xyerrorlines::                
* yerrorlines::                 
* 3D_(surface)_plots::          
@end menu

@node boxerrorbars, boxes, plotting_styles, plotting_styles
@section boxerrorbars

@c ?commands set style boxerrorbars
@c ?set style boxerrorbars
@c ?plotting styles boxerrorbars
@c ?style boxerrorbars
@cindex boxerrorbars

The @ref{boxerrorbars} style is only relevant to 2D data plotting.  It is a
combination of the @ref{boxes} and @ref{yerrorbars} styles.  It uses 3, 4, or 5
columns of data:

@example
     3 columns:  x  y  ydelta
     4 columns:  x  y  ydelta xdelta        # boxwidth != -2
     4 columns:  x  y  ylow  yhigh          # boxwidth == -2
     5 columns:  x  y  ylow  yhigh  xdelta

@end example

The boxwidth will come from the fourth column if the y errors are given as
"ydelta" and the boxwidth was not previously set to -2.0 (`set boxwidth -2.0`)
or from the fifth column if the y errors are in the form of "ylow yhigh".  The
special case  `boxwidth = -2.0` is for four-column data with y errors in the
form "ylow yhigh".  In this case the boxwidth will be calculated so that each
box touches the adjacent boxes.  The width will also be calculated in cases
where three-column data are used.

The box height is determined from the y error in the same way as it is for
the @ref{yerrorbars} style---either from y-ydelta to y+ydelta or from ylow to
yhigh, depending on how many data columns are provided.
See also
@uref{http://www.gnuplot.info/demo/mgr.html,errorbar demo.
}

@node boxes, boxxyerrorbars, boxerrorbars, plotting_styles
@section boxes

@c ?commands set style boxes
@c ?set style boxes
@c ?plotting styles boxes
@c ?style boxes
@cindex boxes

The @ref{boxes} style is only relevant to 2D plotting.  It draws a box centered
about the given x coordinate that extends from the x axis (not from the graph
border) to the given y coordinate.  It uses 2 or 3 columns of basic data.
Additional input columns may be used to provide information such as
variable line or fill color (see `rgbcolor variable`).

@example
     2 columns:  x  y
     3 columns:  x  y  x_width

@end example

The width of the box is obtained in one of three ways.  If the input data has a
third column, this will be used to set the width of the box.  If not, if a
width has been set using the @ref{boxwidth} command, this will be used.
If neither of these is available, the width of each box will be calculated
automatically so that it touches the adjacent boxes.

The interior of the boxes is drawn according to the current fillstyle.
See `set style fill` for details.  Alternatively a new fillstyle
may be specified in the plot command.

For fillstyle `empty` the box is not filled.

For fillstyle `solid` the box is filled with a solid rectangle of the
current drawing color. There is an optional parameter <density> that
controls the fill density; it runs from 0 (background color) to 1
(current drawing color).

For fillstyle `pattern` the box is filled in the current drawing color with
a pattern, if supported by the terminal driver.

Examples:

To plot a data file with solid filled boxes with a small vertical space
separating them (bargraph):

@example
      set boxwidth 0.9 relative
      set style fill solid 1.0
      plot 'file.dat' with boxes

@end example

To plot a sine and a cosine curve in pattern-filled boxes style:

@example
      set style fill pattern
      plot sin(x) with boxes, cos(x) with boxes

@end example

The sin plot will use pattern 0; the cos plot will use pattern 1.
Any additional plots would cycle through the patterns supported by the
terminal driver.

To specify explicit fillstyles for each dataset:

@example
     plot 'file1' with boxes fs solid 0.25, \
          'file2' with boxes fs solid 0.50, \
          'file3' with boxes fs solid 0.75, \
          'file4' with boxes fill pattern 1, \
          'file5' with boxes fill empty

@end example


@node boxxyerrorbars, candlesticks, boxes, plotting_styles
@section boxxyerrorbars

@c ?commands set style boxxyerrorbars
@c ?set style boxxyerrorbars
@c ?plotting styles boxxyerrorbars
@c ?style boxxyerrorbars
@cindex boxxyerrorbars

The @ref{boxxyerrorbars} style is only relevant to 2D data plotting.  It is similar
to the @ref{xyerrorbars} style except that it draws rectangular areas rather than
simple crosses.  It uses either 4 or 6 basic columns of input data.
Additional input columns may be used to provide information such as
variable line or fill color (see `rgbcolor variable`).

@example
     4 columns:  x  y  xdelta  ydelta
     6 columns:  x  y  xlow  xhigh  ylow  yhigh

@end example

The box width and height are determined from the x and y errors in the same
way as they are for the @ref{xyerrorbars} style---either from xlow to xhigh and
from ylow to yhigh, or from x-xdelta to x+xdelta and from y-ydelta to
y+ydelta, depending on how many data columns are provided.

The interior of the boxes is drawn according to the current fillstyle.
See `set style fill` and @ref{boxes} for details.  Alternatively a new fillstyle
may be specified in the plot command.

@node candlesticks, circles, boxxyerrorbars, plotting_styles
@section candlesticks

@c ?commands set style candlesticks
@c ?set style candlesticks
@c ?plotting styles candlesticks
@c ?style candlesticks
@cindex candlesticks

The @ref{candlesticks} style can be used for 2D data plotting of financial
data or for generating box-and-whisker plots of statistical data.
The symbol is a rectangular box, centered horizontally at the x
coordinate and limited vertically by the opening and closing prices.  A
vertical line segment at the x coordinate extends up from the top of the
rectangle to the high price and another down to the low.  The vertical line
will be unchanged if the low and high prices are interchanged.

Five columns of basic data are required:

@example
      financial data:   date  open  low  high  close
      whisker plot:     x  box_min  whisker_min  whisker_high  box_high

@end example

The width of the rectangle can be controlled by the @ref{boxwidth} command.
For backwards compatibility with earlier gnuplot versions, when the
boxwidth parameter has not been set then the width of the candlestick
rectangle is controlled by `set bars <width>`.

By default the vertical line segments have no crossbars at the top and
bottom. If you want crossbars, which are typically used for box-and-whisker
plots, then add the keyword `whiskerbars` to the plot command.  By default
these whiskerbars extend the full horizontal width of the candlestick, but
you can modify this by specifying a fraction of the full width.

The usual convention for financial data is that the rectangle is empty
if (open < close) and solid fill if (close < open). This is the behavior you
will get if the current fillstyle is set to "empty". See `fillstyle`.
If you set the fillstyle to solid or pattern, then this will be used for
all boxes independent of open and close values.
See also @ref{bars} and @ref{financebars}.  See also the
@uref{http://gnuplot.sourceforge.net/demo/candlesticks.html,candlestick
}
and
@uref{http://gnuplot.sourceforge.net/demo/finance.html,finance 
}
demos.

Note: To place additional symbols, such as the median value, on a
box-and-whisker plot requires additional plot commands as in this example:

@example
  # Data columns:X Min 1stQuartile Median 3rdQuartile Max
  set bars 4.0
  set style fill empty
  plot 'stat.dat' using 1:3:2:6:5 with candlesticks title 'Quartiles', \
       ''         using 1:4:4:4:4 with candlesticks lt -1 notitle

@end example

@example
  # Plot with crossbars on the whiskers, crossbars are 50% of full width
  plot 'stat.dat' using 1:3:2:6:5 with candlesticks whiskerbars 0.5

@end example

See @ref{boxwidth}, @ref{bars} and `set style fill`.

@node circles, dots, candlesticks, plotting_styles
@section circles

@c ?commands set style circles
@c ?set style circles
@c ?plotting styles circles
@c ?style circles
@cindex circles

The @ref{circles} style plots a circle with an explicit radius at each data point.
Three columns of data are required: x, y, radius.  An optional 4th column may
be used to specify color information.  The radius is always interpreted in the
units of the plot's horizontal axis (x or x2).  The scale on y and the aspect
ratio of the plot are both ignored.

Example (draws circles whose area is proportional to the value in column 3):

@example
    set style fill transparent solid 0.2 noborder
    plot 'data' using 1:2:(sqrt($3)) with circles, \
         'data' using 1:2 with linespoints

@end example

The result is similar to using a `points` plot with variable size points and
pointstyle 6, except that the circles will scale with the x axis range.
See also `set object circle` and `fillstyle`.

@node dots, filledcurves, circles, plotting_styles
@section dots

@c ?commands set style dots
@c ?set style dots
@c ?plotting styles dots
@c ?style dots
@cindex dots

The @ref{dots} style plots a tiny dot at each point; this is useful for scatter
plots with many points.  Either 1 or 2 columns of input data are required in
2D.  Three columns are required in 3D.

For some terminals (post, pdf) the size of the dot can be controlled by
changing the linewidth.

@example
     1 column    y         # x is row number
     2 columns:  x  y
     3 columns:  x  y  z   # 3D only (splot)

@end example


@node filledcurves, financebars, dots, plotting_styles
@section filledcurves

@c ?commands set style filledcurves
@c ?set style filledcurves
@c ?plotting styles filledcurves
@c ?style filledcurves
@cindex filledcurves

The @ref{filledcurves} style is only relevant to 2D plotting. Three variants
are possible. The first two variants require either a function or two columns
of input data, and may be further modified by the options listed below.

Syntax:

@example
    plot ... with filledcurves [option]

@end example

where the option can be one of the following

@example
    [closed | @{above | below@}
    @{x1 | x2 | y1 | y2@}[=<a>] | xy=<x>,<y>]

@end example

The first variant, `closed`, treats the curve itself as a closed polygon.
This is the default if there are two columns of input data.

The second variant is to fill the area between the curve and a given axis,
a horizontal or vertical line, or a point.

@example
    filledcurves closed   ... just filled closed curve,
    filledcurves x1       ... x1 axis,
    filledcurves x2       ... x2 axis, etc for y1 and y2 axes,
    filledcurves y1=0     ... line y=0 (at y1 axis) ie parallel to x1 axis,
    filledcurves y2=42    ... line y=42 (at y2 axis) ie parallel to x2, etc,
    filledcurves xy=10,20 ... point 10,20 of x1,y1 axes (arc-like shape).

@end example

The third variant requires three columns of input data: the x coordinate and
two y coordinates corresponding to two curves sampled at the same set of
x coordinates; the area between the two curves is filled.
This is the default if there are three or more columns of input data.

@example
     3 columns:  x  y1  y2

@end example

Example of filling the area between two input curves.
@uref{http://www.gnuplot.info/demo/fillbetween.html,fill between curves demo.
}

@example
    plot 'data' using 1:2:3 with filledcurves

@end example

The `above` and `below` options apply both to commands of the form
@example
    ... filledcurves above @{x1|x2|y1|y2@}=<val>
@end example

and to commands of the form
@example
    ... using 1:2:3 with filledcurves below
@end example

In either case the option limits the filled area to one side of the bounding
line or curve.

Note: Not all terminal types support this plotting mode.

Zooming a filled curve drawn from a datafile may produce empty or incorrect
areas because gnuplot is clipping points and lines, and not areas.

If the values of <a>, <x>, <y> are out of the drawing boundary, then they
are moved to the graph boundary. Then the actually filled area in the case
of option xy=<x>,<y> will depend on xrange and yrange.

@node financebars, fsteps, filledcurves, plotting_styles
@section financebars

@c ?commands set style financebars
@c ?set style financebars
@c ?plotting styles financebars
@c ?style financebars
@cindex financebars

The @ref{financebars} style is only relevant for 2D data plotting of financial
data.  It requires 1 x coordinate (usually a date) and 4 y values (prices).

@example
     5 columns:   date  open  low  high  close

@end example

The symbol is a vertical line segment, located horizontally at the x
coordinate and limited vertically by the high and low prices.  A horizontal
tic on the left marks the opening price and one on the right marks the
closing price.  The length of these tics may be changed by @ref{bars}.  The
symbol will be unchanged if the high and low prices are interchanged.
See @ref{bars} and @ref{candlesticks}, and also the
@uref{http://www.gnuplot.info/demo/finance.html,finance demo.
}

@node fsteps, histeps, financebars, plotting_styles
@section fsteps

@c ?commands set style fsteps
@c ?set style fsteps
@c ?plotting styles fsteps
@c ?style fsteps
@cindex fsteps

The @ref{fsteps} style is only relevant to 2D plotting.  It connects consecutive
points with two line segments: the first from (x1,y1) to (x1,y2) and the
second from (x1,y2) to (x2,y2).  The input column requires are the same as for
plot styles `lines` and `points`.  The difference between @ref{fsteps} and @ref{steps}
is that @ref{fsteps} traces first the change in y and then the change in x.
@ref{steps} traces first the change in x and then the change in y.

See also
@uref{http://www.gnuplot.info/demo/steps.html,steps demo.
}

@node histeps, histograms, fsteps, plotting_styles
@section histeps

@c ?commands set style histeps
@c ?set style histeps
@c ?plotting styles histeps
@c ?style histeps
@cindex histeps

The @ref{histeps} style is only relevant to 2D plotting.  It is intended for
plotting histograms.  Y-values are assumed to be centered at the x-values;
the point at x1 is represented as a horizontal line from ((x0+x1)/2,y1) to
((x1+x2)/2,y1).  The lines representing the end points are extended so that
the step is centered on at x.  Adjacent points are connected by a vertical
line at their average x, that is, from ((x1+x2)/2,y1) to ((x1+x2)/2,y2).
The input column requires are the same as for plot styles `lines` and `points`.

If @ref{autoscale} is in effect, it selects the xrange from the data rather than
the steps, so the end points will appear only half as wide as the others.
See also
@uref{http://www.gnuplot.info/demo/steps.html,steps demo.
}

@ref{histeps} is only a plotting style; `gnuplot` does not have the ability to
create bins and determine their population from some data set.

@node histograms, image, histeps, plotting_styles
@section histograms

@c ?commands set style histogram
@c ?set style histogram
@c ?style histograms
@c ?plotting styles histograms
@cindex histograms

The @ref{histograms} style is only relevant to 2D plotting.  It produces a bar
chart from a sequence of parallel data columns. Each element of the `plot`
command must specify a single input data source (e.g. one column of the input
file), possibly with associated tic values or key titles.
Four styles of histogram layout are currently supported.

@example
      set style histogram clustered @{gap <gapsize>@}
      set style histogram errorbars @{gap <gapsize>@} @{<linewidth>@}
      set style histogram rowstacked
      set style histogram columnstacked

@end example

The default style corresponds to `set style histogram clustered gap 2`.
In this style, each set of parallel data values is collected into a group of
boxes clustered at the x-axis coordinate corresponding to their sequential
position (row #) in the selected datafile columns.  Thus if <n> datacolumns are
selected, the first cluster is centered about x=1, and contains <n> boxes whose
heights are taken from the first entry in the corresponding <n> data columns.
This is followed by a gap and then a second cluster of boxes centered about x=2
corresponding to the second entry in the respective data columns, and so on.
The default gap width of 2 indicates that the empty space between clusters is
equivalent to the width of 2 boxes.  All boxes derived from any one column
are given the same fill color and/or pattern (see `set style fill`).

Each cluster of boxes is derived from a single row of the input data file.
It is common in such input files that the first element of each row is a
label. Labels from this column may be placed along the x-axis underneath
the appropriate cluster of boxes with the `xticlabels` option to @ref{using}.

The @ref{errorbars} style is very similar to the `clustered` style, except that it
requires additional columns of input for each entry. The first column holds
the height (y value) of that box, exactly as for the `clustered` style.
@example
     2 columns:        y yerr          bar extends from y-yerr to y+err
     3 columns:        y ymin yman     bar extends from ymin to ymax
@end example

The appearance of the error bars is controlled by the current value of
@ref{bars} and by the optional <linewidth> specification.

Two styles of stacked histogram are supported, chosen by the command
`set style histogram @{rowstacked|columnstacked@}`.  In these styles the data
values from the selected columns are collected into stacks of boxes.
Positive values stack upwards from y=0; negative values stack downwards.
Mixed positive and negative values will produce both an upward stack and a
downward stack.  The default stacking mode is `rowstacked`.

The `rowstacked` style places a box resting on the x-axis for each
data value in the first selected column; the first data value results in
a box a x=1, the second at x=2, and so on.  Boxes corresponding to the
second and subsequent data columns are layered on top of these, resulting
in a stack of boxes at x=1 representing the first data value from each
column, a stack of boxes at x=2 representing the second data value from
each column, and so on.  All boxes derived from any one column are given the
same fill color and/or pattern (see `set style fill`).

The `columnstacked` style is similar, except that each stack of boxes is
built up from a single data column. Each data value from the first specified
column yields a box in the stack at x=1, each data value from the second
specified column yields a box in the stack at x=2, and so on.  In this style
the color of each box is taken from the row number, rather than the column
number, of the corresponding data field.

Box widths may be modified using the @ref{boxwidth} command.
Box fill styles may be set using the `set style fill` command.

Histograms always use the x1 axis, but may use either y1 or y2.
If a plot contains both histograms and other plot styles, the non-histogram
plot elements may use either the x1 or the x2 axis.

Examples:
Suppose that the input file contains data values in columns 2, 4, 6, ...
and error estimates in columns 3, 5, 7, ...  This example plots the values
in columns 2 and 4 as a histogram of clustered boxes (the default style).
Because we use iteration in the plot command, any number of data columns can
be handled in a single command. See @ref{iteration}.

@example
      set boxwidth 0.9 relative
      set style data histograms
      set style histogram cluster
      set style fill solid 1.0 border lt -1
      plot for [COL=2:4:2] 'file.dat' using COL

@end example

This will produce a plot with clusters of two boxes (vertical bars) centered
at each integral value on the x axis.  If the first column of the input file
contains labels, they may be placed along the x-axis using the variant command

@example
      plot for [COL=2:4:2] 'file.dat' using COL:xticlabels(1)

@end example

If the file contains both magnitude and range information for each value,
then error bars can be added to the plot.  The following commands will add
error bars extending from (y-<error>) to (y+<error>), capped by horizontal bar
ends drawn the same width as the box itself. The error bars and bar ends are
drawn with linewidth 2, using the border linetype from the current fill style.

@example
      set bars fullwidth
      set style fill solid 1 border lt -1
      set style histogram errorbars gap 2 lw 2
      plot for [COL=2:4:2] 'file.dat' using COL:COL+1

@end example

To plot the same data as a rowstacked histogram.  Just to be different, this
example lists the separate columns explicitly rather than using iteration.

@example
      set style histogram rowstacked
      plot 'file.dat' using 2, '' using 4:xtic(1)

@end example

This will produce a plot in which each vertical bar corresponds to one row of
data.  Each vertical bar contains a stack of two segments, corresponding in
height to the values found in columns 2 and 4 of the datafile.

Finally, the commands

@example
      set style histogram columnstacked
      plot 'file.dat' using 2, '' using 4

@end example

will produce two vertical stacks, one for each column of data.  The stack at
x=1 will contain a box for each entry in column 2 of the datafile.  The stack
at x=2 will contain a box for each parallel entry in column 4 of the datafile.
Because this interchanges gnuplot's usual interpretation of input rows and
columns, the specification of key titles and x-axis tic labels must also be
modified accordingly. See the comments given below.

@example
      set style histogram columnstacked
      plot '' u 5:key(1)            # uses first column to generate key titles
      plot '' u 5 title columnhead  # uses first row to generate xtic labels

@end example

Note that the two examples just given present exactly the same data values,
but in different formats.

@menu
* newhistogram::                
* automated_iteration_over_multiple_columns::  
@end menu

@node newhistogram, automated_iteration_over_multiple_columns, histograms, histograms
@subsection newhistogram

@cindex newhistogram

@c ?histograms newhistogram
@c ?plotting style histograms newhistogram
Syntax:

@example
     newhistogram @{"<title>"@} @{<linetype>@} @{<fillstyle>@} @{at <x-coord>@}

@end example

More than one set of histograms can appear in a single plot. In this case you
can force a gap between them, and a separate label for each set, by using the
@ref{newhistogram} command.
For example

@example
      set style histogram  cluster
      plot newhistogram "Set A", 'a' using 1, '' using 2, '' using 3, \
           newhistogram "Set B", 'b' using 1, '' using 2, '' using 3

@end example

The labels "Set A" and "Set B" will appear beneath the respective sets of
histograms, under the overall x axis label.

The newhistogram command can also be used to force histogram coloring to
begin with a specific color (linetype). By default colors will continue to
increment successively even across histogram boundaries. Here is an example
using the same coloring for multiple histograms
@example
      plot newhistogram "Set A" lt 4, 'a' using 1, '' using 2, '' using 3, \
           newhistogram "Set B" lt 4, 'b' using 1, '' using 2, '' using 3

@end example

Similarly you can force the next histogram to begin with a specified fillstyle.
If the fillstyle is set to `pattern`, then the pattern used for filling will
be incremented automatically.

The `at <x-coord>` option only applies to column-stacked histograms.

@node automated_iteration_over_multiple_columns,  , newhistogram, histograms
@subsection automated iteration over multiple columns

@cindex automated

@c ?histograms automated
@c ?styles histograms automated
@c ?plotting styles histograms automated
If you want to create a histogram from many columns of data in a single file,
it is very convenient to use the plot iteration feature.  See @ref{iteration}.
For example, to create stacked histograms of the data in columns 3 through 8

@example
      set style histogram columnstacked
      plot for [i=3:8] "datafile" using i title columnhead

@end example

@node image, impulses, histograms, plotting_styles
@section image

@c ?commands set style image
@c ?set style image
@c ?plotting styles image
@c ?style image
@cindex image

@cindex rgbimage

@cindex rgbalpha

The `image`, @ref{rgbimage}, and @ref{rgbalpha} plotting styles all project a
uniformly sampled grid of data values onto a plane  in either a 2D or 3D.
The input data may be an actual bitmapped image, perhaps converted from a
standard format such as PNG, or a simple array of numerical values.

@cindex heatmap

This figure illustrates generation of a heat map from an array of scalar values.
The current palette is used to map each value onto the color assigned to the
corresponding pixel.
@example
      plot '-' matrix with image
      5 4 3 1 0
      2 2 0 0 1
      0 0 0 1 0
      0 1 2 4 3
      e
      e

@end example

Each pixel (data point) of the input 2D image will become a rectangle or
parallelipiped in the plot. The coordinates of each data point will determine
the center of the parallelipiped.  That is, an M x N set of data will form an
image with M x N pixels.  This is different from the pm3d plotting style, where
an M x N set of data will form a surface of (M-1) x (N-1) elements.  The scan
directions for a binary image data grid can be further controlled by additional
keywords. See `binary general keywords flipx`, `center`, and `rotate`.

Image data can be scaled to fill a particular rectangle within a 2D plot 
coordinate system by specifying the x and y extent of each pixel.
See `binary general keywords dx` and `dy`. To generate the figure at the right,
the same input image was placed multiple times, each with a specified dx, dy,
and origin. The input PNG image of a building is 50x128 pixels.  The tall
building was drawn by mapping this using `dx=0.5 dy=1.5`.  The short building
used a mapping `dx=0.5 dy=0.35`.

The `image` style handles input pixels containing a grayscale or color palette
value. Thus 2D plots (`plot` command) require 3 columns of data (x,y,value),
while 3D plots (`splot` command) require 4 columns of data (x,y,z,value).

The @ref{rgbimage} style handles input pixels that are described by three separate
values for the red, green, and blue components.  Thus 5D data (x,y,r,g,b) is
needed for `plot` and 6D data (x,y,z,r,g,b) for `splot`.  The individual red,
green, and blue components are assumed to lie in the range [0:255].

The @ref{rgbalpha} style handles input pixels that contain alpha channel 
(transparency) information in addition to the red, green, and blue components.
Thus 6D data (x,y,r,g,b,a) is needed for `plot` and 7D data (x,y,z,r,g,b,a)
for `splot`.  The r, g, b, and alpha components are assumed to lie in the range
[0:255].

@menu
* transparency::                
* image_failsafe::              
@end menu

@node transparency, image_failsafe, image, image
@subsection transparency

@c ?image transparency
@cindex transparency

@c ?alpha channel
The @ref{rgbalpha} plotting style assumes that each pixel of input data contains
an alpha value in the range [0:255].  A pixel with alpha = 0 is purely
transparent and does not alter the underlying contents of the plot. A pixel
with alpha = 255 is purely opaque.  All terminal types can handle these two
extreme cases.  A pixel with 0 < alpha < 255 is partially transparent.
Only a few terminal types can handle this correctly; other terminals will
approximate this by treating alpha as being either 0 or 255.

@node image_failsafe,  , transparency, image
@subsection image failsafe

@c ?commands set style image failsafe
@c ?set style image failsafe
@c ?plotting styles image failsafe
@c ?style image failsafe
@c ?image failsafe
@cindex failsafe

Some terminal drivers provide code to optimize rendering of image data
within a rectangular 2D area.  However this code is known to be imperfect.
This optimized code may be disabled by using the keyword `failsafe`. E.g.

@example
      plot 'data' with image failsafe

@end example

@node impulses, labels, image, plotting_styles
@section impulses

@c ?commands set style impulses
@c ?set style impulses
@c ?plotting styles impulses
@c ?style impulses
@cindex impulses

The @ref{impulses} style displays a vertical line from the x axis to the y value
of each point (2D) or from the xy plane to the z value of each point (3D).
Note that the y or z values may be negative.  As with most plot styles, data
from additional columns can be used to control the color of each impulse.
To use this style effectively in 3D plots, it is useful to use thick lines
(linewidth > 1).  This approximates a 3D bar chart.
     
     
@example
     1 column:   y        # implicit x coordinate from row number (2D)
     2 columns:  x  y     # line from [x,0] to [x,y]  (2D)
     3 columns:  x  y  z  # line from [x,y,0] to [x,y,z] (3D)

@end example


@node labels, lines, impulses, plotting_styles
@section labels

@c ?commands set style labels
@c ?set style labels
@c ?plotting styles labels
@c ?style labels
@cindex labels

The @ref{labels} style reads coordinates and text from a data file and places
the text string at the corresponding 2D or 3D position.  3 or 4 input columns
of basic data are required.  Additional input columns may be used to provide
information such as variable font size or text color (see `rgbcolor variable`).

@example
     3 columns:  x  y  string    # 2D version
     4 columns:  x  y  z  string # 3D version

@end example

The font, color, rotation angle and other properties of the printed text
may be specified as additional command options (see `set label`). The example
below generates a 2D plot with text labels constructed from the city whose
name is taken from column 1 of the input file, and whose geographic coordinates
are in columns 4 and 5. The font size is calculated from the value in column 3,
in this case the population.

@example
  CityName(String,Size) = sprintf("@{/=%d %s@}", Scale(Size), String)
  plot 'cities.dat' using 5:4:(CityName(stringcolumn(1),$3)) with labels

@end example

If we did not want to adjust the font size to a different size for each city
name, the command would be much simpler:

@example
  plot 'cities.dat' using 5:4:1 with labels font "Times,8"

@end example

The @ref{labels} style can also be used in 3D plots. In this case four input
column specifiers are required, corresponding to X Y Z and text.

@example
  splot 'datafile' using 1:2:3:4 with labels

@end example

See also `datastrings`, `set style data`.

@node lines, linespoints, labels, plotting_styles
@section lines

@c ?commands set style lines
@c ?set style lines
@c ?plotting styles lines
@c ?style lines
@cindex lines

The `lines` style connects adjacent points with straight line segments.
It may be used in either 2D or 3D plots. The basic form requires 1, 2, or 3
columns of input data.
Additional input columns may be used to provide information such as
variable line color (see `rgbcolor variable`).

2D form
@example
     1 column:   y       # implicit x from row number
     2 columns:  x  y
@end example

3D form
@example
     1 column:   z       # implicit x from row, y from index
     3 columns:  x  y  z

@end example

See also `linetype`, `linewidth`, and `linestyle`.

@node linespoints, points, lines, plotting_styles
@section linespoints

@c ?commands set style linespoints
@c ?commands set style lp
@c ?set style linespoints
@c ?plotting styles linespoints
@c ?set style lp
@c ?style linespoints
@c ?style lp
@cindex linespoints

@cindex lp

@cindex pointinterval

The @ref{linespoints} style connects adjacent points with straight line segments
and then goes back to draw a small symbol at each point.  The command
@ref{pointsize} may be used to change the default size of the points.
1 or 2 columns of basic input data are required in 2D plots; 1 or 3 columns are
required if 3D plots.  See `style lines`.  Additional input columns may be used
to provide information such as variable point size or line color.

The `pointinterval` (short form `pi`) property of the line style can be used to
control whether or not every point in the plot is given a symbol.  For example,
'with lp pi 3' will draw line segments through every data point, but will only
place a symbol on every 3rd point.  A negative value for `pointinterval` will
erase the portion of line segment that passes underneath the symbol.

@ref{linespoints} may be abbreviated `lp`.

@node points, steps, linespoints, plotting_styles
@section points

@c ?commands set style points
@c ?set style points
@c ?plotting styles points
@c ?style points
@cindex points

The `points` style displays a small symbol at each point.  The command @ref{pointsize} may be used to change the default size of the points.
1 or 2 columns of basic input data are required in 2D plots; 1 or 3 columns are
required if 3D plots.  See `style lines`.  Additional input columns may be used
to provide information such as variable point size or line color.

@node steps, rgbalpha, points, plotting_styles
@section steps

@c ?commands set style steps
@c ?set style steps
@c ?plotting styles steps
@c ?style steps
@cindex steps

The @ref{steps} style is only relevant to 2D plotting.  It connects consecutive
points with two line segments: the first from (x1,y1) to (x2,y1) and the
second from (x2,y1) to (x2,y2).  The input column requires are the same as for
plot styles `lines` and `points`.  The difference between @ref{fsteps} and @ref{steps}
is that @ref{fsteps} traces first the change in y and then the change in x.
@ref{steps} traces first the change in x and then the change in y.
See also
@uref{http://www.gnuplot.info/demo/steps.html,steps demo.
}


@node rgbalpha, rgbimage, steps, plotting_styles
@section rgbalpha

@c ?commands set style rgbalpha
@c ?set style rgbalpha
@c ?plotting styles rgbalpha
@c ?style rgbalpha
See `image`.

@node rgbimage, vectors, rgbalpha, plotting_styles
@section rgbimage

@c ?commands set style rgbimage
@c ?set style rgbimage
@c ?plotting styles rgbimage
@c ?style rgbimage
See `image`.

@node vectors, xerrorbars, rgbimage, plotting_styles
@section vectors

@c ?commands set style vectors
@c ?set style vectors
@c ?plotting styles vectors
@c ?style vectors
@cindex vectors

The 2D @ref{vectors} style draws a vector from (x,y) to (x+xdelta,y+ydelta).
The 3D @ref{vectors} style is similar, but requires six columns of basic data.
A small arrowhead is drawn at the end of each vector.

@example
     4 columns:  x  y  xdelta  ydelta
     6 columns:  x  y  z  xdelta  ydelta  zdelta

@end example

splot with vectors is supported only for `set mapping cartesian`.
The keywords "with vectors" may be followed by arrow style specifications.
See `arrowstyle` for more details.

Example:
@example
      plot 'file.dat' using 1:2:3:4 with vectors head filled lt 2
      splot 'file.dat' using 1:2:3:(1):(1):(1) with vectors filled head lw 2

@end example

`set clip one` and `set clip two` affect vectors drawn in 2D.
Please see @ref{clip} and `arrowstyle`.

@node xerrorbars, xyerrorbars, vectors, plotting_styles
@section xerrorbars

@c ?commands set style xerrorbars
@c ?set style xerrorbars
@c ?plotting styles xerrorbars
@c ?style xerrorbars
@cindex xerrorbars

The @ref{xerrorbars} style is only relevant to 2D data plots.  @ref{xerrorbars} is
like @ref{dots}, except that a horizontal error bar is also drawn.  At each point
(x,y), a line is drawn from (xlow,y) to (xhigh,y) or from (x-xdelta,y) to
(x+xdelta,y), depending on how many data columns are provided.  A tic mark
is placed at the ends of the error bar (unless @ref{bars} is used---see
@ref{bars} for details).  The basic style requires either 3 or 4 columns:

@example
     3 columns:  x  y  xdelta
     4 columns:  x  y  xlow  xhigh

@end example


@node xyerrorbars, yerrorbars, xerrorbars, plotting_styles
@section xyerrorbars

@c ?commands set style xyerrorbars
@c ?set style xyerrorbars
@c ?plotting styles xyerrorbars
@c ?style xyerrorbars
@cindex xyerrorbars

The @ref{xyerrorbars} style is only relevant to 2D data plots.  @ref{xyerrorbars} is
like @ref{dots}, except that horizontal and vertical error bars are also drawn.
At each point (x,y), lines are drawn from (x,y-ydelta) to (x,y+ydelta) and
from (x-xdelta,y) to (x+xdelta,y) or from (x,ylow) to (x,yhigh) and from
(xlow,y) to (xhigh,y), depending upon the number of data columns provided.  A
tic mark is placed at the ends of the error bar (unless @ref{bars} is
used---see @ref{bars} for details).  Either 4 or 6 input columns are required.

@example
     4 columns:  x  y  xdelta  ydelta
     6 columns:  x  y  xlow  xhigh  ylow  yhigh

@end example

If data are provided in an unsupported mixed form, the @ref{using} filter on the
`plot` command should be used to set up the appropriate form.  For example,
if the data are of the form (x,y,xdelta,ylow,yhigh), then you can use

@example
      plot 'data' using 1:2:($1-$3):($1+$3):4:5 with xyerrorbars

@end example

@node yerrorbars, xerrorlines, xyerrorbars, plotting_styles
@section yerrorbars

@c ?commands set style yerrorbars
@c ?commands set style errorbars
@c ?plotting styles yerrorbars
@c ?plotting styles errorbars
@c ?set style yerrorbars
@c ?set style errorbars
@c ?style yerrorbars
@c ?style errorbars
@cindex yerrorbars

The @ref{yerrorbars} (or @ref{errorbars}) style is only relevant to 2D data plots.
@ref{yerrorbars} is like `points`, except that a vertical error bar is also drawn.
At each point (x,y), a line is drawn from (x,y-ydelta) to (x,y+ydelta) or
from (x,ylow) to (x,yhigh), depending on how many data columns are provided.
A tic mark is placed at the ends of the error bar (unless @ref{bars} is
used---see @ref{bars} for details).  Either 3 or 4 input columns are required.

@example
     3 columns:  x  y  ydelta
     4 columns:  x  y  ylow  yhigh

@end example

See also
@uref{http://www.gnuplot.info/demo/mgr.html,errorbar demo.
}

@node xerrorlines, xyerrorlines, yerrorbars, plotting_styles
@section xerrorlines

@c ?commands set style xerrorlines
@c ?set style xerrorlines
@c ?plotting styles xerrorlines
@c ?style xerrorlines
@cindex xerrorlines

The @ref{xerrorlines} style is only relevant to 2D data plots.
@ref{xerrorlines} is like @ref{linespoints}, except that a horizontal error
line is also drawn. At each point (x,y), a line is drawn from (xlow,y)
to (xhigh,y) or from (x-xdelta,y) to (x+xdelta,y), depending on how
many data columns are provided. A tic mark is placed at the ends of
the error bar (unless @ref{bars} is used---see @ref{bars} for details).
The basic style requires either 3 or 4 columns:

@example
     3 columns:  x  y  xdelta
     4 columns:  x  y  xlow  xhigh

@end example


@node xyerrorlines, yerrorlines, xerrorlines, plotting_styles
@section xyerrorlines

@c ?commands set style xyerrorlines
@c ?set style xyerrorlines
@c ?plotting styles xyerrorlines
@c ?style xyerrorlines
@cindex xyerrorlines

The @ref{xyerrorlines} style is only relevant to 2D data plots.
@ref{xyerrorlines} is like @ref{linespoints}, except that horizontal and
vertical error bars are also drawn. At each point (x,y), lines are
drawn from (x,y-ydelta) to (x,y+ydelta) and from (x-xdelta,y) to
(x+xdelta,y) or from (x,ylow) to (x,yhigh) and from (xlow,y) to
(xhigh,y), depending upon the number of data columns provided. A tic
mark is placed at the ends of the error bar (unless @ref{bars} is
used---see @ref{bars} for details).  Either 4 or 6 input columns are required.

@example
     4 columns:  x  y  xdelta  ydelta
     6 columns:  x  y  xlow  xhigh  ylow  yhigh

@end example

If data are provided in an unsupported mixed form, the @ref{using} filter on the
`plot` command should be used to set up the appropriate form.  For example,
if the data are of the form (x,y,xdelta,ylow,yhigh), then you can use

@example
      plot 'data' using 1:2:($1-$3):($1+$3):4:5 with xyerrorlines

@end example

@node yerrorlines, 3D_(surface)_plots, xyerrorlines, plotting_styles
@section yerrorlines

@c ?commands set style yerrorlines
@c ?commands set style errorlines
@c ?plotting styles yerrorlines
@c ?plotting styles errorlines
@c ?set style yerrorlines
@c ?set style errorlines
@c ?style yerrorlines
@c ?style errorlines
@cindex yerrorlines

The @ref{yerrorlines} (or @ref{errorlines}) style is only relevant to 2D data
plots. @ref{yerrorlines} is like @ref{linespoints}, except that a vertical
error line is also drawn. At each point (x,y), a line is drawn from
(x,y-ydelta) to (x,y+ydelta) or from (x,ylow) to (x,yhigh), depending
on how many data columns are provided. A tic mark is placed at the
ends of the error bar (see @ref{bars} for details).
Either 3 or 4 input columns are required.

@example
     3 columns:  x  y  ydelta
     4 columns:  x  y  ylow  yhigh

@end example

See also
@uref{http://www.gnuplot.info/demo/mgr.html,errorbar demo.
}

@node 3D_(surface)_plots,  , yerrorlines, plotting_styles
@section 3D (surface) plots

@c ?3D (surface) plots
@c ?plotting styles 3d (surface) plots
Surface plots are generated using the `splot` command rather than the `plot`
command. The style `with lines` draws a surface made from a grid of lines.
Solid surfaces can be drawn using the style @ref{pm3d}.
Usually the surface is displayed at some arbitrary viewing angle,
such that it clearly represents a 3D surface.  In this case the X, Y, and Z
axes are all visible in the plot. The illusion of 3D is enhanced by choosing
hidden line removal or depth-sorted surface elements.
See @ref{hidden3d} and the @ref{depthorder} option of @ref{pm3d}.
The `splot` command can also calculate and draw contour lines corresponding
to constant Z values. These contour lines may be drawn onto the surface
itself, or projected onto the XY plane. See @ref{contour}.
   
   
   
   
   

An important special case of the `splot` command is to map the Z coordinate
onto a 2D surface by projecting the plot along the Z axis.  See `set view map`.
This plot mode can be used to generate contour plots and heat maps.
   


@node Commands, Terminal_types, plotting_styles, Top
@chapter Commands

@cindex commands

This section lists the commands acceptable to `gnuplot` in alphabetical
order.  Printed versions of this document contain all commands; the text
available interactively may not be complete.  Indeed, on some systems there may
be no commands at all listed under this heading.

Note that in most cases unambiguous abbreviations for command names and their
options are permissible, i.e., "`p f(x) w li`" instead of "`plot f(x) with
lines`".

In the syntax descriptions, braces (@{@}) denote optional arguments and a
vertical bar (|) separates mutually exclusive choices.

@menu
* cd::                          
* call::                        
* clear::                       
* evaluate::                    
* exit::                        
* fit::                         
* help::                        
* history::                     
* if::                          
* iteration::                   
* load::                        
* lower::                       
* pause::                       
* plot::                        
* print::                       
* pwd::                         
* quit::                        
* raise::                       
* refresh::                     
* replot::                      
* reread::                      
* reset::                       
* save::                        
* set-show::                    
* shell::                       
* splot::                       
* system_::                     
* test::                        
* undefine::                    
* unset::                       
* update::                      
@end menu

@node cd, call, Commands, Commands
@section cd

@c ?commands cd
@cindex cd
@cmindex cd


The @ref{cd} command changes the working directory.

Syntax:
@example
      cd '<directory-name>'

@end example

The directory name must be enclosed in quotes.

Examples:
@example
      cd 'subdir'
      cd ".."

@end example

It is recommended that Windows users use single-quotes, because backslash [\]
has special significance inside double-quotes and has to be escaped.
For example,
@example
      cd "c:\newdata"
@end example

fails, but
@example
      cd 'c:\newdata'
      cd "c:\\newdata"
@end example

work as expected.

@node call, clear, cd, Commands
@section call

@c ?commands call
@cindex call
@cmindex call


The @ref{call} command is identical to the load command with one exception: you
can have up to ten additional parameters to the command (delimited according
to the standard parser rules) which can be substituted into the lines read
from the file.  As each line is read from the @ref{call}ed input file, it is
scanned for the sequence `$` (dollar-sign) followed by a digit (0--9).  If
found, the sequence is replaced by the corresponding parameter from the
@ref{call} command line.  If the parameter was specified as a string in the
@ref{call} line, it is substituted without its enclosing quotes.  Sequence `$#`
is replaced by the number of passed parameters.  `$` followed by any character
will be that character; e.g. use `$$` to get a single `$`.  Providing more
than ten parameters on the @ref{call} command line will cause an error.  A
parameter that was not provided substitutes as nothing.  Files being @ref{call}ed
may themselves contain @ref{call} or `load` commands.

Syntax:
@example
      call "<input-file>" <parameter-0> <parm-1> ... <parm-9>

@end example

The name of the input file must be enclosed in quotes, and it is recommended
that parameters are similarly enclosed in quotes (future versions of gnuplot
may treat quoted and unquoted arguments differently).

Example:

If the file 'calltest.gp' contains the line:
@example
      print "argc=$# p0=$0 p1=$1 p2=$2 p3=$3 p4=$4 p5=$5 p6=$6 p7=x$7x"

@end example

entering the command:
@example
      call 'calltest.gp' "abcd" 1.2 + "'quoted'" -- "$2"

@end example

will display:
@example
      argc=7 p0=abcd p1=1.2 p2=+ p3='quoted' p4=- p5=- p6=$2 p7=xx

@end example

NOTE: there is a clash in syntax with the datafile @ref{using} callback
operator.  Use `$$n` or `column(n)` to access column n from a datafile inside
a @ref{call}ed datafile plot.

@node clear, evaluate, call, Commands
@section clear

@c ?commands clear
@cindex clear
@cmindex clear


The @ref{clear} command erases the current screen or output device as specified
by @ref{output}.  This usually generates a formfeed on hardcopy devices.  Use
@ref{terminal} to set the device type.

For some terminals @ref{clear} erases only the portion of the plotting surface
defined by @ref{size}, so for these it can be used in conjunction with @ref{multiplot} to create an inset.

Example:
@example
      set multiplot
      plot sin(x)
      set origin 0.5,0.5
      set size 0.4,0.4
      clear
      plot cos(x)
      unset multiplot

@end example

Please see @ref{multiplot}, @ref{size}, and @ref{origin} for details of these
commands.

@node evaluate, exit, clear, Commands
@section evaluate

@c ?commands evaluate
@cindex evaluate
@cmindex evaluate


The @ref{evaluate} command executes the commands given as an argument string.
Newline characters are not allowed within the string.

Syntax:
@example
      eval <string expression>

@end example

This is especially useful for a repetition of similar commands.

Example:
@example
      set_label(x, y, text) \
        = sprintf("set label '%s' at %f, %f point pt 5", text, x, y)
      eval set_label(1., 1., 'one/one')
      eval set_label(2., 1., 'two/one')
      eval set_label(1., 2., 'one/two')

@end example

Please see @ref{macros} for another way to execute commands
from a string.

@node exit, fit, evaluate, Commands
@section exit

@c ?commands exit
@cindex exit
@cmindex exit


The commands @ref{exit} and @ref{quit}, as well as the END-OF-FILE character (usually
Ctrl-D) terminate input from the current input stream: terminal session, pipe,
and file input (pipe).

If input streams are nested (inherited `load` scripts), then reading will
continue in the parent stream. When the top level stream is closed, the
program itself will exit.

The command `exit gnuplot` will immediately and unconditionally cause gnuplot
to exit even if the input stream is multiply nested.  In this case any open
output files may not be completed cleanly. Example of use:

@example
      bind "ctrl-x" "unset output; exit gnuplot"

@end example

See help for `batch/interactive` for more details.

@node fit, help, exit, Commands
@section fit

@c ?commands fit
@cindex fit
@cmindex fit


@cindex least-squares

@cindex Marquardt

The @ref{fit} command can fit a user-supplied expression to a set of data points
(x,z) or (x,y,z), using an implementation of the nonlinear least-squares
(NLLS) Marquardt-Levenberg algorithm.  Any user-defined variable occurring in
the expression may serve as a fit parameter, but the return type of the
expression must be real.

Syntax:
@example
      fit @{<ranges>@} <expression>
          '<datafile>' @{datafile-modifiers@}
          via '<parameter file>' | <var1>@{,<var2>,...@}

@end example

Ranges may be specified to temporarily limit the data which is to be fitted;
any out-of-range data points are ignored. The syntax is
@example
      [@{dummy_variable=@}@{<min>@}@{:<max>@}],
@end example

analogous to `plot`; see @ref{ranges}.

<expression> is any valid `gnuplot` expression, although it is usual to use a
previously user-defined function of the form f(x) or f(x,y).

<datafile> is treated as in the `plot` command.  All the @ref{datafile}
modifiers (@ref{using}, @ref{every},...) except @ref{smooth} and the deprecated @ref{thru}
are applicable to @ref{fit}. See @ref{datafile}.

The default data formats for fitting functions with a single
independent variable, z=f(x), are z or x:z.  That is, if there is
only a single column then it is the dependent variable and the line
numbers is the independent variable.  If there are two columns, the
first is the independent variable and the second is the dependent
variable.

Those formats can be changed with the datafile @ref{using} qualifier, for
example to take the z value from a different column or to calculate
it from several columns.  A third @ref{using} qualifier (a column number
or an expression), if present, is interpreted as the standard
deviation of the corresponding z value and is used to compute a
weight for the datum, 1/s**2.  Otherwise, all data points are
weighted equally, with a weight of one. Note that if you don't
specify a @ref{using} option at all, no z standard deviations are read
from the datafile even if it does have a third column, so you'll
always get unit weights.

To fit a function with two independent variables, z=f(x,y), the required
format is @ref{using} with four items, x:y:z:s.  The complete format must be
given---no default columns are assumed for a missing token.  Weights for
each data point are evaluated from 's' as above.  If error estimates are
not available, a constant value can be specified as a constant expression
(see @ref{using}), e.g., `using 1:2:3:(1)`.

The fit function may have up to five independent variables.  There
must be two more @ref{using} qualifiers than there are independent
variables, unless there is only one variable.  The allowed formats,
and the default dummy variable names, are as follows:

@example
      z
      x:z
      x:z:s
      x:y:z:s
      x:y:t:z:s
      x:y:t:u:z:s
      x:y:t:u:v:z:s

@end example

The dummy variable names may be changed with ranges as noted above.
The first range corresponds to the first @ref{using} spec, etc.  A range
may also be given for z (the dependent variable), but that name
cannot be changed.

Multiple datasets may be simultaneously fit with functions of one
independent variable by making y a 'pseudo-variable', e.g., the dataline
number, and fitting as two independent variables.  See @ref{multi-branch}.

The `via` qualifier specifies which parameters are to be adjusted, either
directly, or by referencing a parameter file.

Examples:
@example
      f(x) = a*x**2 + b*x + c
      g(x,y) = a*x**2 + b*y**2 + c*x*y
      FIT_LIMIT = 1e-6
      fit f(x) 'measured.dat' via 'start.par'
      fit f(x) 'measured.dat' using 3:($7-5) via 'start.par'
      fit f(x) './data/trash.dat' using 1:2:3 via a, b, c
      fit g(x,y) 'surface.dat' using 1:2:3:(1) via a, b, c
      fit a0 + a1*x/(1 + a2*x/(1 + a3*x)) 'measured.dat' via a0,a1,a2,a3
      fit a*x + b*y 'surface.dat' using 1:2:3:(1) via a,b
      fit [*:*][yaks=*:*] a*x+b*yaks 'surface.dat' u 1:2:3:(1) via a,b
      fit a*x + b*y + c*t 'foo.dat' using 1:2:3:4:(1) via a,b,c
      h(x,y,t,u,v) = a*x + b*y + c*t + d*u + e*v
      fit h(x,y,t,u,v) 'foo.dat' using 1:2:3:4:5:6:(1) via a,b,c,d,e

@end example

After each iteration step, detailed information about the current state
of the fit is written to the display.  The same information about the
initial and final states is written to a log file, "fit.log".  This file
is always appended to, so as to not lose any previous fit history;  it
should be deleted or renamed as desired. By using the command
`set fit logfile`, the name of the log file can be changed.

If gnuplot was built with this option, and you activated it using `set fit
errorvariables`, the error for each fitted parameter will be stored in
a variable named like the parameter, but with "_err" appended.  Thus the
errors can be used as input for further computations.

The fit may be interrupted by pressing Ctrl-C.
After the current iteration completes, you have the option to
(1) stop the fit and accept the current parameter values,
(2) continue the fit, (3) execute a `gnuplot` command as specified by the
environment variable FIT_SCRIPT.  The default for FIT_SCRIPT is @ref{replot},
so if you had previously plotted both the data and the fitting function in
one graph, you can display the current state of the fit.

Once @ref{fit} has finished, the @ref{update} command may be used to store final
values in a file for subsequent use as a parameter file.   See @ref{update}
for details.

@menu
* adjustable_parameters::       
* short_introduction::          
* error_estimates::             
* control::                     
* multi-branch::                
* starting_values::             
* tips::                        
@end menu

@node adjustable_parameters, short_introduction, fit, fit
@subsection adjustable parameters

@c ?commands fit parameters
@c ?fit parameters
@c ?commands fit adjustable_parameters
@c ?fit adjustable_parameters
@cindex fit_parameters

There are two ways that `via` can specify the parameters to be adjusted,
either directly on the command line or indirectly, by referencing a
parameter file.  The two use different means to set initial values.

Adjustable parameters can be specified by a comma-separated list of variable
names after the `via` keyword.  Any variable that is not already defined
is created with an initial value of 1.0.  However, the fit is more likely
to converge rapidly if the variables have been previously declared with more
appropriate starting values.

In a parameter file, each parameter to be varied and a corresponding initial
value are specified, one per line, in the form
@example
      varname = value

@end example

Comments, marked by '#', and blank lines are permissible.  The
special form
@example
      varname = value       # FIXED

@end example

means that the variable is treated as a 'fixed parameter', initialized by the
parameter file, but not adjusted by @ref{fit}.  For clarity, it may be useful to
designate variables as fixed parameters so that their values are reported by
@ref{fit}.  The keyword `# FIXED` has to appear in exactly this form.


@node short_introduction, error_estimates, adjustable_parameters, fit
@subsection short introduction

@c ?commands fit beginners_guide
@c ?fit beginners_guide
@c ?fit guide
@cindex fitting

@ref{fit} is used to find a set of parameters that 'best' fits your data to your
user-defined function.  The fit is judged on the basis of the sum of the
squared differences or 'residuals' (SSR) between the input data points and
the function values, evaluated at the same places.  This quantity is often
called 'chisquare' (i.e., the Greek letter chi, to the power of 2).  The
algorithm attempts to minimize SSR, or more precisely, WSSR, as the residuals
are 'weighted' by the input data errors (or 1.0) before being squared;
see `fit error_estimates` for details.

That's why it is called 'least-squares fitting'.  Let's look at an example
to see what is meant by 'non-linear', but first we had better go over some
terms.  Here it is convenient to use z as the dependent variable for
user-defined functions of either one independent variable, z=f(x), or two
independent variables, z=f(x,y).  A parameter is a user-defined variable
that @ref{fit} will adjust, i.e., an unknown quantity in the function
declaration.  Linearity/non-linearity refers to the relationship of the
dependent variable, z, to the parameters which @ref{fit} is adjusting, not of
z to the independent variables, x and/or y.  (To be technical, the
second @{and higher@} derivatives of the fitting function with respect to
the parameters are zero for a linear least-squares problem).

For linear least-squares (LLS), the user-defined function will be a sum of
simple functions, not involving any parameters, each multiplied by one
parameter.  NLLS handles more complicated functions in which parameters can
be used in a large number of ways.  An example that illustrates the
difference between linear and nonlinear least-squares is the Fourier series.
One member may be written as
@example
     z=a*sin(c*x) + b*cos(c*x).
@end example

If a and b are the unknown parameters and c is constant, then estimating
values of the parameters is a linear least-squares problem.  However, if
c is an unknown parameter, the problem is nonlinear.

In the linear case, parameter values can be determined by comparatively
simple linear algebra, in one direct step.  However LLS is a special case
which is also solved along with more general NLLS problems by the iterative
procedure that `gnuplot` uses.  @ref{fit} attempts to find the minimum by doing
a search.  Each step (iteration) calculates WSSR with a new set of parameter
values.  The Marquardt-Levenberg algorithm selects the parameter values for
the next iteration.  The process continues until a preset criterion is met,
either (1) the fit has "converged" (the relative change in WSSR is less than
FIT_LIMIT), or (2) it reaches a preset iteration count limit, FIT_MAXITER
(see @ref{variables}).  The fit may also be interrupted
and subsequently halted from the keyboard (see @ref{fit}).  The user variable
FIT_CONVERGED contains 1 if the previous fit command terminated due to
convergence; it contains 0 if the previous fit terminated for any other
reason.

Often the function to be fitted will be based on a model (or theory) that
attempts to describe or predict the behaviour of the data.  Then @ref{fit} can
be used to find values for the free parameters of the model, to determine
how well the data fits the model, and to estimate an error range for each
parameter.  See `fit error_estimates`.

Alternatively, in curve-fitting, functions are selected independent of
a model (on the basis of experience as to which are likely to describe
the trend of the data with the desired resolution and a minimum number
of parameters*functions.)  The @ref{fit} solution then provides an analytic
representation of the curve.

However, if all you really want is a smooth curve through your data points,
the @ref{smooth} option to `plot` may be what you've been looking for rather
than @ref{fit}.

@node error_estimates, control, short_introduction, fit
@subsection error estimates

@c ?commands fit error_estimates
@c ?fit error_estimates
@c ?fit errors
In @ref{fit}, the term "error" is used in two different contexts, data error
estimates and parameter error estimates.

Data error estimates are used to calculate the relative weight of each data
point when determining the weighted sum of squared residuals, WSSR or
chisquare.  They can affect the parameter estimates, since they determine
how much influence the deviation of each data point from the fitted function
has on the final values.  Some of the @ref{fit} output information, including
the parameter error estimates, is more meaningful if accurate data error
estimates have been provided.

The 'statistical overview' describes some of the @ref{fit} output and gives some
background for the 'practical guidelines'.

@menu
* statistical_overview::        
* practical_guidelines::        
@end menu

@node statistical_overview, practical_guidelines, error_estimates, error_estimates
@subsubsection statistical overview

@c ?commands fit error statistical_overview
@c ?fit error statistical_overview
@cindex statistical_overview

The theory of non-linear least-squares (NLLS) is generally described in terms
of a normal distribution of errors, that is, the input data is assumed to be
a sample from a population having a given mean and a Gaussian (normal)
distribution about the mean with a given standard deviation.  For a sample of
sufficiently large size, and knowing the population standard deviation, one
can use the statistics of the chisquare distribution to describe a "goodness
of fit" by looking at the variable often called "chisquare".  Here, it is
sufficient to say that a reduced chisquare (chisquare/degrees of freedom,
where degrees of freedom is the number of datapoints less the number of
parameters being fitted) of 1.0 is an indication that the weighted sum of
squared deviations between the fitted function and the data points is the
same as that expected for a random sample from a population characterized by
the function with the current value of the parameters and the given standard
deviations.

If the standard deviation for the population is not constant, as in counting
statistics where variance = counts, then each point should be individually
weighted when comparing the observed sum of deviations and the expected sum
of deviations.

At the conclusion @ref{fit} reports 'stdfit', the standard deviation of the fit,
which is the rms of the residuals, and the variance of the residuals, also
called 'reduced chisquare' when the data points are weighted.  The number of
degrees of freedom (the number of data points minus the number of fitted
parameters) is used in these estimates because the parameters used in
calculating the residuals of the datapoints were obtained from the same data.
These values are exported to the variables
@example
      FIT_NDF = Number of degrees of freedom
      FIT_WSSR = Weighted sum-of-squares residual
      FIT_STDFIT = sqrt(WSSR/NDF)

@end example

To estimate confidence levels for the parameters, one can use the minimum
chisquare obtained from the fit and chisquare statistics to determine the
value of chisquare corresponding to the desired confidence level, but
considerably more calculation is required to determine the combinations of
parameters which produce such values.

Rather than determine confidence intervals, @ref{fit} reports parameter error
estimates which are readily obtained from the variance-covariance matrix
after the final iteration.  By convention, these estimates are called
"standard errors" or "asymptotic standard errors", since they are calculated
in the same way as the standard errors (standard deviation of each parameter)
of a linear least-squares problem, even though the statistical conditions for
designating the quantity calculated to be a standard deviation are not
generally valid for the NLLS problem.  The asymptotic standard errors are
generally over-optimistic and should not be used for determining confidence
levels, but are useful for qualitative purposes.

The final solution also produces a correlation matrix, which gives an
indication of the correlation of parameters in the region of the solution;
if one parameter is changed, increasing chisquare, does changing another
compensate?  The main diagonal elements, autocorrelation, are all 1; if
all parameters were independent, all other elements would be nearly 0.  Two
variables which completely compensate each other would have an off-diagonal
element of unit magnitude, with a sign depending on whether the relation is
proportional or inversely proportional.  The smaller the magnitudes of the
off-diagonal elements, the closer the estimates of the standard deviation
of each parameter would be to the asymptotic standard error.

@node practical_guidelines,  , statistical_overview, error_estimates
@subsubsection practical guidelines

@c ?commands fit error practical_guidelines
@c ?fit error practical_guidelines
@cindex practical_guidelines

@cindex guidelines

If you have a basis for assigning weights to each data point, doing so lets
you make use of additional knowledge about your measurements, e.g., take into
account that some points may be more reliable than others.  That may affect
the final values of the parameters.

Weighting the data provides a basis for interpreting the additional @ref{fit}
output after the last iteration.  Even if you weight each point equally,
estimating an average standard deviation rather than using a weight of 1
makes WSSR a dimensionless variable, as chisquare is by definition.

Each fit iteration will display information which can be used to evaluate
the progress of the fit.  (An '*' indicates that it did not find a smaller
WSSR and is trying again.)  The 'sum of squares of residuals', also called
'chisquare', is the WSSR between the data and your fitted function; @ref{fit}
has minimized that.  At this stage, with weighted data, chisquare is expected
to approach the number of degrees of freedom (data points minus parameters).
The WSSR can be used to calculate the reduced chisquare (WSSR/ndf) or stdfit,
the standard deviation of the fit, sqrt(WSSR/ndf).  Both of these are
reported for the final WSSR.

If the data are unweighted, stdfit is the rms value of the deviation of the
data from the fitted function, in user units.

If you supplied valid data errors, the number of data points is large enough,
and the model is correct, the reduced chisquare should be about unity.  (For
details, look up the 'chi-squared distribution' in your favourite statistics
reference.)  If so, there are additional tests, beyond the scope of this
overview, for determining how well the model fits the data.

A reduced chisquare much larger than 1.0 may be due to incorrect data error
estimates, data errors not normally distributed, systematic measurement
errors, 'outliers', or an incorrect model function.  A plot of the residuals,
e.g., `plot 'datafile' using 1:($2-f($1))`, may help to show any systematic
trends.  Plotting both the data points and the function may help to suggest
another model.

Similarly, a reduced chisquare less than 1.0 indicates WSSR is less than that
expected for a random sample from the function with normally distributed
errors.  The data error estimates may be too large, the statistical
assumptions may not be justified, or the model function may be too general,
fitting fluctuations in a particular sample in addition to the underlying
trends.  In the latter case, a simpler function may be more appropriate.

You'll have to get used to both @ref{fit} and the kind of problems you apply it
to before you can relate the standard errors to some more practical estimates
of parameter uncertainties or evaluate the significance of the correlation
matrix.

Note that @ref{fit}, in common with most NLLS implementations, minimizes the
weighted sum of squared distances (y-f(x))**2.  It does not provide any means
to account for "errors" in the values of x, only in y.  Also, any "outliers"
(data points outside the normal distribution of the model) will have an
exaggerated effect on the solution.

@node control, multi-branch, error_estimates, fit
@subsection control

@c ?commands fit control
@c ?fit control
There are a number of `gnuplot` variables that can be defined to affect
@ref{fit}.  Those which can be defined once `gnuplot` is running are listed
under 'control_variables' while those defined before starting `gnuplot`
are listed under 'environment_variables'.

@menu
* control_variables::           
* environment_variables::       
@end menu

@node control_variables, environment_variables, control, control
@subsubsection control variables

@c ?commands fit control variables
@c ?fit control variables
The default epsilon limit (1e-5) may be changed by declaring a value for
@example
      FIT_LIMIT
@end example

When the sum of squared residuals changes between two iteration steps by
a factor less than this number (epsilon), the fit is considered to have
'converged'.

The maximum number of iterations may be limited by declaring a value for
@example
      FIT_MAXITER
@end example

A value of 0 (or not defining it at all)  means that there is no limit.

If you need even more control about the algorithm, and know the
Marquardt-Levenberg algorithm well, there are some more variables to
influence it. The startup value of `lambda` is normally calculated
automatically from the ML-matrix, but if you want to, you may provide
your own one with
@example
      FIT_START_LAMBDA
@end example

Specifying FIT_START_LAMBDA as zero or less will re-enable the automatic
selection. The variable
@example
      FIT_LAMBDA_FACTOR
@end example

gives the factor by which `lambda` is increased or decreased whenever
the chi-squared target function increased or decreased significantly.
Setting FIT_LAMBDA_FACTOR to zero re-enables the default factor of
10.0.

Other variables with the FIT_ prefix may be added to @ref{fit}, so it is safer
not to use that prefix for user-defined variables.

The variables FIT_SKIP and FIT_INDEX were used by earlier releases of
`gnuplot` with a 'fit' patch called `gnufit` and are no longer available.
The datafile @ref{every} modifier provides the functionality of FIT_SKIP.
FIT_INDEX was used for multi-branch fitting, but multi-branch fitting of
one independent variable is now done as a pseudo-3D fit in which the
second independent variable and @ref{using} are used to specify the branch.
See @ref{multi-branch}.

@node environment_variables,  , control_variables, control
@subsubsection environment variables

@c ?commands fit control environment
@c ?fit control environment
The environment variables must be defined before `gnuplot` is executed; how
to do so depends on your operating system.

@example
      FIT_LOG
@end example

changes the name (and/or path) of the file to which the fit log will be
written from the default of "fit.log" in the working directory. The default
value can be overwritten using the command `set fit logfile`.

@example
      FIT_SCRIPT
@end example

specifies a command that may be executed after an user interrupt. The default
is @ref{replot}, but a `plot` or `load` command may be useful to display a plot
customized to highlight the progress of the fit.

@node multi-branch, starting_values, control, fit
@subsection multi-branch

@c ?commands fit multi-branch
@c ?fit multi-branch
@cindex multi-branch

@cindex branch

In multi-branch fitting, multiple data sets can be simultaneously fit with
functions of one independent variable having common parameters by minimizing
the total WSSR.  The function and parameters (branch) for each data set are
selected by using a 'pseudo-variable', e.g., either the dataline number (a
'column' index of -1) or the datafile index (-2), as the second independent
variable.

Example:  Given two exponential decays of the form, z=f(x), each describing
a different data set but having a common decay time, estimate the values of
the parameters.  If the datafile has the format x:z:s, then
@example
     f(x,y) = (y==0) ? a*exp(-x/tau) : b*exp(-x/tau)
     fit f(x,y) 'datafile' using  1:-2:2:3  via a, b, tau

@end example

For a more complicated example, see the file "hexa.fnc" used by the
"fit.dem" demo.

Appropriate weighting may be required since unit weights may cause one
branch to predominate if there is a difference in the scale of the dependent
variable.  Fitting each branch separately, using the multi-branch solution
as initial values, may give an indication as to the relative effect of each
branch on the joint solution.

@node starting_values, tips, multi-branch, fit
@subsection starting values

@c ?commands fit starting_values
@c ?fit starting_values
@cindex starting_values

Nonlinear fitting is not guaranteed to converge to the global optimum (the
solution with the smallest sum of squared residuals, SSR), and can get stuck
at a local minimum.  The routine has no way to determine that;  it is up to
you to judge whether this has happened.

@ref{fit} may, and often will get "lost" if started far from a solution, where
SSR is large and changing slowly as the parameters are varied, or it may
reach a numerically unstable region (e.g., too large a number causing a
floating point overflow) which results in an "undefined value" message
or `gnuplot` halting.

To improve the chances of finding the global optimum, you should set the
starting values at least roughly in the vicinity of the solution, e.g.,
within an order of magnitude, if possible.  The closer your starting values
are to the solution, the less chance of stopping at another minimum.  One way
to find starting values is to plot data and the fitting function on the same
graph and change parameter values and @ref{replot} until reasonable similarity
is reached.  The same plot is also useful to check whether the fit stopped at
a minimum with a poor fit.

Of course, a reasonably good fit is not proof there is not a "better" fit (in
either a statistical sense, characterized by an improved goodness-of-fit
criterion, or a physical sense, with a solution more consistent with the
model.)  Depending on the problem, it may be desirable to @ref{fit} with various
sets of starting values, covering a reasonable range for each parameter.

@node tips,  , starting_values, fit
@subsection tips

@c ?commands fit tips
@c ?fit tips
@cindex tips

Here are some tips to keep in mind to get the most out of @ref{fit}.  They're not
very organized, so you'll have to read them several times until their essence
has sunk in.

The two forms of the `via` argument to @ref{fit} serve two largely distinct
purposes.  The `via "file"` form is best used for (possibly unattended) batch
operation, where you just supply the startup values in a file and can later
use @ref{update} to copy the results back into another (or the same) parameter
file.

The `via var1, var2, ...` form is best used interactively, where the command
history mechanism may be used to edit the list of parameters to be fitted or
to supply new startup values for the next try.  This is particularly useful
for hard problems, where a direct fit to all parameters at once won't work
without good starting values.  To find such, you can iterate several times,
fitting only some of the parameters, until the values are close enough to the
goal that the final fit to all parameters at once will work.

Make sure that there is no mutual dependency among parameters of the function
you are fitting.  For example, don't try to fit a*exp(x+b), because
a*exp(x+b)=a*exp(b)*exp(x).  Instead, fit either a*exp(x) or exp(x+b).

A technical issue:  the parameters must not be too different in magnitude.
The larger the ratio of the largest and the smallest absolute parameter
values, the slower the fit will converge.  If the ratio is close to or above
the inverse of the machine floating point precision, it may take next to
forever to converge, or refuse to converge at all.  You will have to adapt
your function to avoid this, e.g., replace 'parameter' by '1e9*parameter' in
the function definition, and divide the starting value by 1e9.

If you can write your function as a linear combination of simple functions
weighted by the parameters to be fitted, by all means do so.  That helps a
lot, because the problem is no longer nonlinear and should converge with only
a small number of iterations, perhaps just one.

Some prescriptions for analysing data, given in practical experimentation
courses, may have you first fit some functions to your data, perhaps in a
multi-step process of accounting for several aspects of the underlying
theory one by one, and then extract the information you really wanted from
the fitting parameters of those functions.  With @ref{fit}, this may often be
done in one step by writing the model function directly in terms of the
desired parameters.  Transforming data can also quite often be avoided,
though sometimes at the cost of a more difficult fit problem.  If you think
this contradicts the previous paragraph about simplifying the fit function,
you are correct.

A "singular matrix" message indicates that this implementation of the
Marquardt-Levenberg algorithm can't calculate parameter values for the next
iteration.  Try different starting values, writing the function in another
form, or a simpler function.

Finally, a nice quote from the manual of another fitting package (fudgit),
that kind of summarizes all these issues:  "Nonlinear fitting is an art!"

@node help, history, fit, Commands
@section help

@c ?commands help
@cindex help
@cmindex help


The @ref{help} command displays built-in help. To specify information on a
particular topic use the syntax:

@example
      help @{<topic>@}

@end example

If <topic> is not specified, a short message is printed about `gnuplot`.
After help for the requested topic is given, a menu of subtopics is given;
help for a subtopic may be requested by typing its name, extending the help
request.  After that subtopic has been printed, the request may be extended
again or you may go back one level to the previous topic.  Eventually, the
`gnuplot` command line will return.

If a question mark (?) is given as the topic, the list of topics currently
available is printed on the screen.

@node history, if, help, Commands
@section history

@c ?commands history
@cindex history
@cmindex history


`history` command lists or saves previous entries in the history of the
command line editing, or executes an entry.

Here you find 'usage by examples':

@example
      history               # show the complete history
      history 5             # show last 5 entries in the history
      history quiet 5       # show last 5 entries without entry numbers
      history "hist.gp"     # write the complete history to file hist.gp
      history "hist.gp" append # append the complete history to file hist.gp
      history 10 "hist.gp"  # write last 10 commands to file hist.gp
      history 10 "|head -5 >>diary.gp" # write 5 history commands using pipe
      history ?load         # show all history entries starting with "load"
      history ?"set c"      # like above, several words enclosed in quotes
      hi !reread            # execute last entry starting with "reread"
      hist !"set xr"        # like above, several words enclosed in quotes
      hi !hi                # guess yourself :-))

@end example

On systems which support a popen function (Unix), the output of history can be
piped through an external program by starting the file name with a '|', as one
of the above examples demonstrates.

@node if, iteration, history, Commands
@section if

@c ?commands if
@cindex if
@cmindex if


The @ref{if} command allows commands to be executed conditionally.

Syntax:
@example
      if (<condition>) <command-line> [; else if (<condition>) ...; else ...]

@end example

<condition> will be evaluated.  If it is true (non-zero), then the command(s)
of the <command-line> will be executed.  If <condition> is false (zero), then
the entire <command-line> is ignored until the next occurrence of `else`.
Note that use of `;` to allow multiple commands on the same line will
_not_ end the conditionalized commands.

Examples:
@example
      pi=3
      if (pi!=acos(-1)) print "?Fixing pi!"; pi=acos(-1); print pi
@end example

will display:
@example
      ?Fixing pi!
      3.14159265358979
@end example

but
@example
      if (1==2) print "Never see this"; print "Or this either"
@end example

will not display anything.

else:
@example
      v=0
      v=v+1; if (v%2) print "2" ; else if (v%3) print "3"; else print "fred"
@end example

(repeat the last line repeatedly!)

See @ref{reread} for an example of how @ref{if} and @ref{reread} can be used together to
perform a loop.

@node iteration, load, if, Commands
@section iteration

@cindex iteration
@cmindex iteration


The `plot`, `splot`, `set` and @ref{unset} commands may optionally contain an
iteration clause.  This has the effect of executing the basic command 
multiple times, each time re-evaluating any expressions that make use of the
iteration control variable.  Two forms of iteration clause are currently
supported:

@example
      for [intvar = start:end@{:increment@}]
      for [stringvar in "A B C D"]

@end example

Examples:

@example
      plot for [filename in "A.dat B.dat C.dat"] filename using 1:2 with lines
      plot for [basename in "A B C"] basename.".dat" using 1:2 with lines
      set for [i = 1:10] style line i lc rgb "blue"
      unset for [tag = 100:200] label tag

@end example

See additional documentation for @ref{iteration}.


@node load, lower, iteration, Commands
@section load

@c ?commands load
@cindex load
@cmindex load


The `load` command executes each line of the specified input file as if it
had been typed in interactively.  Files created by the @ref{save} command can
later be `load`ed.  Any text file containing valid commands can be created
and then executed by the `load` command.  Files being `load`ed may themselves
contain `load` or @ref{call} commands.  See `comments` for information about
comments in commands.  To `load` with arguments, see @ref{call}.

Syntax:
@example
      load "<input-file>"

@end example

The name of the input file must be enclosed in quotes.

The special filename "-" may be used to `load` commands from standard input.
This allows a `gnuplot` command file to accept some commands from standard
input.  Please see help for `batch/interactive` for more details.

On some systems which support a popen function (Unix), the load file can be
read from a pipe by starting the file name with a '<'.

Examples:
@example
      load 'work.gnu'
      load "func.dat"
      load "< loadfile_generator.sh"

@end example

The `load` command is performed implicitly on any file names given as
arguments to `gnuplot`.  These are loaded in the order specified, and
then `gnuplot` exits.

@node lower, pause, load, Commands
@section lower

@c ?commands lower
@cindex lower
@cmindex lower


Syntax:
@example
      lower @{plot_window_nb@}

@end example

The @ref{lower} command lowers (opposite to @ref{raise}) plot window(s) associated
with the interactive terminal of your gnuplot session, i.e. `pm`, `win`, `wxt`
or `x11`. It puts the plot window to bottom in the z-order windows stack of
the window manager of your desktop.

As `x11` and `wxt` support multiple plot windows, then by default they lower
these windows in descending order of most recently created on top to the least
recently created on bottom. If a plot number is supplied as an optional
parameter, only the associated plot window will be lowered if it exists.

The optional parameter is ignored for single plot-window terminals, i.e. `pm`
and `win`.

@node pause, plot, lower, Commands
@section pause

@c ?commands pause
@cindex pause
@cmindex pause


@c ?pause mouse
The @ref{pause} command displays any text associated with the command and then
waits a specified amount of time or until the carriage return is pressed.
@ref{pause} is especially useful in conjunction with `load` files.

Syntax:
@example
      pause <time> @{"<string>"@}
      pause mouse @{<endcondition>@}@{, <endcondition>@} @{"<string>"@}

@end example

<time> may be any constant or expression.  Choosing -1 will wait until a
carriage return is hit, zero (0) won't pause at all, and a positive number
will wait the specified number of seconds.  The time is rounded to an integer
number of seconds if subsecond time resolution is not supported by the given
platform.  `pause 0` is synonymous with @ref{print}.

If the current terminal supports `mousing`, then `pause mouse` will terminate
on either a mouse click or on ctrl-C.  For all other terminals, or if mousing
is not active, `pause mouse` is equivalent to `pause -1`.

If one or more end conditions are given after `pause mouse`, then any one of
the conditions will terminate the pause. The possible end conditions are
`keypress`, `button1`, `button2`, `button3`, `close`, and `any`.
If the pause terminates on a keypress, then the ascii value of the key pressed
is returned in MOUSE_KEY.  The character itself is returned as a one character
string in MOUSE_CHAR. Hotkeys (bind command) are disabled if keypress is one of
the end conditions.  Zooming is disabled if button3 is one of the end 
conditions. 

In all cases the coordinates of the mouse are returned in variables MOUSE_X,
MOUSE_Y, MOUSE_X2, MOUSE_Y2.  See @ref{variables}.

Note: Since @ref{pause} communicates with the operating system rather than the
graphics, it may behave differently with different device drivers (depending
upon how text and graphics are mixed).

Examples:
@example
      pause -1    # Wait until a carriage return is hit
      pause 3     # Wait three seconds
      pause -1  "Hit return to continue"
      pause 10  "Isn't this pretty?  It's a cubic spline."
      pause mouse "Click any mouse button on selected data point"
      pause mouse keypress "Type a letter from A-F in the active window"
      pause mouse button1,keypress
      pause mouse any "Any key or button will terminate"

@end example

The variant "pause mouse key" will resume after any keypress in the active
plot window. If you want to wait for a particular key to be pressed, you can
use a reread loop such as:

@example
      print "I will resume after you hit the Tab key in the plot window"
      load "wait_for_tab"

@end example

File "wait_for_tab" contains the lines

@example
      pause mouse key
      if (MOUSE_KEY != 9) reread

@end example


@node plot, print, pause, Commands
@section plot

@c ?commands plot
@cindex plot
@cmindex plot


`plot` is the primary command for drawing plots with `gnuplot`.  It creates
plots of functions and data in many, many ways.  `plot` is used to draw 2-d
functions and data; `splot` draws 2D projections of 3D surfaces and data.
`plot` and `splot` contain many common features; see `splot` for differences.
Note specifically that although the `binary <binary list>` variation does
work for both `plot` and `splot`, there are small differences between these
modes.

Syntax:
@example
      plot @{<ranges>@}
           @{<iteration>@}
           @{<function> | @{"<datafile>" @{datafile-modifiers@}@}@}
           @{axes <axes>@} @{<title-spec>@} @{with <style>@}
           @{, @{definitions@{,@}@} <function> ...@}

@end example

where either a <function> or the name of a data file enclosed in quotes is
supplied.  A function is a mathematical expression or a pair of mathematical
expressions in parametric mode.  The expressions may be defined completely or
in part earlier in the stream of `gnuplot` commands (see `user-defined`).

It is also possible to define functions and parameters on the `plot` command
itself.  This is done merely by isolating them from other items with commas.

Examples:
@example
      plot sin(x)
      plot sin(x), cos(x)
      plot f(x) = sin(x*a), a = .2, f(x), a = .4, f(x)
      plot "datafile.1" with lines, "datafile.2" with points
      plot [t=1:10] [-pi:pi*2] tan(t), \
           "data.1" using (tan($2)):($3/$4) smooth csplines \
                    axes x1y2 notitle with lines 5
      plot for [datafile in "spinach.dat broccoli.dat"] datafile

@end example

See also `show plot`.

@menu
* axes::                        
* data::                        
* errorbars::                   
* errorlines::                  
* parametric::                  
* ranges::                      
* iteration_::                  
* title::                       
* with::                        
@end menu

@node axes, data, plot, plot
@subsection axes

@c ?commands plot axes
@c ?plot axes
@cindex axes

There are four possible sets of axes available; the keyword <axes> is used to
select the axes for which a particular line should be scaled.  `x1y1` refers
to the axes on the bottom and left; `x2y2` to those on the top and right;
`x1y2` to those on the bottom and right; and `x2y1` to those on the top and
left.  Ranges specified on the `plot` command apply only to the first set of
axes (bottom left).

@node data, errorbars, axes, plot
@subsection data

@c ?commands plot datafile
@c ?plot datafile
@cindex data-file

@cindex datafile
@opindex datafile


@cindex data

@cindex file

@cindex volatile

@c ?plot datafile volatile
Discrete data contained in a file can be displayed by specifying the name of
the data file (enclosed in single or double quotes) on the `plot` command line.

Syntax:
@example
      plot '<file_name>' @{binary <binary list>@}
                         @{matrix@}
                         @{index <index list> | index "<name>"@}
                         @{every <every list>@}
                         @{thru <thru expression>@}
                         @{using <using list>@}
                         @{smooth <option>@}
                         @{volatile@} @{noautoscale@}

@end example

The modifiers `binary`, @ref{index}, @ref{every}, @ref{thru}, @ref{using}, and @ref{smooth} are
discussed separately.  In brief, `binary` allows data entry from a binary
file (default is ASCII), @ref{index} selects which data sets in a multi-data-set
file are to be plotted, @ref{every} specifies which points within a single data
set are to be plotted, @ref{using} determines how the columns within a single
record are to be interpreted (@ref{thru} is a special case of @ref{using}), and
@ref{smooth} allows for simple interpolation and approximation.  (`splot` has a
similar syntax, but does not support the @ref{smooth} and @ref{thru} options.)

The `volatile` keyword indicates that the contents of the data file may be
different if the file is re-read.  This tells the program to use @ref{refresh}
rather than @ref{replot} commands whenever possible.  See @ref{refresh}.

The `noautoscale` keyword means that the points making up this plot will be
ignored when automatically determining axis range limits.


ASCII DATA FILES:

Data files should contain at least one data point per record (@ref{using}
can select one data point from the record). Records beginning with `#`
(and also with `!` on VMS) will be treated as comments and ignored.
Each data point represents an (x,y) pair. For `plot`s with error bars or
error bars with lines (see @ref{errorbars} or @ref{errorlines}),
each data point is (x,y,ydelta), (x,y,ylow,yhigh),
(x,y,xdelta), (x,y,xlow,xhigh), or (x,y,xlow,xhigh,ylow,yhigh).

In all cases, the numbers of each record of a data file must be separated
by white space (one or more blanks or tabs) unless a format specifier is
provided by the @ref{using} option. This white space divides each record into
columns. However, whitespace inside a pair of double quotes is ignored when
counting columns, so the following datafile line has three columns:
@example
      1.0 "second column" 3.0

@end example

Data may be written in exponential format with the exponent preceded by the
letter e or E.  The fortran exponential specifiers d, D, q, and Q may also
be used if the command `set datafile fortran` is in effect.

Only one column (the y value) need be provided.  If x is omitted, `gnuplot`
provides integer values starting at 0.

In datafiles, blank records (records with no characters other than blanks and
a newline and/or carriage return) are significant.

Single blank records designate discontinuities in a `plot`; no line will join
points separated by a blank records (if they are plotted with a line style).

Two blank records in a row indicate a break between separate data sets.
See @ref{index}.

If autoscaling has been enabled (@ref{autoscale}), the axes are automatically
extended to include all datapoints, with a whole number of tic marks if tics
are being drawn.  This has two consequences: i) For `splot`, the corner of
the surface may not coincide with the corner of the base.  In this case, no
vertical line is drawn.  ii) When plotting data with the same x range on a
dual-axis graph, the x coordinates may not coincide if the x2tics are not
being drawn.  This is because the x axis has been autoextended to a whole
number of tics, but the x2 axis has not.  The following example illustrates
the problem:

@example
      reset; plot '-', '-' axes x2y1
      1 1
      19 19
      e
      1 1
      19 19
      e

@end example

To avoid this, you can use the `fixmin`/`fixmax` feature of the
@ref{autoscale} command, which turns off the automatic extension of the
axis range upto the next tic mark.

Label coordinates and text can also be read from a data file (see @ref{labels}).


BINARY DATA FILES:

Gnuplot can read binary data files.  However, adequate information about
details of the file format must be given on the command line or extracted
from the file itself for a supported binary `filetype`.  In particular,
there are two structures for binary files, a matrix binary format and a
general binary format.

The matrix binary format contains a two dimensional array of 32 bit IEEE
float values with an additional column and row of coordinate values.  As
with ASCII matrix, in the @ref{using} list, repetition of the coordinate row
constitutes column 1, repetition of the coordinate column constitutes
column 2, and the array of values constitutes column 3.

The general binary format contains an arbitrary number of columns for which
information must be specified at the command line.  For example, `array`,
`record`, `format` and @ref{using} can indicate the size, format and dimension
of data.  There are a variety of useful commands for skipping file headers
and changing endianess.  There are a set of commands for positioning and
translating data since often coordinates are not part of the file when
uniform sampling is inherent in the data.  Different from matrix binary or
ASCII, general binary does not treat the generated columns as 1, 2 or 3 in
the @ref{using} list.  Rather, column 1 begins with column 1 of the file, or as
specified in the `format` list.

There are global default settings for the various binary options which may
be set using the same syntax as the options when used as part of the `(s)plot
<filename> binary ...` command.  This syntax is `set datafile binary ...`.
The general rule is that common command-line specified parameters override
file-extracted parameters which override default parameters.

Matrix binary is the default binary format when no keywords specific to
general binary are given, i.e., `array`, `record`, `format`, `filetype`.

General binary data can be entered at the command line via the special file
name '-'.  However, this is intended for use through a pipe where programs
can exchange binary data, not for keyboards.  There is no "end of record"
character for binary data.  Gnuplot continues reading from a pipe until it
has read the number of points declared in the `array` qualifier.

See `datafile binary` for more details.

@menu
* binary::                      
* binary_general::              
* every::                       
* example_datafile::            
* index::                       
* smooth::                      
* special-filenames::           
* thru::                        
* using::                       
@end menu

@node binary, binary_general, data, data
@subsubsection binary

@c ?commands plot datafile binary
@c ?plot datafile binary
@c ?splot datafile binary
@c ?plot binary
@c ?splot binary
@c ?data-file binary
@c ?datafile binary
@cindex binary

The `binary` keyword allows a data file to be binary as opposed to ASCII.
There are two formats for binary--matrix binary and general binary.  Matrix
binary is a fixed format in which data appears in a 2D array with an extra
row and column for coordinate values.  General binary is a flexible format
for which details about the file must be given at the command line.

See `binary matrix` or `binary general` for more details.

@node binary_general, every, binary, data
@subsubsection binary general

@c ?commands plot datafile binary general
@c ?commands splot datafile binary general
@c ?plot binary general
@c ?splot binary general
@c ?binary general
General binary data in which format information is not necessarily part of
the file can be read by giving further details about the file format at the
command line.  Although the syntax is slightly arcane to the casual user,
general binary is particularly useful for application programs using gnuplot
and sending large amounts of data.

Syntax:
@example
      plot '<file_name>' @{binary <binary list>@} ...
      splot '<file_name>' @{binary <binary list>@} ...

@end example

General binary format is activated by keywords in <binary list> pertaining
to information about file structure, i.e., `array`, `record`, `format` or
`filetype`.  Otherwise, matrix binary format is assumed.  (See `binary matrix`
for more details.)

There are some standard file types that may be read for which details about
the binary format may be extracted automatically.  (Type `show datafile
binary` at the command line for a list.)  Otherwise, details must be
specified at the command line or set in the defaults.  Keywords are described
below.

The keyword `filetype` in <binary list> controls the routine used to
read the file, i.e., the format of the data.  For a list of the supported
file types, type `show datafile binary filetypes`.  If no file type is
given, the rule is that traditional gnuplot binary is assumed for `splot`
if the `binary` keyword stands alone.  In all other circumstances, for
`plot` or when one of the <binary list> keywords appears, a raw binary
file is assumed whereby the keywords specify the binary format.

General binary data files fall into two basic classes, and some files may
be of both classes depending upon how they are treated.  There is that
class for which uniform sampling is assumed and point coordinates must be
generated.  This is the class for which full control via the <binary
list> keywords applies.  For this class, the settings precedence is that
command line parameters override in-file parameters, which override
default settings.  The other class is that set of files for which
coordinate information is contained within the file or there is possibly
a non-uniform sampling such as gnuplot binary.

Other than for the unique data files such as gnuplot binary, one should
think of binary data as conceptually the same as ASCII data.  Each point
has columns of information which are selected via the `<using list>`
associated with @ref{using}.  When no `format` string is specified, gnuplot
will retrieve a number of binary variables equal to the largest column
given in the `<using list>`.  For example, `using 1:3` will result in
three columns being read, of which the second will be ignored.  There are
default using lists based upon the typical number of parameters associated
with a certain plot type.  For example, `with image` has a default of
`using 1`, while @ref{rgbimage} has a default of `using 1:2:3`.  Note
that the special characters for @ref{using} representing point/line/index
generally should not be used for binary data.  There are keywords in
<binary list> that control this.


@noindent --- ARRAY ---

@c ?binary array
@c ?binary general array
Describes the sampling array dimensions associated with the binary file.
The coordinates will be generated by gnuplot.  A number must be specified
for each dimension of the array.  For example, `array=(10,20)` means the
underlying sampling structure is two-dimensional with 10 points along the
first (x) dimension and 20 points along the second (y) dimension.
A negative number indicates that data should be read until the end of file.
If there is only one dimension, the parentheses may be omitted.
A colon can be used to separate the dimensions for multiple records.
For example, `array=25:35` indicates there are two one-dimensional records in
the file.
@example
      Note:  Gnuplot version 4.2 used the syntax array=128x128 rather than
             array=(128,128). The older syntax is now deprecated, but may
             still work if your copy of gnuplot was built to support
             backwards compatibility.

@end example


@noindent --- RECORD ---

@c ?binary record
@c ?binary general record
This keyword serves the same function as `array`, having the same syntax.
However, `record` causes gnuplot to not generate coordinate information.
This is for the case where such information may be included in one of the
columns of the binary data file.


@noindent --- SKIP ---

@c ?binary skip
@c ?binary general skip
This keyword allows you to skip sections of a binary file. For instance, if the
file contains a 1024 byte header before the start of the data region you would
probably want to use
@example
      plot '<file_name>' binary skip=1024 ...
@end example

If there are multiple records in the file, you may specify a leading offset for
each. For example, to skip 512 bytes before the 1st record and 256 bytes before
the second and third records
@example
      plot '<file_name> binary record=356:356:356 skip=512:256:256 ...

@end example


@noindent --- FORMAT ---

@c ?binary general format
The default binary format is a float.  For more flexibility, the format can
include details about variable sizes.  For example, `format="%uchar%int%float"`
associates an unsigned character with the first using column, an int with the
second column and a float with the third column.  If the number of size
specifications is less than the greatest column number, the size is implicitly
taken to be similar to the last given variable size.

Furthermore, similar to the @ref{using} specification, the format can include
discarded columns via the `*` character and have implicit repetition via a
numerical repeat-field.  For example, `format="%*2int%3float"` causes gnuplot
to discard two ints before reading three floats.  To list variable sizes, type
`show datafile binary datasizes`.  There are a group of names that are machine
dependent along with their sizes in bytes for the particular compilation.
There is also a group of names which attempt to be machine independent.


@noindent --- ENDIAN ---

@c ?binary general endian
Often the endianess of binary data in the file does not agree with the
endianess used by the platform on which gnuplot is running.  Several words can
direct gnuplot how to arrange bytes.  For example `endian=little` means treat
the binary file as having byte significance from least to greatest. The options
are

@example
              little:  least significant to greatest significance
                 big:  greatest significance to least significance
             default:  assume file endianess is the same as compiler
         swap (swab):  Interchange the significance.  (If things
                       don't look right, try this.)

@end example

Gnuplot can support "middle" ("pdp") endian if it is compiled with that option.


@noindent --- FILETYPE ---

@c ?binary general filetype
For some standard binary file formats gnuplot can extract all the necessary
information from the file in question.  As an example, "format=edf" will read
ESRF Header File format files.  For a list of the currently supported file
formats, type `show datafile binary filetypes`.

There is a special file type called `auto` for which gnuplot will check if the
binary file's extension is a quasi-standard extension for a supported format.

Command line keywords may be used to override settings extracted from the file.
The settings from the file override any defaults.  (See `set datafile binary`
for details.)


@noindent --- AVS ---

@c ?binary general filetype avs
@c ?filetype avs
@cindex avs

`avs` is one of the automatically recognized binary file types for images.
AVS is an extremely simple format, suitable mostly for streaming between
applications. It consists of 2 longs (xwidth, ywidth) followed by a stream
of pixels, each with four bytes of information alpha/red/green/blue.


@noindent --- EDF ---

@c ?binary general filetype edf
@c ?filetype edf
@cindex edf

@c ?filetype ehf
@cindex ehf

`edf` is one of the automatically recognized binary file types for images.
EDF stands for ESRF Data Format, and it supports both edf and ehf formats
(the latter means ESRF Header Format).  More information on specifications
can be found at

@example
  http://www.edfplus.info/specs

@end example

See also `binary`.


@noindent --- PNG ---

@c ?binary general filetype png
@c ?filetype png
If gnuplot was configured to use the libgd library for png/gif/jpeg output, 
then it can also be used to read these same image types as binary files.
You can use an explicit command
@example
      plot 'file.png' binary filetype=png
@end example

Or the file type will be recognized automatically from the extension if you
have previously requested
@example
      set datafile binary filetype=auto

@end example

See also `binary`.


@noindent --- KEYWORDS ---

@c ?binary general keywords
@c ?filetype keywords
The following keywords apply only when generating coordinates.  That is, when
the keyword `array` is used.


@noindent --- SCAN ---

@c ?binary general keywords scan
A great deal of confusion can arise concerning the relationship between how
gnuplot scans a binary file and the dimensions seen on the plot.  To lessen
the confusion, conceptually think of gnuplot _always_ scanning the binary file
point/line/plane or fast/medium/slow.  Then this keyword is used to tell
gnuplot how to map this scanning convention to the Cartesian convention shown
in plots, i.e., x/y/z.  The qualifier for scan is a two or three letter code
representing where point is assigned (first letter), line is assigned (second
letter), and plane is assigned (third letter).  For example, `scan=yx` means
the fastest, point-by-point, increment should be mapped along the Cartesian
y dimension and the middle, line-by-line, increment should be mapped along the
x dimension.

When the plotting mode is `plot`, the qualifier code can include the two
letters x and y.  For `splot`, it can include the three letters x, y and z.

There is nothing restricting the inherent mapping from point/line/plane to
apply only to Cartesian coordinates.  For this reason there are cylindrical
coordinate synonyms for the qualifier codes where t (theta), r and z are
analogous to the x, y and z of Cartesian coordinates.


@noindent --- TRANSPOSE ---

@c ?binary general keywords transpose
Shorthand notation for `scan=yx` or `scan=yxz`.


@noindent --- DX, DY, DZ ---

@c ?binary general keywords dx
@c ?binary general keywords dy
@cindex dx

@cindex dy

When gnuplot generates coordinates, it uses the spacing described by these
keywords.  For example `dx=10 dy=20` would mean space samples along the
x dimension by 10 and space samples along the y dimension by 20.  `dy` cannot
appear if `dx` does not appear.  Similarly, `dz` cannot appear if `dy` does not
appear.  If the underlying dimensions are greater than the keywords specified,
the spacing of the highest dimension given is extended to the other dimensions.
For example, if an image is being read from a file and only `dx=3.5` is given
gnuplot uses a delta x and delta y of 3.5.

The following keywords also apply only when generating coordinates.  However
they may also be used with matrix binary files.


@noindent --- FLIPX, FLIPY, FLIPZ ---

@c ?binary general keywords flipx
Sometimes the scanning directions in a binary datafile are not consistent with
that assumed by gnuplot.  These keywords can flip the scanning direction along
dimensions x, y, z.


@noindent --- ORIGIN  ---

@c ?binary general keywords origin
When gnuplot generates coordinates based upon transposition and flip, it
attempts to always position the lower left point in the array at the origin,
i.e., the data lies in the first quadrant of a Cartesian system after transpose
and flip.

To position the array somewhere else on the graph, the @ref{origin} keyword directs
gnuplot to position the lower left point of the array at a point specified by a
tuple.  The tuple should be a double for `plot` and a triple for `splot`.
For example, `origin=(100,100):(100,200)` is for two records in the file and
intended for plotting in two dimensions. A second example, `origin=(0,0,3.5)`,
is for plotting in three dimensions.


@noindent --- CENTER ---

@c ?binary general keywords center
@cindex center

Similar to @ref{origin}, this keyword will position the array such that its center
lies at the point given by the tuple.  For example, `center=(0,0)`.  Center
does not apply when the size of the array is `Inf`.


@noindent --- ROTATE ---

@c ?binary general keywords rotate
@cindex rotate

The transpose and flip commands provide some flexibility in generating and
orienting coordinates.  However, for full degrees of freedom, it is possible to
apply a rotational vector described by a rotational angle in two dimensions.

The `rotate` keyword applies to the two-dimensional plane, whether it be `plot`
or `splot`.  The rotation is done with respect to the positive angle of the
Cartesian plane.

The angle can be expressed in radians, radians as a multiple of pi, or degrees.
For example, `rotate=1.5708`, `rotate=0.5pi` and `rotate=90deg` are equivalent.

If @ref{origin} is specified, the rotation is done about the lower left sample
point before translation.  Otherwise, the rotation is done about the array
`center`.


@noindent --- PERPENDICULAR ---

@c ?binary general keywords perpendicular
For `splot`, the concept of a rotational vector is implemented by a triple
representing the vector to be oriented normal to the two-dimensional x-y plane.
Naturally, the default is (0,0,1).  Thus specifying both rotate and
perpendicular together can orient data myriad ways in three-space.

The two-dimensional rotation is done first, followed by the three-dimensional
rotation.  That is, if R' is the rotational 2 x 2 matrix described by an angle,
and P is the 3 x 3 matrix projecting (0,0,1) to (xp,yp,zp), let R be
constructed from R' at the upper left sub-matrix, 1 at element 3,3 and zeros
elsewhere.  Then the matrix formula for translating data is v' = P R v, where v
is the 3 x 1 vector of data extracted from the data file.  In cases where the
data of the file is inherently not three-dimensional, logical rules are used to
place the data in three-space.  (E.g., usually setting the z-dimension value to
zero and placing 2D data in the x-y plane.)


@noindent --- BINARY EXAMPLES ---

@cindex binary_examples

@c ?binary examples
@c ?binary general examples
@cindex skip

Examples:

@example
      # Selects two float values (second one implicit) with a float value
      # discarded between them for an indefinite length of 1D data.
      plot '<file_name>' binary format="%float%*float" using 1:2 with lines

@end example

@example
      # The data file header contains all details necessary for creating
      # coordinates from an EDF file.
      plot '<file_name>' binary filetype=edf with image
      plot '<file_name>.edf' binary filetype=auto with image

@end example

@example
      # Selects three unsigned characters for components of a raw RGB image
      # and flips the y-dimension so that typical image orientation (start
      # at top left corner) translates to the Cartesian plane.  Pixel
      # spacing is given and there are two images in the file.  One of them
      # is translated via origin.
      plot '<file_name>' binary array=(512,1024):(1024,512) format='%uchar' \
           dx=2:1 dy=1:2 origin=(0,0):(1024,1024) flipy u 1:2:3 w rgbimage

@end example

@example
      # Four separate records in which the coordinates are part of the
      # data file.  The file was created with a endianess different from
      # the system on which gnuplot is running.
      splot '<file_name>' binary record=30:30:29:26 endian=swap u 1:2:3

@end example

@example
      # Same input file, but this time we skip the 1st and 3rd records
      splot '<file_name>' binary record=30:26 skip=360:348 endian=swap u 1:2:3

@end example


See also `binary matrix`.

@node every, example_datafile, binary_general, data
@subsubsection every

@c ?commands plot datafile every
@c ?plot datafile every
@c ?plot every
@c ?data-file every
@c ?datafile every
@cindex every

The @ref{every} keyword allows a periodic sampling of a data set to be plotted.

In the discussion a "point" is a datum defined by a single record in the
file; "block" here will mean the same thing as "datablock" (see `glossary`).

Syntax:
@example
      plot 'file' every @{<point_incr>@}
                          @{:@{<block_incr>@}
                            @{:@{<start_point>@}
                              @{:@{<start_block>@}
                                @{:@{<end_point>@}
                                  @{:<end_block>@}@}@}@}@}

@end example

The data points to be plotted are selected according to a loop from
<`start_point`> to <`end_point`> with increment <`point_incr`> and the
blocks according to a loop from <`start_block`> to <`end_block`> with
increment <`block_incr`>.

The first datum in each block is numbered '0', as is the first block in the
file.

Note that records containing unplottable information are counted.

Any of the numbers can be omitted; the increments default to unity, the start
values to the first point or block, and the end values to the last point or
block.  If @ref{every} is not specified, all points in all lines are plotted.

Examples:
@example
      every :::3::3    # selects just the fourth block ('0' is first)
      every :::::9     # selects the first 10 blocks
      every 2:2        # selects every other point in every other block
      every ::5::15    # selects points 5 through 15 in each block

@end example

See
@uref{http://www.gnuplot.info/demo/simple.html,simple plot demos (simple.dem)
}
,
@uref{http://www.gnuplot.info/demo/surface1.html,Non-parametric splot demos
}
, and
@uref{http://gnuplot.sourceforge.net/demo/surface2.html,Parametric splot demos
}
.

@node example_datafile, index, every, data
@subsubsection example datafile

@c ?commands plot datafile example
@c ?plot datafile example
@c ?plot example
@c ?datafile example
@c ?data-file example
@cindex example

This example plots the data in the file "population.dat" and a theoretical
curve:

@example
      pop(x) = 103*exp((1965-x)/10)
      plot [1960:1990] 'population.dat', pop(x)

@end example

The file "population.dat" might contain:

@example
      # Gnu population in Antarctica since 1965
         1965   103
         1970   55
         1975   34
         1980   24
         1985   10

@end example

@c ^ <img align=bottom src="http://www.gnuplot.info/doc/population.gif" alt="[population.gif]" width=640 height=480>

@node index, smooth, example_datafile, data
@subsubsection index

@c ?commands plot datafile index
@c ?plot datafile index
@c ?plot index
@c ?data-file index
@c ?datafile index
@cindex index

The @ref{index} keyword allows you to select specific data sets in a multi-data-set
file for plotting.

Syntax:
@example
      plot 'file' index @{ <m>@{:<n>@{:<p>@}@} | "<name>" @}

@end example

Data sets are separated by pairs of blank records.  `index <m>` selects only
set <m>; `index <m>:<n>` selects sets in the range <m> to <n>; and `index
<m>:<n>:<p>` selects indices <m>, <m>+<p>, <m>+2<p>, etc., but stopping at
<n>.  Following C indexing, the index 0 is assigned to the first data set in
the file.  Specifying too large an index results in an error message.
If <p> is specified but <n> is left blank then every <p>-th dataset is read
until the end of the file.  If @ref{index} is not specified, the entire file is
plotted as a single data set.

Example:
@example
      plot 'file' index 4:5

@end example

For each point in the file, the index value of the data set it appears in is
available via the pseudo-column `column(-2)`.  This leads to an alternative way
of distinguishing individual data sets within a file as shown below.  This is
more awkward than the @ref{index} command if all you are doing is selecting one
data set for plotting, but is very useful if you want to assign different
properties to each data set.  See `pseudocolumns`, `lc variable`.

Example:
@example
      plot 'file' using 1:(column(-2)==4 ? $2 : NaN)        # very awkward
      plot 'file' using 1:2:(column(-2)) linecolor variable # very useful!

@end example

`index '<name>'` selects the data set with name '<name>'.  Names are assigned
to data sets in comment lines.  The comment character and leading white space
are removed from the comment line.  If the resulting line starts with <name>,
the following data set is now named <name> and can be selected.

Example:
@example
      plot 'file' index 'Population'

@end example

Please note that every comment that starts with <name> will name the following
data set.  To avoid problems it may be useful to choose a naming scheme like
'== Population ==' or '[Population]'.

@c ^ See also web page
@uref{http://www.gnuplot.info/demo/multimsh.html, splot with indices demo.
}

@node smooth, special-filenames, index, data
@subsubsection smooth

@c ?commands plot datafile smooth
@c ?plot datafile smooth
@c ?plot smooth
@c ?data-file smooth
@c ?datafile smooth
@cindex smooth

`gnuplot` includes a few general-purpose routines for interpolation and
approximation of data; these are grouped under the @ref{smooth} option.  More
sophisticated data processing may be performed by preprocessing the data
externally or by using @ref{fit} with an appropriate model.

Syntax:
@example
      smooth @{unique | frequency | cumulative | kdensity | csplines | acsplines | bezier | sbezier@}

@end example

`unique`, `frequency`, and `cumulative` plot the data after making them 
monotonic.  Each of the other routines uses the data to determine the 
coefficients of a continuous curve between the endpoints of the data.  
This curve is then plotted in the same manner as a function, that is, 
by finding its value at uniform intervals along the abscissa 
(see @ref{samples}) and connecting these points with straight line 
segments (if a line style is chosen).

If @ref{autoscale} is in effect, the ranges will be computed such that the
plotted curve lies within the borders of the graph.

If @ref{autoscale} is not in effect, and the smooth option is either `acspline`
or `cspline`, the sampling of the generated curve is
done across the intersection of the x range covered by the input data and
the fixed abscissa range as defined by @ref{xrange}.

If too few points are available to allow the selected option to be applied,
an error message is produced.  The minimum number is one for `unique` and
`frequency`, four for `acsplines`, and three for the others.

The @ref{smooth} options have no effect on function plots.


@noindent --- ACSPLINES ---

@c ?commands plot datafile smooth acsplines
@c ?plot datafile smooth acsplines
@c ?data-file smooth acsplines
@c ?datafile smooth acsplines
@c ?plot smooth acsplines
@c ?plot acsplines
@c ?smooth acsplines
@cindex acsplines

The `acsplines` option approximates the data with a "natural smoothing spline".
After the data are made monotonic in x (see `smooth unique`), a curve is
piecewise constructed from segments of cubic polynomials whose coefficients
are found by the weighting the data points; the weights are taken from the
third column in the data file.  That default can be modified by the third
entry in the @ref{using} list, e.g.,
@example
      plot 'data-file' using 1:2:(1.0) smooth acsplines

@end example

Qualitatively, the absolute magnitude of the weights determines the number
of segments used to construct the curve.  If the weights are large, the
effect of each datum is large and the curve approaches that produced by
connecting consecutive points with natural cubic splines.  If the weights are
small, the curve is composed of fewer segments and thus is smoother; the
limiting case is the single segment produced by a weighted linear least
squares fit to all the data.  The smoothing weight can be expressed in terms
of errors as a statistical weight for a point divided by a "smoothing factor"
for the curve so that (standard) errors in the file can be used as smoothing
weights.

Example:
@example
      sw(x,S)=1/(x*x*S)
      plot 'data_file' using 1:2:(sw($3,100)) smooth acsplines

@end example


@noindent --- BEZIER ---

@c ?commands plot datafile smooth bezier
@c ?plot datafile smooth bezier
@c ?plot smooth bezier
@c ?data-file smooth bezier
@c ?datafile smooth bezier
@c ?plot bezier
@c ?smooth bezier
@cindex bezier

The `bezier` option approximates the data with a Bezier curve of degree n
(the number of data points) that connects the endpoints.


@noindent --- CSPLINES ---

@c ?commands plot datafile smooth csplines
@c ?plot datafile smooth csplines
@c ?plot smooth csplines
@c ?data-file smooth csplines
@c ?datafile smooth csplines
@c ?plot csplines
@c ?smooth csplines
@cindex csplines

The `csplines` option connects consecutive points by natural cubic splines
after rendering the data monotonic (see `smooth unique`).


@noindent --- SBEZIER ---

@c ?commands plot datafile smooth sbezier
@c ?plot datafile smooth sbezier
@c ?plot smooth sbezier
@c ?data-file smooth sbezier
@c ?datafile smooth sbezier
@c ?plot sbezier
@c ?smooth sbezier
@cindex sbezier

The `sbezier` option first renders the data monotonic (`unique`) and then
applies the `bezier` algorithm.


@noindent --- UNIQUE ---

@c ?commands plot datafile smooth unique
@c ?plot datafile smooth unique
@c ?plot smooth unique
@c ?data-file smooth unique
@c ?datafile smooth unique
@c ?plot unique
@c ?smooth unique
@cindex unique

The `unique` option makes the data monotonic in x; points with the same
x-value are replaced by a single point having the average y-value.  The
resulting points are then connected by straight line segments.


@noindent --- FREQUENCY ---

@c ?commands plot datafile smooth frequency
@c ?plot datafile smooth frequency
@c ?plot smooth frequency
@c ?data-file smooth frequency
@c ?datafile smooth frequency
@c ?plot frequency
@c ?smooth frequency
@cindex frequency

The `frequency` option makes the data monotonic in x; points with the same
x-value are replaced by a single point having the summed y-values.  The
resulting points are then connected by straight line segments.
See also
@uref{http://www.gnuplot.info/demo/smooth.html,smooth.dem
}


@noindent --- CUMULATIVE ---

@c ?commands plot datafile smooth cumulative
@c ?plot datafile smooth cumulative
@c ?plot smooth cumulative
@c ?data-file smooth cumulative
@c ?datafile smooth cumulative
@c ?plot cumulative
@c ?smooth cumulative
@cindex cumulative

The `cumulative` option makes the data monotonic in x; points with the same
x-value are replaced by a single point containing the cumulative sum of 
y-values of all data points with lower x-values (i.e. to the left of the
current data point). This can be used to obtain a cumulative distribution 
function from data.
See also
@uref{http://www.gnuplot.info/demo/smooth.html,smooth.dem
}


@noindent --- KDENSITY ---

@c ?commands plot datafile smooth kdensity
@c ?plot datafile smooth kdensity
@c ?plot smooth kdensity
@c ?data-file smooth kdensity
@c ?datafile smooth kdensity
@c ?plot kdensity
@c ?smooth kdensity
@cindex kdensity

The `kdensity` option is a way to plot a kernel density estimate (which is a
smooth histogram) for a random collection of points, using Gaussian kernels.
A Gaussian is placed at the location of each point in the first column and
the sum of all these Gaussians is plotted as a function. The value in the
second column is taken as weight of the Gaussian. (To obtain a normalized
histogram, this should be 1/number-of-points). The value of the third column,
if supplied, is taken as the bandwidth for the kernels. If only two columns
have been specified, or if the value of the third column is zero or less,
gnuplot calculates the bandwidth which would be optimal if the input data was
normally distributed. (This will usually be a very conservative, i.e. broad 
bandwidth.)

@node special-filenames, thru, smooth, data
@subsubsection special-filenames

@c ?commands plot datafile special-filenames
@c ?plot datafile special-filenames
@c ?plot special-filenames
@c ?datafile special-filenames
@cindex special-filenames

There are a few filenames that have a special meaning:  '', '-', '+' and '++'.

The empty filename '' tells gnuplot to re-use the previous input file in the
same plot command. So to plot two columns from the same input file:

@example
      plot 'filename' using 1:2, '' using 1:3

@end example

The special filenames '+' and '++' are a mechanism to allow the full range of
@ref{using} specifiers and plot styles with in-line functions.  Normally a function
plot can only have a single y (or z) value associated with each sampled point.
The pseudo-file '+' treats the sampled points as column 1, and allows
additional column values to be specified via a @ref{using} specification, just as
for a true input file.  The number of samples returned is controlled by
@ref{samples}.
Example:

@example
      plot '+' using ($1):(sin($1)):(sin($1)**2) with filledcurves

@end example

Similarly the pseudo-file '++' returns 2 columns of data forming a regular
grid of [x,y] coordinates with the number of points along x controlled by
@ref{samples} and the number of points along y controlled by @ref{isosamples}.
You must set xrange and yrange before plotting '++'.
Examples:

@example
      splot '++' using 1:2:(sin($1)*sin($2)) with pm3d
      plot '++' using 1:2:(sin($1)*sin($2)) with image

@end example

The special filename `'-'` specifies that the data are inline; i.e., they
follow the command.  Only the data follow the command; `plot` options like
filters, titles, and line styles remain on the `plot` command line.  This is
similar to << in unix shell script, and $DECK in VMS DCL.  The data are
entered as though they are being read from a file, one data point per record.
The letter "e" at the start of the first column terminates data entry.  The
@ref{using} option can be applied to these data---using it to filter them through
a function might make sense, but selecting columns probably doesn't!

`'-'` is intended for situations where it is useful to have data and commands
together, e.g., when `gnuplot` is run as a sub-process of some front-end
application.  Some of the demos, for example, might use this feature.  While
`plot` options such as @ref{index} and @ref{every} are recognized, their use forces
you to enter data that won't be used.  For example, while

@example
      plot '-' index 0, '-' index 1
      2
      4
      6

@end example


@example
      10
      12
      14
      e
      2
      4
      6

@end example


@example
      10
      12
      14
      e

@end example

does indeed work,

@example
      plot '-', '-'
      2
      4
      6
      e
      10
      12
      14
      e

@end example

is a lot easier to type.

If you use `'-'` with @ref{replot}, you may need to enter the data more than once.
See @ref{replot}, @ref{refresh}.

A blank filename ('') specifies that the previous filename should be reused.
This can be useful with things like

@example
      plot 'a/very/long/filename' using 1:2, '' using 1:3, '' using 1:4

@end example

(If you use both `'-'` and `''` on the same `plot` command, you'll need to
have two sets of inline data, as in the example above.)

On systems with a popen function, the datafile can be piped through a shell
command by starting the file name with a '<'.  For example,

@example
      pop(x) = 103*exp(-x/10)
      plot "< awk '@{print $1-1965, $2@}' population.dat", pop(x)

@end example

would plot the same information as the first population example but with
years since 1965 as the x axis.  If you want to execute this example, you
have to delete all comments from the data file above or substitute the
following command for the first part of the command above (the part up to
the comma):

@example
      plot "< awk '$0 !~ /^#/ @{print $1-1965, $2@}' population.dat"

@end example

While this approach is most flexible, it is possible to achieve simple
filtering with the @ref{using} or @ref{thru} keywords.

@node thru, using, special-filenames, data
@subsubsection thru

@c ?commands plot datafile thru
@c ?plot datafile thru
@c ?plot thru
@c ?data-file thru
@c ?datafile thru
@cindex thru

The @ref{thru} function is provided for backward compatibility.

Syntax:
@example
      plot 'file' thru f(x)

@end example

It is equivalent to:

@example
      plot 'file' using 1:(f($2))

@end example

While the latter appears more complex, it is much more flexible.  The more
natural

@example
      plot 'file' thru f(y)

@end example

also works (i.e. you can use y as the dummy variable).

@ref{thru} is parsed for `splot` and @ref{fit} but has no effect.

@node using,  , thru, data
@subsubsection using

@c ?commands plot datafile using
@c ?plot datafile using
@c ?plot using
@c ?data-file using
@c ?datafile using
@cindex using

The most common datafile modifier is @ref{using}.

Syntax:
@example
      plot 'file' using @{<entry> @{:<entry> @{:<entry> ...@}@}@} @{'format'@}

@end example

If a format is specified, each datafile record is read using the C library's
'scanf' function, with the specified format string.  Otherwise the record is
read and broken into columns. By default the separation between columns is
whitespace (spaces and/or tabs), but see `datafile separator`.

Each <entry> may be a simple column number that selects the value from one
field of the input fit, an expression enclosed in parentheses, or empty.

If the entry is an expression in parentheses, then the function column(N) may
be used to indicate the value in column N. That is, column(1) refers to the
first item read, column(2) to the second, and so on.  The special symbols
$1, $2, ... are shorthand for column(1), column(2) ...  The function `valid(N)`
tests whether the value in the Nth column is a valid number.

In addition to the actual columns 1...N in the input data file, gnuplot
presents data from several "pseudo-columns" that hold bookkeeping information.
E.g. $0 or column(0) returns the sequence number of this data record within a
dataset.  Please see `pseudocolumns`.

An empty <entry> will default to its order in the list of entries.
For example, `using ::4` is interpreted as `using 1:2:4`.

If the @ref{using} list has but a single entry, that <entry> will be used for y
and the data point number (pseudo-column $0) is used for x; for example,
"`plot 'file' using 1`" is identical to "`plot 'file' using 0:1`".
If the @ref{using} list has two entries, these will be used for x and y.
See @ref{style} and @ref{fit} for details about plotting styles that make use of
data from additional columns of input.

'scanf' accepts several numerical specifications but `gnuplot`
requires all inputs to be double-precision floating-point variables,
so "%lf" is essentially the only permissible specifier.
A format string given by the user must contain at least one such
input specifier, and no more than seven of them.
'scanf' expects to see white space---a blank, tab
("\t"), newline ("\n"), or formfeed ("\f")---between numbers; anything else
in the input stream must be explicitly skipped.

Note that the use of "\t", "\n", or "\f" requires use of double-quotes
rather than single-quotes.


@noindent --- USING_EXAMPLES ---

@cindex examples

@c ?commands plot datafile using examples
@c ?plot datafile using examples
@c ?datafile using examples
@c ?using examples
This creates a plot of the sum of the 2nd and 3rd data against the first:
The format string specifies comma- rather than space-separated columns.
The same result could be achieved by specifying `set datafile separator ","`.
@example
      plot 'file' using 1:($2+$3) '%lf,%lf,%lf'

@end example

In this example the data are read from the file "MyData" using a more
complicated format:
@example
      plot 'MyData' using "%*lf%lf%*20[^\n]%lf"

@end example

The meaning of this format is:

@example
      %*lf        ignore a number
      %lf         read a double-precision number (x by default)
      %*20[^\n]   ignore 20 non-newline characters
      %lf         read a double-precision number (y by default)

@end example

One trick is to use the ternary `?:` operator to filter data:

@example
      plot 'file' using 1:($3>10 ? $2 : 1/0)

@end example

which plots the datum in column two against that in column one provided
the datum in column three exceeds ten.  `1/0` is undefined; `gnuplot`
quietly ignores undefined points, so unsuitable points are suppressed.
Or you can use the pre-defined variable NaN to achieve the same result.
@cindex NaN


In fact, you can use a constant expression for the column number, provided it
doesn't start with an opening parenthesis; constructs like `using
0+(complicated expression)` can be used.  The crucial point is that the
expression is evaluated once if it doesn't start with a left parenthesis, or
once for each data point read if it does.

If timeseries data are being used, the time can span multiple columns.  The
starting column should be specified.  Note that the spaces within the time
must be included when calculating starting columns for other data.  E.g., if
the first element on a line is a time with an embedded space, the y value
should be specified as column three.

It should be noted that `plot 'file'`, `plot 'file' using 1:2`, and `plot
'file' using ($1):($2)` can be subtly different: 1) if @ref{file} has some lines
with one column and some with two, the first will invent x values when they
are missing, the second will quietly ignore the lines with one column, and
the third will store an undefined value for lines with one point (so that in
a plot with lines, no line joins points across the bad point); 2) if a line
contains text at the first column, the first will abort the plot on an error,
but the second and third should quietly skip the garbage.

In fact, it is often possible to plot a file with lots of lines of garbage at
the top simply by specifying

@example
      plot 'file' using 1:2

@end example

However, if you want to leave text in your data files, it is safer to put the
comment character (#) in the first column of the text lines.
@c ^ See also the web page
@uref{http://www.gnuplot.info/demo/using.html,Feeble using demos.
}


@noindent --- PSEUDOCOLUMNS ---

@cindex pseudocolumns

@c ?commands plot datafile using pseudocolumns
@c ?plot datafile using pseudocolumns
@c ?datafile using pseudocolumns
@c ?using pseudocolumns
Expressions in the @ref{using} clause of a plot statement can refer to additional
bookkeeping values in addition to the actual data values contained in the input
file. These are contained in "pseudocolumns".
@example
      column(0)   The sequential order of each point within a data set.
                  The counter starts at 0 and is reset by two sequential blank
                  records.  The shorthand form $0 is available.
      column(-1)  This counter starts at 0 and is reset by a single blank line.
                  This corresponds to the data line in array or grid data.
      column(-2)  The index number of the current data set within a file that
                  contains multiple data sets.  See @ref{index}.

@end example


@noindent --- XTICLABELS ---

@cindex xticlabels

@c ?using xticlabels
@c ?plot using xticlabels
Axis tick labels can be generated via a string function, usually taking a data
column as an argument. The simplest form uses the data column itself as a 
string. That is,  xticlabels(N) is shorthand for xticlabels(stringcolumn(N)).
This example uses the contents of column 3 as x-axis tick labels.

@example
      plot 'datafile' using <xcol>:<ycol>:xticlabels(3) with <plotstyle>

@end example

Axis tick labels may be generated for any of the plot axes: x x2 y y2 z.
The `ticlabels(<labelcol>)` specifiers must come after all of the data
coordinate specifiers in the @ref{using} portion of the command.
For each data point which has a valid set of X,Y[,Z] coordinates,
the string value given to xticlabels() is added to the list of xtic labels
at the same X coordinate as the point it belongs to. `xticlabels()`
may be shortened to `xtic()` and so on.

Example:

@example
      splot "data" using 2:4:6:xtic(1):ytic(3):ztic(6)

@end example

In this example the x and y axis tic labels are taken from different columns
than the x and y coordinate values. The z axis tics, however, are generated
from the z coordinate of the corresponding point.

Example:

@example
      plot "data" using 1:2:xtic( $3 > 10. ? "A" : "B" )

@end example

This example shows the use of a string-valued function to generate x-axis
tick labels. Each point in the data file generates a tick mark on x labeled
either "A" or "B" depending on the value in column 3.


@noindent --- X2TICLABELS ---

@c ?using x2ticlabels
@c ?plot using x2ticlabels
See `plot using xticlabels`.


@noindent --- YTICLABELS ---

@c ?using yticlabels
@c ?plot using yticlabels
See `plot using xticlabels`.


@noindent --- Y2TICLABELS ---

@c ?using y2ticlabels
@c ?plot using y2ticlabels
See `plot using xticlabels`.


@noindent --- ZTICLABELS ---

@c ?using zticlabels
@c ?plot using zticlabels
See `plot using xticlabels`.

@node errorbars, errorlines, data, plot
@subsection errorbars

@c ?commands plot errorbars
@c ?commands splot errorbars
@c ?plot errorbars
@c ?splot errorbars
@cindex errorbars

Error bars are supported for 2D data file plots by reading one to four
additional columns (or @ref{using} entries); these additional values are used in
different ways by the various errorbar styles.

In the default situation, `gnuplot` expects to see three, four, or six
numbers on each line of the data file---either

@example
      (x, y, ydelta),
      (x, y, ylow, yhigh),
      (x, y, xdelta),
      (x, y, xlow, xhigh),
      (x, y, xdelta, ydelta), or
      (x, y, xlow, xhigh, ylow, yhigh).

@end example

The x coordinate must be specified.  The order of the numbers must be
exactly as given above, though the @ref{using} qualifier can manipulate the order
and provide values for missing columns.  For example,

@example
      plot 'file' with errorbars
      plot 'file' using 1:2:(sqrt($1)) with xerrorbars
      plot 'file' using 1:2:($1-$3):($1+$3):4:5 with xyerrorbars

@end example

The last example is for a file containing an unsupported combination of
relative x and absolute y errors.  The @ref{using} entry generates absolute x min
and max from the relative error.

The y error bar is a vertical line plotted from (x, ylow) to (x,
yhigh). If ydelta is specified instead of ylow and yhigh, ylow = y -
ydelta and yhigh = y + ydelta are derived. If there are only two
numbers on the record, yhigh and ylow are both set to y. The x error
bar is a horizontal line computed in the same fashion. To get lines
plotted between the data points, `plot` the data file twice, once with
errorbars and once with lines (but remember to use the `notitle`
option on one to avoid two entries in the key). Alternately, use the
errorlines command (see @ref{errorlines}).

The error bars have crossbars at each end unless @ref{bars} is used
(see @ref{bars} for details).

If autoscaling is on, the ranges will be adjusted to include the error bars.

See also
@uref{http://gnuplot.sourceforge.net/demo/mgr.html,errorbar demos.
}

See @ref{using}, @ref{with}, and @ref{style} for more information.

@node errorlines, parametric, errorbars, plot
@subsection errorlines

@c ?commands plot errorlines
@c ?commands splot errorlines
@c ?plot errorlines
@c ?splot errorlines
@cindex errorlines

Lines with error bars are supported for 2D data file plots by reading
one to four additional columns (or @ref{using} entries); these additional
values are used in different ways by the various errorlines styles.

In the default situation, `gnuplot` expects to see three, four, or six
numbers on each line of the data file---either

@example
      (x, y, ydelta),
      (x, y, ylow, yhigh),
      (x, y, xdelta),
      (x, y, xlow, xhigh),
      (x, y, xdelta, ydelta), or
      (x, y, xlow, xhigh, ylow, yhigh).

@end example

The x coordinate must be specified. The order of the numbers must be
exactly as given above, though the @ref{using} qualifier can manipulate
the order and provide values for missing columns. For example,

@example
      plot 'file' with errorlines
      plot 'file' using 1:2:(sqrt($1)) with xerrorlines
      plot 'file' using 1:2:($1-$3):($1+$3):4:5 with xyerrorlines

@end example

The last example is for a file containing an unsupported combination
of relative x and absolute y errors. The @ref{using} entry generates
absolute x min and max from the relative error.

The y error bar is a vertical line plotted from (x, ylow) to (x,
yhigh). If ydelta is specified instead of ylow and yhigh, ylow = y -
ydelta and yhigh = y + ydelta are derived. If there are only two
numbers on the record, yhigh and ylow are both set to y. The x error
bar is a horizontal line computed in the same fashion.

The error bars have crossbars at each end unless @ref{bars} is used
(see @ref{bars} for details).

If autoscaling is on, the ranges will be adjusted to include the error bars.

See @ref{using}, @ref{with}, and @ref{style} for more information.

@node parametric, ranges, errorlines, plot
@subsection parametric

@c ?commands plot parametric
@c ?commands splot parametric
@c ?plot parametric
@c ?splot parametric
When in parametric mode (`set parametric`) mathematical expressions must be
given in pairs for `plot` and in triplets for `splot`.

Examples:
@example
      plot sin(t),t**2
      splot cos(u)*cos(v),cos(u)*sin(v),sin(u)

@end example

Data files are plotted as before, except any preceding parametric function
must be fully specified before a data file is given as a plot.  In other
words, the x parametric function (`sin(t)` above) and the y parametric
function (`t**2` above) must not be interrupted with any modifiers or data
functions; doing so will generate a syntax error stating that the parametric
function is not fully specified.

Other modifiers, such as @ref{with} and @ref{title}, may be specified only after the
parametric function has been completed:

@example
      plot sin(t),t**2 title 'Parametric example' with linespoints

@end example

See also
@uref{http://www.gnuplot.info/demo/param.html,Parametric Mode Demos.
}

@node ranges, iteration_, parametric, plot
@subsection ranges

@c ?commands plot ranges
@c ?commands splot ranges
@c ?plot ranges
@c ?splot ranges
@cindex ranges

The optional ranges specify the region of the graph that will be displayed.

Syntax:
@example
      [@{<dummy-var>=@}@{@{<min>@}:@{<max>@}@}]
      [@{@{<min>@}:@{<max>@}@}]

@end example

The first form applies to the independent variable (@ref{xrange} or @ref{trange}, if
in parametric mode).  The second form applies to the dependent variable
@ref{yrange} (and @ref{xrange}, too, if in parametric mode).  <dummy-var> is a new
name for the independent variable.  (The defaults may be changed with @ref{dummy}.)  The optional <min> and <max> terms can be constant expressions or *.

In non-parametric mode, the order in which ranges must be given is @ref{xrange}
and @ref{yrange}.

In parametric mode, the order for the `plot` command is @ref{trange}, @ref{xrange},
and @ref{yrange}.  The following `plot` command shows setting the @ref{trange} to
[-pi:pi], the @ref{xrange} to [-1.3:1.3] and the @ref{yrange} to [-1:1] for the
duration of the graph:

@example
      plot [-pi:pi] [-1.3:1.3] [-1:1] sin(t),t**2

@end example

Note that the x2range and y2range cannot be specified here---@ref{x2range}
and @ref{y2range} must be used.

Ranges are interpreted in the order listed above for the appropriate mode.
Once all those needed are specified, no further ones must be listed, but
unneeded ones cannot be skipped---use an empty range `[]` as a placeholder.

`*` can be used to allow autoscaling of either of min and max.  See also
@ref{autoscale}.

Ranges specified on the `plot` or `splot` command line affect only that
graph; use the @ref{xrange}, @ref{yrange}, etc., commands to change the
default ranges for future graphs.

With time data, you must provide the range (in the same manner as the time
appears in the datafile) within quotes.  `gnuplot` uses the @ref{timefmt} string
to read the value---see @ref{timefmt}.

Examples:

This uses the current ranges:
@example
      plot cos(x)

@end example

This sets the x range only:
@example
      plot [-10:30] sin(pi*x)/(pi*x)

@end example

This is the same, but uses t as the dummy-variable:
@example
      plot [t = -10 :30]  sin(pi*t)/(pi*t)

@end example

This sets both the x and y ranges:
@example
      plot [-pi:pi] [-3:3]  tan(x), 1/x

@end example

This sets only the y range, and turns off autoscaling on both axes:
@example
      plot [ ] [-2:sin(5)*-8] sin(x)**besj0(x)

@end example

This sets xmax and ymin only:
@example
      plot [:200] [-pi:]  exp(sin(x))

@end example

This sets the x range for a timeseries:
@example
      set timefmt "%d/%m/%y %H:%M"
      plot ["1/6/93 12:00":"5/6/93 12:00"] 'timedata.dat'

@end example


@node iteration_, title, ranges, plot
@subsection iteration

@c ?commands plot iteration
@c ?commands splot iteration
@c ?plot iteration
@c ?splot iteration
@cindex iteration
@cmindex iteration


If many similar files or functions are to be plotted together, it may be
convenient to do so by iterating over a shared plot command.

Syntax:
@example
      plot for [<variable> = <start> : <end> @{:<increment>@}]
      plot for [<variable> in "string of words"]

@end example

The scope of an iteration ends at the next comma or the end of the
command, whichever comes first.  Iteration can not be nested.

This will plot one curve, sin(3x), because iteration ends at the comma
@example
      plot for [i=1:3] j=i, sin(j*x)
@end example

This will plot three curves because there is no comma after the definition of j
@example
      plot for [i=1:3] j=i sin(j*x)

@end example

Example:
@example
      plot for [dataset in "apples bananas"] dataset."dat" title dataset

@end example

In this example iteration is used both to generate a file name and a
corresponding title.

Example:
@example
      file(n) = sprintf("dataset_%d.dat",n)
      splot for [i=1:10] file(i) title sprintf("dataset %d",i)

@end example

This example defines a string-valued function that generates file names,
and plots ten such files together. The iteration variable ('i' in this
example) is treated as an integer, and may be used more than once.

Example:
@example
      set key left
      plot [0:1] for [n=1:4] x**n sprintf("%d",n)

@end example

This example plots a family of functions.

Example:
@example
      list = "apple banana cabbage daikon eggplant"
      item(n) = word(list,n)
      plot for [i=1:words(list)] item[i].".dat" title item(i)
      list = "new stuff"
      replot

@end example

This example steps through a list and plots once per item.
Because the items are retrieved dynamically, you can change the list
and then replot.

Example:
@example
      list = "apple banana cabbage daikon eggplant"
      plot for [i in list] i.".dat" title i
      list = "new stuff"
      replot

@end example

This is example does exactly the same thing as the previous example, but uses
the string iterator form of the command rather than an integer iterator.


@node title, with, iteration_, plot
@subsection title

@c ?commands plot title
@c ?commands splot title
@c ?plot title
@c ?splot title
@cindex columnheader

A line title for each function and data set appears in the key, accompanied
by a sample of the line and/or symbol used to represent it.  It can be
changed by using the @ref{title} option.

Syntax:
@example
      title <text> | notitle [<ignored text>]
      title columnheader | title columnheader(N)

@end example

where <text> must either be a quoted string or a string variable.
The quotes will not be shown in the key.  A special character may be given as
a backslash followed by its octal value ("\345").  The tab character "\t" is
understood.  Note that backslash processing occurs only for strings enclosed
in double quotes---use single quotes to prevent such processing.  The newline
character "\n" is not processed in key entries in either type of string.

There is also an option that will interpret the first entry in a column of
input data (i.e. the column header) as a text field, and use it as the key
title.  See `datastrings`.  This can be made the default by speicifying
`set key autotitle columnhead`.

The line title and sample can be omitted from the key by using the keyword
`notitle`.  A null title (`title ''`) is equivalent to `notitle`.  If only
the sample is wanted, use one or more blanks (`title ' '`).  If `notitle`
is followed by a string this string is ignored.

If `key autotitles` is set (which is the default) and neither @ref{title} nor
`notitle` are specified the line title is the function name or the file name as
it appears on the `plot` command.  If it is a file name, any datafile modifiers
specified will be included in the default title.

The layout of the key itself (position, title justification, etc.) can be
controlled by `set key`.  Please see `set key` for details.

Examples:

This plots y=x with the title 'x':
@example
      plot x

@end example

This plots x squared with title "x^2" and file "data.1" with title
"measured data":
@example
      plot x**2 title "x^2", 'data.1' t "measured data"

@end example

This puts an untitled circular border around a polar graph:
@example
      set polar; plot my_function(t), 1 notitle

@end example

Plot multiple columns of data, each of which contains its own title in the file
@example
      plot for [i=1:4] 'data' using i title columnhead

@end example


@node with,  , title, plot
@subsection with

@c ?commands plot with
@c ?commands splot with
@c ?commands plot style
@c ?commands splot style
@c ?plot with
@c ?plot style
@c ?splot with
@c ?splot style
@cindex style
@opindex style


@cindex with

Functions and data may be displayed in one of a large number of styles.
The @ref{with} keyword provides the means of selection.

Syntax:
@example
      with <style> @{ @{linestyle | ls <line_style>@}
                     | @{@{linetype  | lt <line_type>@}
                        @{linewidth | lw <line_width>@}
                        @{linecolor | lc <colorspec>@}
                        @{pointtype | pt <point_type>@}
                        @{pointsize | ps <point_size>@}
                        @{fill | fs <fillstyle>@}
                        @{nohidden3d@} @{nocontours@} @{nosurface@}
                        @{palette@}@}
                   @}

@end example


where <style> is one of

@example
     lines        dots       steps     errorbars     xerrorbar    xyerrorlines
     points       impulses   fsteps    errorlines    xerrorlines  yerrorbars
     linespoints  labels     histeps   financebars   xyerrorbars  yerrorlines
                                       vectors
@end example

or
@example
      boxes            candlesticks   image      circles
      boxerrorbars     filledcurves   rgbimage
      boxxyerrorbars   histograms     rgbalpha   pm3d

@end example

The first group of styles have associated line, point, and text properties.
The second group of styles also have fill properties.  See `fillstyle`.  Some
styles have further sub-styles.  See `plotting styles` for details of each.

A default style may be chosen by `set style function` and `set style data`.

By default, each function and data file will use a different line type and
point type, up to the maximum number of available types.  All terminal
drivers support at least six different point types, and re-use them, in
order, if more are required.  To see the complete set of line and point
types available for the current terminal, type @ref{test}.

If you wish to choose the line or point type for a single plot, <line_type>
and <point_type> may be specified.  These are positive integer constants (or
expressions) that specify the line type and point type to be used for the
plot.  Use @ref{test} to display the types available for your terminal.

You may also scale the line width and point size for a plot by using
<line_width> and <point_size>, which are specified relative to the default
values for each terminal.  The pointsize may also be altered
globally---see @ref{pointsize} for details.  But note that both <point_size>
as set here and  as set by @ref{pointsize} multiply the default point
size---their effects are  not cumulative.  That is,
`set pointsize 2; plot x w p ps 3` will use points three times default size,
not six.

It is also possible to specify `pointsize variable` either as part of a
line style or for an individual plot. In this case one extra column of input
is required, i.e. 3 columns for a 2D plot and 4 columns for a 3D splot. The
size of each individual point is determined by multiplying the global
pointsize by the value read from the data file.

If you have defined specific line type/width and point type/size combinations
with `set style line`, one of these may be selected by setting <line_style> to
the index of the desired style.

If gnuplot was built with @ref{pm3d} support, the special keyword @ref{palette} is
allowed for smooth color change of lines, points and dots in `splots`. The
color is chosen from a smooth palette which was set previously with the
command @ref{palette}. The color value corresponds to the z-value of the
point coordinates or to the color coordinate if specified by the 4th parameter
in @ref{using}. Both 2d and 3d plots (`plot` and `splot` commands) can use palette
colors as specified by either their fractional value or the corresponding value
mapped to the colorbox range.  A palette color value can also be read from an
explicitly specified input column in the @ref{using} specifier.
See `colors`, @ref{palette}, `linetype`.

The keyword `nohidden3d` applies only to plots made with the `splot` command.
Normally the global option @ref{hidden3d} applies to all plots in the graph.
You can attach the `nohidden3d` option to any individual plots that you want
to exclude from the hidden3d processing.  The individual elements other than
surfaces (i.e. lines, dots, labels, ...) of a plot marked `nohidden3d` will all
be drawn, even if they would normally be obscured by other plot elements.

Similarly, the keyword `nocontours` will turn off contouring for an individual
plot even if the global property @ref{contour} is active.

Similarly, the keyword `nosurface` will turn off the 3D surface for an
individual plot even if the global property @ref{surface} is active.

The keywords may be abbreviated as indicated.

Note that the `linewidth`, @ref{pointsize} and @ref{palette} options are not supported
by all terminals.

Examples:

This plots sin(x) with impulses:
@example
      plot sin(x) with impulses

@end example

This plots x with points, x**2 with the default:
@example
      plot x w points, x**2

@end example

This plots tan(x) with the default function style, file "data.1" with lines:
@example
      plot [ ] [-2:5] tan(x), 'data.1' with l

@end example

This plots "leastsq.dat" with impulses:
@example
      plot 'leastsq.dat' w i

@end example

This plots the data file "population" with boxes:
@example
      plot 'population' with boxes

@end example

This plots "exper.dat" with errorbars and lines connecting the points
(errorbars require three or four columns):
@example
      plot 'exper.dat' w lines, 'exper.dat' notitle w errorbars

@end example

Another way to plot "exper.dat" with errorlines (errorbars require three
or four columns):
@example
      plot 'exper.dat' w errorlines

@end example

This plots sin(x) and cos(x) with linespoints, using the same line type but
different point types:
@example
      plot sin(x) with linesp lt 1 pt 3, cos(x) with linesp lt 1 pt 4

@end example

This plots file "data" with points of type 3 and twice usual size:
@example
      plot 'data' with points pointtype 3 pointsize 2

@end example

This plots file "data" with variable pointsize read from column 4
@example
      plot 'data' using 1:2:4 with points pt 5 pointsize variable

@end example

This plots two data sets with lines differing only by weight:
@example
      plot 'd1' t "good" w l lt 2 lw 3, 'd2' t "bad" w l lt 2 lw 1

@end example

This plots filled curve of x*x and a color stripe:
@example
      plot x*x with filledcurve closed, 40 with filledcurve y1=10

@end example

This plots x*x and a color box:
@example
      plot x*x, (x>=-5 && x<=5 ? 40 : 1/0) with filledcurve y1=10 lt 8

@end example

This plots a surface with color lines:
@example
      splot x*x-y*y with line palette

@end example

This plots two color surfaces at different altitudes:
@example
      splot x*x-y*y with pm3d, x*x+y*y with pm3d at t

@end example


@node print, pwd, plot, Commands
@section print

@c ?commands print
@cindex print
@cmindex print


The @ref{print} command prints the value of <expression> to the screen.  It is
synonymous with `pause 0`.  <expression> may be anything that `gnuplot` can
evaluate that produces a number, or it can be a string.

Syntax:
@example
      print <expression> @{, <expression>, ...@}

@end example

See `expressions`.  The output file can be set with @ref{print}.

@node pwd, quit, print, Commands
@section pwd

@c ?commands pwd
@cindex pwd
@cmindex pwd


The @ref{pwd} command prints the name of the working directory to the screen.

Note that if you wish to store the current directory into a string variable
or use it in string expressions, then you can use variable GPVAL_PWD, see
`show variables all`. This overcomes shell call by means of "@ref{pwd}". 

@node quit, raise, pwd, Commands
@section quit

@c ?commands quit
@cindex quit
@cmindex quit


The @ref{exit} and @ref{quit} commands and END-OF-FILE character will exit `gnuplot`.
Each of these commands will clear the output device (as does the @ref{clear}
command) before exiting.

@node raise, refresh, quit, Commands
@section raise

@c ?commands raise
@cindex raise
@cmindex raise


Syntax:
@example
      raise @{plot_window_nb@}

@end example

The @ref{raise} command raises (opposite to @ref{lower}) plot window(s) associated
with the interactive terminal of your gnuplot session, i.e. `pm`, `win`, `wxt`
or `x11`. It puts the plot window to front (top) in the z-order windows stack
of the window manager of your desktop.

As `x11` and `wxt` support multiple plot windows, then by default they raise
these windows in descending order of most recently created on top to the least
recently created on bottom. If a plot number is supplied as an optional
parameter, only the associated plot window will be raised if it exists.

The optional parameter is ignored for single plot-windows terminal, i.e. `pm`
and `win`.

If the window is not raised under X11, then perhaps the plot window is
running in a different X11 session (telnet or ssh session, for example), or
perhaps raising is blocked by your window manager policy setting.

@node refresh, replot, raise, Commands
@section refresh

@c ?commands refresh
@cindex refresh
@cmindex refresh


The @ref{refresh} command is similar to @ref{replot}, with two major differences.
@ref{refresh} reformats and redraws the current plot using the data already read
in. This means that you can use @ref{refresh} for plots with in-line data
(pseudo-device '-') and for plots from datafiles whose contents are volatile.
You cannot use the @ref{refresh} command to add new data to an existing plot.

Mousing operations, in particular zoom and unzoom, will use @ref{refresh} rather
than @ref{replot} if appropriate.  Example:

@example
      plot 'datafile' volatile with lines, '-' with labels
      100 200 "Special point"
      e
      # Various mousing operations go here
      set title "Zoomed in view"
      set term post
      set output 'zoom.ps'
      refresh

@end example


@node replot, reread, refresh, Commands
@section replot

@c ?commands replot
@cindex replot
@cmindex replot


The @ref{replot} command without arguments repeats the last `plot` or `splot`
command.  This can be useful for viewing a plot with different `set` options,
or when generating the same plot for several devices.

Arguments specified after a @ref{replot} command will be added onto the last
`plot` or `splot` command (with an implied ',' separator) before it is
repeated.  @ref{replot} accepts the same arguments as the `plot` and `splot`
commands except that ranges cannot be specified.  Thus you can use @ref{replot}
to plot a function against the second axes if the previous command was `plot`
but not if it was `splot`.

N.B.---use of

@example
      plot '-' ; ... ; replot

@end example

is not recommended, because it will require that you type in the data all
over again.  In most cases you can use the @ref{refresh} command instead, which
will redraw the plot using the data previously read in.

Note that @ref{replot} does not work in @ref{multiplot} mode, since it reproduces
only the last plot rather than the entire screen.

See also `command-line-editing` for ways to edit the last `plot` (`splot`)
command.

See also `show plot` to show the whole current plotting command, and the
possibility to copy it into the `history`.

@node reread, reset, replot, Commands
@section reread

@c ?commands reread
@cindex reread
@cmindex reread


The @ref{reread} command causes the current `gnuplot` command file, as specified
by a `load` command or on the command line, to be reset to its starting
point before further commands are read from it.  This essentially implements
an endless loop of the commands from the beginning of the command file to
the @ref{reread} command.  (But this is not necessarily a disaster---@ref{reread} can
be very useful when used in conjunction with @ref{if}.  See @ref{if} for details.)
The @ref{reread} command has no effect if input from standard input.

Examples:

Suppose the file "looper" contains the commands
@example
      a=a+1
      plot sin(x*a)
      pause -1
      if(a<5) reread
@end example

and from within `gnuplot` you submit the commands
@example
      a=0
      load 'looper'
@end example

The result will be five plots (separated by the @ref{pause} message).

Suppose the file "data" contains six columns of numbers with a total yrange
from 0 to 10; the first is x and the next are five different functions of x.
Suppose also that the file "plotter" contains the commands
@example
      c_p = c_p+1
      plot "$0" using 1:c_p with lines linetype c_p
      if(c_p <  n_p) reread
@end example

and from within `gnuplot` you submit the commands
@example
      n_p=6
      c_p=1
      unset key
      set yrange [0:10]
      set multiplot
      call 'plotter' 'data'
      unset multiplot
@end example

The result is a single graph consisting of five plots.  The yrange must be
set explicitly to guarantee that the five separate graphs (drawn on top of
each other in multiplot mode) will have exactly the same axes.  The linetype
must be specified; otherwise all the plots would be drawn with the same type.
See animate.dem in demo directory for an animated example.


@node reset, save, reread, Commands
@section reset

@c ?commands reset
@cindex reset
@cmindex reset


@c ?reset errors
@c ?reset bind
The @ref{reset} command causes all graph-related options that can be set with the
`set` command to take on their default values.  This command is useful, e.g.,
to restore the default graph settings at the end of a command file, or to
return to a defined state after lots of settings have been changed within a
command file.  Please refer to the `set` command to see the default values
that the various options take.

The following are _not_ affected by @ref{reset}.
@example
     `set term` @ref{output} @ref{loadpath} @ref{fontpath}
     @ref{encoding} @ref{decimalsign} @ref{locale}

@end example

@cindex error state

`reset errors` clears only the error state variables GPVAL_ERRNO and
GPVAL_ERRMSG.

@cindex bind
@opindex bind


`reset bind` restores all hotkey bindings to their default state.

@node save, set-show, reset, Commands
@section save

@c ?commands save
@cindex save
@cmindex save


@c ^ <a name="save set"></a>
The @ref{save} command saves user-defined functions, variables, the `set
term` status, all `set` options, or all of these, plus the last `plot`
(`splot`) command to the specified file.

Syntax:
@example
      save  @{<option>@} '<filename>'

@end example

where <option> is @ref{functions}, @ref{variables}, @ref{terminal} or `set`. If
no option is used, `gnuplot` saves functions, variables, `set`
options and the last `plot` (`splot`) command.

@ref{save}d files are written in text format and may be read by the
`load` command. For @ref{save} with the `set` option or without any
option, the @ref{terminal} choice and the @ref{output} filename are written
out as a comment, to get an output file that works in other
installations of gnuplot, without changes and without risk of
unwillingly overwriting files.

@ref{terminal} will write out just the @ref{terminal} status, without
the comment marker in front of it. This is mainly useful for
switching the @ref{terminal} setting for a short while, and getting back
to the previously set terminal, afterwards, by loading the saved
@ref{terminal} status. Note that for a single gnuplot session you may
rather use the other method of saving and restoring current terminal
by the commands `set term push` and `set term pop`, see `set term`.

The filename must be enclosed in quotes.

The special filename "-" may be used to @ref{save} commands to standard output.
On systems which support a popen function (Unix), the output of save can be
piped through an external program by starting the file name with a '|'.
This provides a consistent interface to `gnuplot`'s internal settings to
programs which communicate with `gnuplot` through a pipe.  Please see
help for `batch/interactive` for more details.

Examples:
@example
      save 'work.gnu'
      save functions 'func.dat'
      save var 'var.dat'
      save set 'options.dat'
      save term 'myterm.gnu'
      save '-'
      save '|grep title >t.gp'

@end example

@node set-show, shell, save, Commands
@section set-show

@c ?commands set
@c ?commands show
@cindex set

@cindex show

@c ?show all
The `set` command can be used to set _lots_ of options.  No screen is
drawn, however, until a `plot`, `splot`, or @ref{replot} command is given.

The `show` command shows their settings;  `show all` shows all the settings.

Options changed using `set` can be returned to the default state by giving the
corresponding @ref{unset} command.  See also the @ref{reset} command, which returns
all settable parameters to default values.

If a variable contains time/date data, `show` will display it according to
the format currently defined by @ref{timefmt}, even if that was not in effect
when the variable was initially defined.
@cindex iteration
@cmindex iteration


The `set` and @ref{unset} commands may optionally contain an iteration clause.
See @ref{iteration}.


@menu
* angles::                      
* arrow::                       
* autoscale::                   
* bars::                        
* bind_::                       
* bmargin::                     
* border::                      
* boxwidth::                    
* clabel::                      
* clip::                        
* cntrparam::                   
* color_box::                   
* colornames::                  
* contour::                     
* data_style::                  
* datafile::                    
* decimalsign::                 
* dgrid3d::                     
* dummy::                       
* encoding::                    
* fit_::                        
* fontpath::                    
* format_::                     
* function_style::              
* functions::                   
* grid::                        
* hidden3d::                    
* historysize::                 
* isosamples::                  
* key::                         
* label::                       
* lmargin::                     
* loadpath::                    
* locale::                      
* logscale::                    
* macros::                      
* mapping::                     
* margin::                      
* mouse::                       
* multiplot::                   
* mx2tics::                     
* mxtics::                      
* my2tics::                     
* mytics::                      
* mztics::                      
* object::                      
* offsets::                     
* origin::                      
* output::                      
* parametric_::                 
* plot_::                       
* pm3d::                        
* palette::                     
* pointsize::                   
* polar::                       
* print_::                      
* rmargin::                     
* rrange::                      
* samples::                     
* size::                        
* style::                       
* surface::                     
* table::                       
* terminal::                    
* termoption::                  
* tics::                        
* ticslevel::                   
* ticscale::                    
* timestamp::                   
* timefmt::                     
* title_::                      
* tmargin::                     
* trange::                      
* urange::                      
* variables::                   
* version::                     
* view::                        
* vrange::                      
* x2data::                      
* x2dtics::                     
* x2label::                     
* x2mtics::                     
* x2range::                     
* x2tics::                      
* x2zeroaxis::                  
* xdata::                       
* xdtics::                      
* xlabel::                      
* xmtics::                      
* xrange::                      
* xtics::                       
* xyplane::                     
* xzeroaxis::                   
* y2data::                      
* y2dtics::                     
* y2label::                     
* y2mtics::                     
* y2range::                     
* y2tics::                      
* y2zeroaxis::                  
* ydata::                       
* ydtics::                      
* ylabel::                      
* ymtics::                      
* yrange::                      
* ytics::                       
* yzeroaxis::                   
* zdata::                       
* zdtics::                      
* zzeroaxis::                   
* cbdata::                      
* cbdtics::                     
* zero::                        
* zeroaxis::                    
* zlabel::                      
* zmtics::                      
* zrange::                      
* ztics::                       
* cblabel::                     
* cbmtics::                     
* cbrange::                     
* cbtics::                      
@end menu

@node angles, arrow, set-show, set-show
@subsection angles

@c ?commands set angles
@c ?commands show angles
@c ?set angles
@c ?show angles
@cindex angles
@opindex angles


@c ?commands set angles degrees
@c ?set angles degrees
@c ?angles degrees
@cindex degrees

By default, `gnuplot` assumes the independent variable in polar graphs is in
units of radians.  If `set angles degrees` is specified before `set polar`,
then the default range is [0:360] and the independent variable has units of
degrees.  This is particularly useful for plots of data files.  The angle
setting also applies to 3D mapping as set via the @ref{mapping} command.

Syntax:
@example
      set angles @{degrees | radians@}
      show angles

@end example

The angle specified in `set grid polar` is also read and displayed in the
units specified by @ref{angles}.

@ref{angles} also affects the arguments of the machine-defined functions
sin(x), cos(x) and tan(x), and the outputs of asin(x), acos(x), atan(x),
atan2(x), and arg(x).  It has no effect on the arguments of hyperbolic
functions or Bessel functions.  However, the output arguments of inverse
hyperbolic functions of complex arguments are affected; if these functions
are used, `set angles radians` must be in effect to maintain consistency
between input and output arguments.

@example
      x=@{1.0,0.1@}
      set angles radians
      y=sinh(x)
      print y         #prints @{1.16933, 0.154051@}
      print asinh(y)  #prints @{1.0, 0.1@}
@end example

but
@example
      set angles degrees
      y=sinh(x)
      print y         #prints @{1.16933, 0.154051@}
      print asinh(y)  #prints @{57.29578, 5.729578@}
@end example

See also
@uref{http://www.gnuplot.info/demo/poldat.html,poldat.dem: polar plot using @ref{angles} demo.
}

@node arrow, autoscale, angles, set-show
@subsection arrow

@c ?commands set arrow
@c ?commands unset arrow
@c ?commands show arrow
@c ?set arrow
@c ?unset arrow
@c ?show arrow
@cindex arrow
@opindex arrow


@cindex noarrow

Arbitrary arrows can be placed on a plot using the @ref{arrow} command.

Syntax:
@example
      set arrow @{<tag>@} @{from <position>@} @{to|rto <position>@}
                @{ @{arrowstyle | as <arrow_style>@}
                  | @{ @{nohead | head | backhead | heads@}
                      @{size <length>,<angle>@{,<backangle>@}@}
                      @{filled | empty | nofilled@}
                      @{front | back@}
                      @{ @{linestyle | ls <line_style>@}
                        | @{linetype | lt <line_type>@}
                          @{linewidth | lw <line_width@} @} @} @}

@end example

@example
      unset arrow @{<tag>@}
      show arrow @{<tag>@}

@end example

<tag> is an integer that identifies the arrow.  If no tag is given, the
lowest unused tag value is assigned automatically.  The tag can be used to
delete or change a specific arrow.  To change any attribute of an existing
arrow, use the @ref{arrow} command with the appropriate tag and specify the
parts of the arrow to be changed.

The <position>s are specified by either x,y or x,y,z, and may be preceded by
`first`, `second`, `graph`, `screen`, or `character` to select the coordinate
system.  Unspecified coordinates default to 0.  The end points can be
specified in one of five coordinate systems---`first` or `second` axes,
`graph`, `screen`, or `character`.  See `coordinates` for details.  A
coordinate system specifier does not carry over from the "from" position to
the "to" position.  Arrows outside the screen boundaries are permitted but
may cause device errors.  If the end point is specified by "rto" instead of
"to" it is drawn relatively to the start point.  For linear axes, `graph`
and `screen` coordinates, the distance between the start and the end point
corresponds to the given relative coordinate.  For logarithmic axes, the
relative given coordinate corresponds to the factor of the coordinate
between start and end point.  Thus, a negative relative value or zero are
not allowed for logarithmic axes.

Specifying `nohead` produces an arrow drawn without a head---a line segment.
This gives you yet another way to draw a line segment on the plot.  By
default, an arrow has a head at its end. Specifying `backhead` draws an arrow
head at the start point of the arrow while `heads` draws arrow heads on both
ends of the line.  Not all terminal types support double-ended arrows.

Head size can be controlled by `size <length>,<angle>` or
`size <length>,<angle>,<backangle>`, where `<length>` defines length of each
branch of the arrow head and `<angle>` the angle (in degrees) they make with
the arrow.  `<Length>` is in x-axis units; this can be changed by `first`,
`second`, `graph`, `screen`, or `character` before the <length>;  see
`coordinates` for details.  `<Backangle>` only takes effect when `filled`
or `empty` is also used.  Then, `<backangle>` is the angle (in degrees) the
back branches make with the arrow (in the same direction as `<angle>`).
The `fig` terminal has a restricted backangle function. It supports three
different angles. There are two thresholds: Below 70 degrees, the arrow head
gets an indented back angle. Above 110 degrees, the arrow head has an acute
back angle. Between these thresholds, the back line is straight.

Specifying `filled` produces filled arrow heads (if heads are used).
Filling is supported on filled-polygon capable terminals, see help of @ref{pm3d}
for their list, otherwise the arrow heads are closed but not filled.
The same result (closed but not filled arrow head) is reached by specifying
`empty`.  Further, filling and outline is obviously not supported on
terminals drawing arrows by their own specific routines, like `metafont`,
`metapost`, `latex` or `tgif`.

The line style may be selected from a user-defined list of line styles
(see `set style line`) or may be defined here by providing values for
<line_type> (an index from the default list of styles) and/or <line_width>
(which is a  multiplier for the default width).

Note, however, that if a user-defined line style has been selected, its
properties (type and width) cannot be altered merely by issuing another
@ref{arrow} command with the appropriate index and `lt` or `lw`.

If `front` is given, the arrow is written on top of the graphed data. If
`back` is given (the default), the arrow is written underneath the graphed
data.  Using `front` will prevent an arrow from being obscured by dense data.

Examples:

To set an arrow pointing from the origin to (1,2) with user-defined style 5,
use:
@example
      set arrow to 1,2 ls 5

@end example

To set an arrow from bottom left of plotting area to (-5,5,3), and tag the
arrow number 3, use:
@example
      set arrow 3 from graph 0,0 to -5,5,3

@end example

To change the preceding arrow to end at 1,1,1, without an arrow head and
double its width, use:
@example
      set arrow 3 to 1,1,1 nohead lw 2

@end example

To draw a vertical line from the bottom to the top of the graph at x=3, use:
@example
      set arrow from 3, graph 0 to 3, graph 1 nohead

@end example

To draw a vertical arrow with T-shape ends, use:
@example
      set arrow 3 from 0,-5 to 0,5 heads size screen 0.1,90

@end example

To draw an arrow relatively to the start point, where the relative distances
are given in graph coordinates, use:
@example
      set arrow from 0,-5 rto graph 0.1,0.1

@end example

To draw an arrow with relative end point in logarithmic x axis, use:
@example
      set logscale x
      set arrow from 100,-5 rto 10,10
@end example

This draws an arrow from 100,-5 to 1000,5. For the logarithmic x axis, the
relative coordinate 10 means "factor 10" while for the linear y axis, the
relative coordinate 10 means "difference 10".

To delete arrow number 2, use:
@example
      unset arrow 2

@end example

To delete all arrows, use:
@example
      unset arrow

@end example

To show all arrows (in tag order), use:
@example
      show arrow

@end example

@uref{http://gnuplot.sourceforge.net/demo/arrowstyle.html,arrows demos.
}


@node autoscale, bars, arrow, set-show
@subsection autoscale

@c ?commands set autoscale
@c ?commands unset autoscale
@c ?commands show autoscale
@c ?set autoscale
@c ?unset autoscale
@c ?show autoscale
@cindex autoscale
@opindex autoscale


@cindex noautoscale

Autoscaling may be set individually on the x, y or z axis or globally on all
axes. The default is to autoscale all axes.  If you want to autoscale based on
a subset of the plots in the figure, you can mark the other ones with the flag
`noautoscale`.  See @ref{datafile}.

Syntax:
@example
      set autoscale @{<axes>@{|min|max|fixmin|fixmax|fix@} | fix | keepfix@}
      unset autoscale @{<axes>@}
      show autoscale

@end example

where <axes> is either `x`, `y`, `z`, `cb`, `x2`, `y2` or `xy`.  A keyword with
`min` or `max` appended (this cannot be done with `xy`) tells `gnuplot` to
autoscale just the minimum or maximum of that axis.  If no keyword is given,
all axes are autoscaled.

A keyword with `fixmin`, `fixmax` or `fix` appended tells gnuplot to disable
extension of the axis range to the next tic mark position, for autoscaled
axes using equidistant tics; `set autoscale fix` sets this for all axes.
Command `set autoscale keepfix` autoscales all axes while keeping the fix
settings.

When autoscaling, the axis range is automatically computed and the dependent
axis (y for a `plot` and z for `splot`) is scaled to include the range of the
function or data being plotted.

If autoscaling of the dependent axis (y or z) is not set, the current y or z
range is used.

Autoscaling the independent variables (x for `plot` and x,y for `splot`) is a
request to set the domain to match any data file being plotted.  If there are
no data files, autoscaling an independent variable has no effect.  In other
words, in the absence of a data file, functions alone do not affect the x
range (or the y range if plotting z = f(x,y)).

Please see @ref{xrange} for additional information about ranges.

The behavior of autoscaling remains consistent in parametric mode, (see
`set parametric`).  However, there are more dependent variables and hence more
control over x, y, and z axis scales.  In parametric mode, the independent or
dummy variable is t for `plot`s and u,v for `splot`s.  @ref{autoscale} in
parametric mode, then, controls all ranges (t, u, v, x, y, and z) and allows
x, y, and z to be fully autoscaled.

Autoscaling works the same way for polar mode as it does for parametric mode
for `plot`, with the extension that in polar mode @ref{dummy} can be used to
change the independent variable from t (see @ref{dummy}).

When tics are displayed on second axes but no plot has been specified for
those axes, x2range and y2range are inherited from xrange and yrange.  This
is done _before_ xrange and yrange are autoextended to a whole number of
tics, which can cause unexpected results.  You can use the `fixmin`
or `fixmax` options to avoid this.

Examples:

This sets autoscaling of the y axis (other axes are not affected):
@example
      set autoscale y

@end example

This sets autoscaling only for the minimum of the y axis (the maximum of the
y axis and the other axes are not affected):
@example
      set autoscale ymin

@end example

This disables extension of the x2 axis tics to the next tic mark,
thus keeping the exact range as found in the plotted data and functions:
@example
      set autoscale x2fixmin
      set autoscale x2fixmax

@end example

This sets autoscaling of the x and y axes:
@example
      set autoscale xy

@end example

This sets autoscaling of the x, y, z, x2 and y2 axes:
@example
      set autoscale

@end example

This disables autoscaling of the x, y, z, x2 and y2 axes:
@example
      unset autoscale

@end example

This disables autoscaling of the z axis only:
@example
      unset autoscale z

@end example

@menu
* parametric_mode::             
* polar_mode::                  
@end menu

@node parametric_mode, polar_mode, autoscale, autoscale
@subsubsection parametric mode

@c ?commands set autoscale parametric
@c ?set autoscale parametric
@c ?set autoscale t
When in parametric mode (`set parametric`), the xrange is as fully scalable
as the y range.  In other words, in parametric mode the x axis can be
automatically scaled to fit the range of the parametric function that is
being plotted.  Of course, the y axis can also be automatically scaled just
as in the non-parametric case.  If autoscaling on the x axis is not set, the
current x range is used.

Data files are plotted the same in parametric and non-parametric mode.
However, there is a difference in mixed function and data plots: in
non-parametric mode with autoscaled x, the x range of the datafile controls
the x range of the functions; in parametric mode it has no influence.

For completeness a last command `set autoscale t` is accepted.  However, the
effect of this "scaling" is very minor.  When `gnuplot` determines that the
t range would be empty, it makes a small adjustment if autoscaling is true.
Otherwise, `gnuplot` gives an error.  Such behavior may, in fact, not be very
useful and the command `set autoscale t` is certainly questionable.

`splot` extends the above ideas as you would expect.  If autoscaling is set,
then x, y, and z ranges are computed and each axis scaled to fit the
resulting data.

@node polar_mode,  , parametric_mode, autoscale
@subsubsection polar mode

@c ?commands set autoscale polar
@c ?set autoscale polar
When in polar mode (`set polar`), the xrange and the yrange are both found
from the polar coordinates, and thus they can both be automatically scaled.
In other words, in polar mode both the x and y axes can be automatically
scaled to fit the ranges of the polar function that is being plotted.

When plotting functions in polar mode, the rrange may be autoscaled.  When
plotting data files in polar mode, the trange may also be autoscaled.  Note
that if the trange is contained within one quadrant, autoscaling will produce
a polar plot of only that single quadrant.

Explicitly setting one or two ranges but not others may lead to unexpected
results.
See also
@uref{http://www.gnuplot.info/demo/poldat.html,polar demos.
}

@node bars, bind_, autoscale, set-show
@subsection bars

@c ?commands set bars
@c ?commands show bars
@c ?set bars
@c ?show bars
@cindex bars
@opindex bars


The @ref{bars} command controls the tics at the ends of error bars.

Syntax:
@example
      set bars @{small | large | fullwidth | <size>@} @{front | back@}
      unset bars
      show bars

@end example

`small` is a synonym for 0.0, and `large` for 1.0.
The default is 1.0 if no size is given.

The keyword `fullwidth` is relevant only to histograms with errorbars.
It sets the width of the errorbar ends to be the same as the width of the
associated box in the histogram.  It does not change the width of the box
itself.

The `front` and `back` keywords are relevant only to errorbars attached
to filled rectangles (boxes, candlesticks, histograms).

@node bind_, bmargin, bars, set-show
@subsection bind

@c ?commands show bind
@c ?show bind
@cindex bind
@opindex bind


Show the current state of all hotkey bindings. See `bind`.

@node bmargin, border, bind_, set-show
@subsection bmargin

@c ?commands set bmargin
@c ?set bmargin
@cindex bmargin
@opindex bmargin


The command @ref{bmargin} sets the size of the bottom margin.
Please see @ref{margin} for details.

@node border, boxwidth, bmargin, set-show
@subsection border

@c ?commands set border
@c ?commands unset border
@c ?commands show border
@c ?set border
@c ?unset border
@c ?show border
@cindex border
@opindex border


@cindex noborder

The @ref{border} and @ref{border} commands control the display of the graph
borders for the `plot` and `splot` commands.  Note that the borders do not
necessarily coincide with the axes; with `plot` they often do, but with
`splot` they usually do not.

Syntax:
@example
      set border @{<integer>@} @{front | back@} @{linewidth | lw <line_width>@}
                 @{@{linestyle | ls <line_style>@} | @{linetype | lt <line_type>@}@}
      unset border
      show border

@end example

With a `splot` displayed in an arbitrary orientation, like `set view 56,103`,
the four corners of the x-y plane can be referred to as "front", "back",
"left" and "right".  A similar set of four corners exist for the top surface,
of course.  Thus the border connecting, say, the back and right corners of the
x-y plane is the "bottom right back" border, and the border connecting the top
and bottom front corners is the "front vertical".  (This nomenclature is
defined solely to allow the reader to figure out the table that follows.)

The borders are encoded in a 12-bit integer: the bottom four bits control the
border for `plot` and the sides of the base for `splot`; the next four bits
control the verticals in `splot`; the top four bits control the edges on top
of the `splot`.  In detail, `<integer>` should be the sum of the appropriate
entries from the following table:


@example
            Bit     plot        splot
              1   bottom      bottom left front
              2   left        bottom left back
              4   top         bottom right front
              8   right       bottom right back
             16   no effect   left vertical
             32   no effect   back vertical
             64   no effect   right vertical
            128   no effect   front vertical
            256   no effect   top left back
            512   no effect   top right back
           1024   no effect   top left front
           2048   no effect   top right front

@end example


Various bits or combinations of bits may be added together in the command.

The default is 31, which is all four sides for `plot`, and base and z axis
for `splot`.

In 2D plots the border is normally drawn on top of all plots elements
(`front`). If you want the border to be drawn behind the plot elements,
use `set border back`.

Using the optional <line_style>, <line_type> and <line_width> specifiers, the
way the border lines are drawn can be influenced (limited by what the current
terminal driver supports).

For `plot`, tics may be drawn on edges other than bottom and left by enabling
the second axes -- see `set xtics` for details.

If a `splot` draws only on the base, as is the case with "`unset surface; set
contour base`", then the verticals and the top are not drawn even if they are
specified.

The `set grid` options 'back', 'front' and 'layerdefault' also
control the order in which the border lines are drawn with respect to
the output of the plotted data.

Examples:

Draw default borders:
@example
      set border

@end example

Draw only the left and bottom (`plot`) or both front and back bottom left
(`splot`) borders:
@example
      set border 3

@end example

Draw a complete box around a `splot`:
@example
      set border 4095

@end example

Draw a topless box around a `splot`, omitting the front vertical:
@example
      set border 127+256+512 # or set border 1023-128

@end example

Draw only the top and right borders for a `plot` and label them as axes:
@example
      unset xtics; unset ytics; set x2tics; set y2tics; set border 12

@end example


@node boxwidth, clabel, border, set-show
@subsection boxwidth

@c ?commands set boxwidth
@c ?commands show boxwidth
@c ?set boxwidth
@c ?show boxwidth
@cindex boxwidth
@opindex boxwidth


The @ref{boxwidth} command is used to set the default width of boxes in the
@ref{boxes}, @ref{boxerrorbars}, @ref{candlesticks} and @ref{histograms} styles.

Syntax:
@example
      set boxwidth @{<width>@} @{absolute|relative@}
      show boxwidth

@end example

By default, adjacent boxes are extended in width until they touch each other.
A different default width may be specified using the @ref{boxwidth} command.
`Relative` widths are interpreted as being a fraction of this default width.

An explicit value for the boxwidth is interpreted as being a number of units
along the current x axis (`absolute`) unless the modifier `relative` is given.
If the x axis is a log-scale (see `set log`) then the value of boxwidth is
truly "absolute" only at x=1; this physical width is maintained everywhere
along the axis (i.e. the boxes do not become narrower the value of x
increases). If the range spanned by a log scale x axis is far from x=1,
some experimentation may be required to find a useful value of boxwidth.

The default is superseded by explicit width information taken from an extra
data column in styles @ref{boxes} or @ref{boxerrorbars}.  In a four-column data set,
the fourth column will be interpreted as the box width unless the width is set
to -2.0, in which case the width will be calculated automatically.
See @ref{boxes} and @ref{boxerrorbars} for more details.

To set the box width to automatic use the command
@example
      set boxwidth

@end example

or, for four-column data,
@example
      set boxwidth -2

@end example

The same effect can be achieved with the @ref{using} keyword in `plot`:
@example
      plot 'file' using 1:2:3:4:(-2)

@end example

To set the box width to half of the automatic size use
@example
      set boxwidth 0.5 relative

@end example

To set the box width to an absolute value of 2 use
@example
      set boxwidth 2 absolute

@end example

@node clabel, clip, boxwidth, set-show
@subsection clabel

@c ?commands set clabel
@c ?commands unset clabel
@c ?commands show clabel
@c ?set clabel
@c ?unset clabel
@c ?show clabel
@cindex clabel
@opindex clabel


`gnuplot` will vary the linetype used for each contour level when clabel is
set.  When this option on (the default), a legend labels each linestyle with
the z level it represents.  It is not possible at present to separate the
contour labels from the surface key.

Syntax:
@example
      set clabel @{'<format>'@}
      unset clabel
      show clabel

@end example

The default for the format string is %8.3g, which gives three decimal places.
This may produce poor label alignment if the key is altered from its default
configuration.

The first contour linetype, or only contour linetype when clabel is off, is
the surface linetype +1; contour points are the same style as surface points.

See also @ref{contour}.

@node clip, cntrparam, clabel, set-show
@subsection clip

@c ?commands set clip
@c ?commands unset clip
@c ?commands show clip
@c ?set clip
@c ?unset clip
@c ?show clip
@cindex clip
@opindex clip


@cindex noclip

`gnuplot` can clip data points and lines that are near the boundaries of a
graph.

Syntax:
@example
      set clip <clip-type>
      unset clip <clip-type>
      show clip

@end example

Three clip types for points and lines are supported by `gnuplot`: `points`,
`one`, and `two`. One, two, or all three clip types may be active for a
single graph.
Note that clipping of color filled quadrangles drawn by @ref{pm3d} maps and
surfaces is not controlled by this command, but by `set pm3d clip1in` and
`set pm3d clip4in`.

The `points` clip type forces `gnuplot` to clip (actually, not plot at all)
data points that fall within but too close to the boundaries.  This is done
so that large symbols used for points will not extend outside the boundary
lines.  Without clipping points near the boundaries, the plot may look bad.
Adjusting the x and y ranges may give similar results.

Setting the `one` clip type causes `gnuplot` to draw a line segment which has
only one of its two endpoints within the graph.  Only the in-range portion of
the line is drawn.  The alternative is to not draw any portion of the line
segment.

Some lines may have both endpoints out of range, but pass through the graph.
Setting the `two` clip-type allows the visible portion of these lines to be
drawn.

In no case is a line drawn outside the graph.

The defaults are `noclip points`, `clip one`, and `noclip two`.

To check the state of all forms of clipping, use
@example
      show clip

@end example

For backward compatibility with older versions, the following forms are also
permitted:
@example
      set clip
      unset clip

@end example

@ref{clip} is synonymous with `set clip points`; @ref{clip} turns off all
three types of clipping.

@node cntrparam, color_box, clip, set-show
@subsection cntrparam

@c ?commands set cntrparam
@c ?commands show cntrparam
@c ?set cntrparam
@c ?show cntrparam
@cindex cntrparam
@opindex cntrparam


@ref{cntrparam} controls the generation of contours and their smoothness for
a contour plot. @ref{contour} displays current settings of @ref{cntrparam} as
well as @ref{contour}.

Syntax:
@example
      set cntrparam @{ @{ linear
                      | cubicspline
                      | bspline
                      | points <n>
                      | order <n>
                      | levels @{ auto @{<n>@} | <n>
                                 | discrete <z1> @{,<z2>@{,<z3>...@}@}
                                 | incremental <start>, <incr> @{,<end>@}
                               @}
                      @}
                    @}
      show contour

@end example

This command has two functions.  First, it sets the values of z for which
contour points are to be determined (by linear interpolation between data
points or function isosamples.)  Second, it controls the way contours are
drawn between the points determined to be of equal z.  <n> should be an
integral constant expression and <z1>, <z2> ... any constant expressions.
The parameters are:

`linear`, `cubicspline`, `bspline`---Controls type of approximation or
interpolation.  If `linear`, then straight line segments connect points of
equal z magnitude.  If `cubicspline`, then piecewise-linear contours are
interpolated between the same equal z points to form somewhat smoother
contours, but which may undulate.  If `bspline`, a guaranteed-smoother curve
is drawn, which only approximates the position of the points of equal-z.

`points`---Eventually all drawings are done with piecewise-linear strokes.
This number controls the number of line segments used to approximate the
`bspline` or `cubicspline` curve.  Number of cubicspline or bspline
segments (strokes) = `points` * number of linear segments.

`order`---Order of the bspline approximation to be used.  The bigger this
order is, the smoother the resulting contour.  (Of course, higher order
bspline curves will move further away from the original piecewise linear
data.)  This option is relevant for `bspline` mode only.  Allowed values are
integers in the range from 2 (linear) to 10.

`levels`--- Selection of contour levels,  controlled by `auto` (default),
`discrete`, `incremental`, and <n>, number of contour levels.

For `auto`, <n> specifies a nominal number of levels; the actual number will
be adjusted to give simple labels. If the surface is bounded by zmin and zmax,
contours will be generated at integer multiples of dz between zmin and zmax,
where dz is 1, 2, or 5 times some power of ten (like the step between two
tic marks).

For `levels discrete`, contours will be generated at z = <z1>, <z2> ... as
specified; the number of discrete levels sets the number of contour levels.
In `discrete` mode, any `set cntrparam levels <n>` are ignored.

For `incremental`, contours are generated at values of z beginning at <start>
and increasing by <increment>, until the number of contours is reached. <end>
is used to determine the number of contour levels, which will be changed by
any subsequent `set cntrparam levels <n>`.  If the z axis is logarithmic,
<increment> will be interpreted as a factor, just like in @ref{ztics}.

If the command @ref{cntrparam} is given without any arguments specified,  the
defaults are used: linear, 5 points, order 4, 5 auto levels.

Examples:
@example
      set cntrparam bspline
      set cntrparam points 7
      set cntrparam order 10

@end example

To select levels automatically, 5 if the level increment criteria are met:
@example
      set cntrparam levels auto 5

@end example

To specify discrete levels at .1, .37, and .9:
@example
      set cntrparam levels discrete .1,1/exp(1),.9

@end example

To specify levels from 0 to 4 with increment 1:
@example
      set cntrparam levels incremental  0,1,4

@end example

To set the number of levels to 10 (changing an incremental end or possibly
the number of auto levels):
@example
      set cntrparam levels 10

@end example

To set the start and increment while retaining the number of levels:
@example
      set cntrparam levels incremental 100,50

@end example

See also @ref{contour} for control of where the contours are drawn, and
@ref{clabel} for control of the format of the contour labels and linetypes.

See also
@uref{http://www.gnuplot.info/demo/contours.html,contours demo (contours.dem)
}
and
@uref{http://www.gnuplot.info/demo/discrete.html,contours with user defined levels demo (discrete.dem).
}

@node color_box, colornames, cntrparam, set-show
@subsection color box

@c ?commands set colorbox
@c ?commands show colorbox
@c ?commands unset colorbox
@c ?set colorbox
@c ?show colorbox
@c ?unset colorbox
@cindex colorbox


The color scheme, i.e. the gradient of the smooth color with min_z and
max_z values of @ref{pm3d}'s @ref{palette}, is drawn in a color box unless `unset
colorbox`.

@example
      set colorbox
      set colorbox @{
                 @{ vertical | horizontal @}
                 @{ default | user @}
                 @{ origin x, y @}
                 @{ size x, y @}
                 @{ front | back @}
                 @{ noborder | bdefault | border [line style] @}
               @}
      show colorbox
      unset colorbox

@end example

Color box position can be `default` or `user`.  If the latter is specified the
values as given with the @ref{origin} and @ref{size} subcommands are used. The box
can be drawn after (`front`) or before (`back`) the graph or the surface.

The orientation of the color gradient can be switched by options `vertical`
and `horizontal`.

`origin x, y` and `size x, y` are used only in combination with the `user`
option. The x and y values are interpreted as screen coordinates by default,
and this is the only legal option for 3D plots. 2D plots, including splot with
`set view map`, allow any coordinate system to be specified.  Try for example:
@example
    set colorbox horiz user origin .1,.02 size .8,.04
@end example

which will draw a horizontal gradient somewhere at the bottom of the graph.

@ref{border} turns the border on (this is the default). `noborder` turns the border
off. If an positive integer argument is given after @ref{border}, it is used as a
line style tag which is used for drawing the border, e.g.:
@example
    set style line 2604 linetype -1 linewidth .4
    set colorbox border 2604
@end example

will use line style `2604`, a thin line with the default border color (-1)
for drawing the border. `bdefault` (which is the default) will use the default
border line style for drawing the border of the color box.

The axis of the color box is called `cb` and it is controlled by means of the
usual axes commands, i.e. `set/unset/show` with @ref{cbrange}, `[m]cbtics`,
`format cb`, `grid [m]cb`, @ref{cblabel}, and perhaps even @ref{cbdata}, `[no]cbdtics`,
`[no]cbmtics`.

`set colorbox` without any parameter switches the position to default.
`unset colorbox` resets the default parameters for the colorbox and switches
the colorbox off.

See also help for @ref{pm3d}, @ref{palette}, @ref{pm3d}, and `set style line`.

@node colornames, contour, color_box, set-show
@subsection colornames

@cindex colornames
@opindex colornames


@c ?show colornames
@c ?commands show colornames
@c ?show palette colornames
Gnuplot knows a limited number of color names. You can use these to define
the color range spanned by a pm3d palette, or to assign a terminal-independent
color to a particular linetype or linestyle. To see the list of known color
names, use the command @ref{colornames}.   Example:

@example
      set style line 1 linecolor rgb "sea-green"

@end example

@node contour, data_style, colornames, set-show
@subsection contour

@c ?commands set contour
@c ?commands unset contour
@c ?commands show contour
@c ?set contour
@c ?unset contour
@c ?show contour
@cindex contour
@opindex contour


@cindex nocontour

@ref{contour} enables contour drawing for surfaces.  This option is available
for `splot` only.  It requires grid data, see `grid_data` for more details.
If contours are desired from non-grid data, @ref{dgrid3d} can be used to
create an appropriate grid.

Syntax:
@example
      set contour @{base | surface | both@}
      unset contour
      show contour

@end example

The three options specify where to draw the contours: `base` draws the
contours on the grid base where the x/ytics are placed, @ref{surface} draws the
contours on the surfaces themselves, and `both` draws the contours on both
the base and the surface.  If no option is provided, the default is `base`.

See also @ref{cntrparam} for the parameters that affect the drawing of
contours, and @ref{clabel} for control of labelling of the contours.

The surface can be switched off (see @ref{surface}), giving a contour-only
graph.  Though it is possible to use @ref{size} to enlarge the plot to fill
the screen, more control over the output format can be obtained by writing
the contour information to a file, and rereading it as a 2D datafile plot:

@example
      unset surface
      set contour
      set cntrparam ...
      set table 'filename'
      splot ...
      unset table
      # contour info now in filename
      set term <whatever>
      plot 'filename'

@end example

In order to draw contours, the data should be organized as "grid data".  In
such a file all the points for a single y-isoline are listed, then all the
points for the next y-isoline, and so on.  A single blank line (a line
containing no characters other than blank spaces and a carriage return and/or
a line feed) separates one y-isoline from the next.
See also @ref{datafile}.

See also
@uref{http://www.gnuplot.info/demo/contours.html,contours demo (contours.dem)
}
and
@uref{http://www.gnuplot.info/demo/discrete.html,contours with user defined levels demo (discrete.dem).
}

@node data_style, datafile, contour, set-show
@subsection data style

@c ?set data style
This form of the command is deprecated. Please see `set style data`.

@node datafile, decimalsign, data_style, set-show
@subsection datafile

@c ?set datafile
@c ?show datafile
The @ref{datafile} command options control interpretation of fields read from
input data files by the `plot`, `splot`, and @ref{fit} commands.  Six such
options are currently implemented.

@menu
* set_datafile_fortran::        
* set_datafile_nofpe_trap::     
* set_datafile_missing::        
* set_datafile_separator::      
* set_datafile_commentschars::  
* set_datafile_binary::         
@end menu

@node set_datafile_fortran, set_datafile_nofpe_trap, datafile, datafile
@subsubsection set datafile fortran

@c ?set datafile fortran
@c ?show datafile fortran
@cindex fortran

The `set datafile fortran` command enables a special check for values in the
input file expressed as Fortran D or Q constants. This extra check slows down
the input process, and should only be selected if you do in fact have datafiles
containing Fortran D or Q constants. The option can be disabled again using
`unset datafile fortran`.

@node set_datafile_nofpe_trap, set_datafile_missing, set_datafile_fortran, datafile
@subsubsection set datafile nofpe_trap

@c ?set datafile nofpe_trap
@cindex fpe_trap

@cindex nofpe_trap

@cindex floating point exceptions

The `set datafile nofpe_trap` command tells gnuplot not to re-initialize a
floating point exception handler before every expression evaluation used while
reading data from an input file.  This can significantly speed data input from
large files at the risk of program termination if a floating-point exception is
generated.

@node set_datafile_missing, set_datafile_separator, set_datafile_nofpe_trap, datafile
@subsubsection set datafile missing

@c ?set datafile missing
@c ?show datafile missing
@c ?set missing
@cindex missing

The `set datafile missing` command allows you to tell `gnuplot` what character
string is used in a data file to denote missing data.  Exactly how this missing
value will be treated depends on the @ref{using} specifier of the `plot` or `splot`
command.

Syntax:
@example
      set datafile missing @{"<string>"@}
      show datafile missing
      unset datafile

@end example

Example:
@example
      # Ignore entries containing IEEE NaN ("Not a Number") code
      set datafile missing "NaN"

@end example

Example:
@example
      set style data linespoints
      plot '-'
         1 10
         2 20
         3 ?
         4 40
         5 50
         e
      set datafile missing "?"
      plot '-'
         1 10
         2 20
         3 ?
         4 40
         5 50
         e
      plot '-' using 1:2
         1 10
         2 20
         3 ?
         4 40
         5 50
         e
      plot '-' using 1:($2)
         1 10
         2 20
         3 ?
         4 40
         5 50
         e

@end example

The first `plot` will recognize only the first datum in the "3 ?" line.  It
will use the single-datum-on-a-line convention that the line number is "x"
and the datum is "y", so the point will be plotted (in this case erroneously)
at (2,3).

The second and third `plot` commands will correctly ignore the middle line.
The plotted line will connect the points at (2,20) and (4,40).

The fourth `plot` will also correctly ignore the middle line, but the plotted
line will not connect the points at (2,20) and (4,40).

There is no default character for `missing`, but in many cases any
non-parsible string of characters found where a numerical value is expected
will be treated as missing data.


@node set_datafile_separator, set_datafile_commentschars, set_datafile_missing, datafile
@subsubsection set datafile separator

@c ?set datafile separator
@c ?show datafile separator
@c ?datafile separator
@cindex separator

The command `set datafile separator "<char>"` tells `gnuplot` that data fields
in subsequent input files are separated by <char> rather than by whitespace.
The most common use is to read in csv (comma-separated value) files written
by spreadsheet or database programs. By default data fields are separated by
whitespace.

Syntax:
@example
      set datafile separator @{"<char>" | whitespace@}

@end example

Examples:
@example
      # Input file contains tab-separated fields
      set datafile separator "\t"

@end example

@example
      # Input file contains comma-separated values fields
      set datafile separator ","

@end example

@node set_datafile_commentschars, set_datafile_binary, set_datafile_separator, datafile
@subsubsection set datafile commentschars

@c ?set datafile commentschars
@cindex commentschars

The `set datafile commentschars` command allows you to tell `gnuplot` what
characters are used in a data file to denote comments.  Gnuplot will ignore
rest of the line behind the specified characters if either of them is the
first non-blank character on the line.

Syntax:
@example
      set datafile commentschars @{"<string>"@}
      show datafile commentschars
      unset commentschars

@end example

Default value of the string is "#!" on VMS and "#" otherwise.

Then, the following line in a data file is completely ignored
@example
    # 1 2 3 4
@end example

but the following
@example
    1 # 3 4
@end example

produces rather unexpected plot unless
@example
    set datafile missing '#'
@end example

is specified as well.

Example:
@example
      set datafile commentschars "#!%"

@end example

@node set_datafile_binary,  , set_datafile_commentschars, datafile
@subsubsection set datafile binary

@c ?set datafile binary
The `set datafile binary` command is used to set the defaults when reading
binary data files.  The syntax matches precisely that used for commands
`plot` and `splot`.  See `binary` for details about <binary list>.

Syntax:
@example
      set datafile binary <binary list>
      show datafile binary
      show datafile
      unset datafile

@end example

Examples:
@example
      set datafile binary filetype=auto
      set datafile binary array=(512,512) format="%uchar"

@end example

@c ?show datafile binary
@example
      show datafile binary   # list current settings

@end example

@node decimalsign, dgrid3d, datafile, set-show
@subsection decimalsign

@c ?commands set decimalsign
@c ?commands show decimalsign
@c ?commands unset decimalsign
@c ?set decimalsign
@c ?show decimalsign
@c ?unset decimalsign
@cindex decimalsign
@opindex decimalsign


@cindex locale
@opindex locale


The @ref{decimalsign} command selects a decimal sign for numbers printed
into tic labels or `set label` strings.

Syntax:
@example
      set decimalsign @{<value> | locale @{"<locale>"@}@}
      unset decimalsign
      show decimalsign

@end example

The argument <value> is a string to be used in place of the usual
decimal point. Typical choices include the period, '.', and the comma,
',', but others may be useful, too.  If you omit the <value> argument,
the decimal separator is not modified from the usual default, which is
a period.  Unsetting decimalsign has the same effect as omitting <value>.

Example:

Correct typesetting in most European countries requires:
@example
      set decimalsign ','

@end example

Please note: If you set an explicit string, this affects only numbers that
are printed using gnuplot's gprintf() formatting routine, include axis tics.
It does not affect the format expected for input data, and it does not affect
numbers printed with the sprintf() formatting routine. To change the behavior
of both input and output formatting, instead use the form

@example
      set decimalsign locale

@end example

This instructs the program to use both input and output formats in accordance
with the current setting of the LC_ALL, LC_NUMERIC, or LANG environmental
variables.

@example
      set decimalsign locale "foo"

@end example

This instructs the program to format all input and output in accordance with
locale "foo", which must be installed.  If locale "foo" is not found then an
error message is printed and the decimal sign setting is unchanged.
On linux systems you can get a list of the locales installed on your machine by
typing "locale -a". A typical linux locale string is of the form "sl_SI.UTF-8".
A typical Windows locale string is of the form "Slovenian_Slovenia.1250" or
"slovenian". Please note that interpretation of the locale settings is done by
the C library at runtime. Older C libraries may offer only partial support for
locale settings such as the thousands grouping separator character.

@example
      set decimalsign locale; set decimalsign "."

@end example

This sets all input and output to use whatever decimal sign is correct for
the current locale, but over-rides this with an explicit '.' in numbers
formatted using gnuplot's internal gprintf() function.

@node dgrid3d, dummy, decimalsign, set-show
@subsection dgrid3d

@c ?commands set dgrid3d
@c ?commands unset dgrid3d
@c ?commands show dgrid3d
@c ?set dgrid3d
@c ?unset dgrid3d
@c ?show dgrid3d
@cindex dgrid3d
@opindex dgrid3d


@cindex nodgrid3d

The @ref{dgrid3d} command enables, and can set parameters for, non-grid to
grid data mapping.  See `splot grid_data` for more details about the grid data
structure.

Syntax:
@example
      set dgrid3d @{<rows>@} @{,@{<cols>@}@}
                  @{ splines |
                    qnorm @{<norm>@} |
                    (gauss | cauchy | exp | box | hann) @{<dx>@} @{,dy@} @}
      unset dgrid3d
      show dgrid3d

@end example

By default @ref{dgrid3d} is disabled.  When enabled, 3D data read from a file
are always treated as a scattered data set.  A grid with dimensions derived
from a bounding box of the scattered data and size as specified by the
row/col_size parameters is created for plotting and contouring.  The grid
is equally spaced in x (rows) and in y (columns); the z values are computed
as weighted averages or spline interpolations of the scattered points' z 
values. In other words, a regularly spaced grid is created and the a smooth
approximation to the raw data is evaluated for all grid points. Only this
approximation is plotted, but not the raw data.

The number of columns defaults to the number of rows, which defaults to 10.

Several algorithms are available to calculate the approximation from the
raw data. Some of these algorithms can take additional parameters.
These interpolations are such the closer the data point is to a grid point, 
the more effect it has on that grid point.

The `splines` algorithm calculates an interpolation based on "thin plate
splines". It does not take additional paramaters.

The `qnorm` algorithm calculates a weighted average of the input data at
each grid point. Each data point is
weighted inversely by its distance from the grid point raised to the norm
power.  (Actually, the weights are given by the inverse of dx^norm + dy^norm,
where dx and dy are the components of the separation of the grid point from
each data point.  For some norms that are powers of two, specifically 4, 8,
and 16, the computation is optimized by using the Euclidean distance in the
weight calculation, (dx^2+dy^2)^norm/2.  However, any non-negative integer
can be used.) The power of the norm can be specified as a single optional
parameter. This algorithm is the default.

Finally, several smoothing kernels are available to calculate weighted
averages: z = Sum_i w(d_i) * z_i / Sum_i w(d_i), where z_i is the value
of the i-th data point and d_i is the distance between the current grid
point and the location of the i-th data point. All kernels assign higher
weights to data points that are close to the current grid point and lower
weights to data points further away.

The following kernels are available:
@example
      gauss :     w(d) = exp(-d*d)
      cauchy :    w(d) = 1/(1 + d*d)
      exp :       w(d) = exp(-d)
      box :       w(d) = 1                     if d<1
                       = 0                     otherwise
      hann :      w(d) = 0.5*(1-cos(2*pi*d))   if d<1
                  w(d) = 0                     otherwise

@end example

When using one of these five smoothing kernels, up to two additional
parameter can be specified: dx and dy. These are used to rescale the
coordinate differences when calculating the distance: 
d_i = sqrt( ((x-x_i)/dx)**2 + ((y-y_i)/dy)**2 ), where x,y are the
coordinates of the current grid point and x_i,y_i are the coordinates
of the i-th data point. The value of dy defaults to the value of dx,
which defaults to 1. The parameters dx and dy make it possible to 
control the radius over which data points contribute to a grid point
IN THE UNITS OF THE DATA ITSELF.

A slightly different syntax is also supported for reasons of backwards
compatibility. If no interpolation algorithm has been explicitly selected,
the `qnorm` algorithm is assumed. Up to three comma-separated, optional
paramaters can be specified, which are interpreted as the the number of
rows, the number of columns, and the norm value, respectively.

The @ref{dgrid3d} option is a simple scheme which replaces scattered data
with weighted averages on a regular grid.More sophisticated approaches
to this problem exist and should be used to preprocess the data outside
`gnuplot` if this simple solution is found inadequate.

See also
@uref{http://www.gnuplot.info/demo/dgrid3d.html,dgrid3d.dem: dgrid3d demo.
}
and
@uref{http://www.gnuplot.info/demo/scatter.html,scatter.dem: dgrid3d demo.
}


@node dummy, encoding, dgrid3d, set-show
@subsection dummy

@c ?commands set dummy
@c ?commands show dummy
@c ?set dummy
@c ?show dummy
@cindex dummy
@opindex dummy


The @ref{dummy} command changes the default dummy variable names.

Syntax:
@example
      set dummy @{<dummy-var>@} @{,<dummy-var>@}
      show dummy

@end example

By default, `gnuplot` assumes that the independent, or "dummy", variable for
the `plot` command is "t" if in parametric or polar mode, or "x" otherwise.
Similarly the independent variables for the `splot` command are "u" and "v"
in parametric mode (`splot` cannot be used in polar mode), or "x" and "y"
otherwise.

It may be more convenient to call a dummy variable by a more physically
meaningful or conventional name.  For example, when plotting time functions:

@example
      set dummy t
      plot sin(t), cos(t)

@end example

At least one dummy variable must be set on the command; @ref{dummy} by itself
will generate an error message.

Examples:
@example
      set dummy u,v
      set dummy ,s

@end example

The second example sets the second variable to s.

@node encoding, fit_, dummy, set-show
@subsection encoding

@c ?commands set encoding
@c ?commands show encoding
@c ?set encoding
@c ?show encoding
@cindex encoding
@opindex encoding


@cindex encodings

@cindex UTF-8

The @ref{encoding} command selects a character encoding.
Syntax:
@example
      set encoding @{<value>@}
      set encoding locale
      show encoding

@end example

Valid values are
@example
   default     - tells a terminal to use its default encoding
   iso_8859_1  - the most common Western European encoding used by many
                 Unix workstations and by MS-Windows. This encoding is
                 known in the PostScript world as 'ISO-Latin1'.
   iso_8859_15 - a variant of iso_8859_1 that includes the Euro symbol
   iso_8859_2  - used in Central and Eastern Europe
   iso_8859_9  - used in Turkey (also known as Latin5)
   koi8r       - popular Unix cyrillic encoding
   koi8u       - ukrainian Unix cyrillic encoding
   cp437       - codepage for MS-DOS
   cp850       - codepage for OS/2, Western Europe
   cp852       - codepage for OS/2, Central and Eastern Europe
   cp1250      - codepage for MS Windows, Central and Eastern Europe
   cp1254      - codepage for MS Windows, Turkish (superset of Latin5)
   utf8        - variable-length (multibyte) representation of Unicode
                 entry point for each character

@end example

The command @ref{locale} is different from the other options.
It attempts to determine the current locale from the runtime environment.
On most systems this is controlled by the environmental variables
LC_ALL, LC_CTYPE, or LANG.  This mechanism is necessary, for example, to
pass multibyte character encodings such as UTF-8 or EUC_JP to the wxt
and cairopdf terminals.  This command does not affect the locale-specific
representation of dates or numbers.
See also @ref{locale} and @ref{decimalsign}.

Generally you must set the encoding before setting the terminal type.
Note that encoding is not supported by all terminal drivers and that
the device must be able to produce the desired non-standard characters.

@node fit_, fontpath, encoding, set-show
@subsection fit

@c ?commands set fit
@c ?commands show fit
@c ?set fit
@c ?show fit
The @ref{fit} setting defines where the @ref{fit} command writes its output.
If this option was built into your version of gnuplot, it also controls
whether parameter errors from the fit will be written into variables.

Syntax:
@example
      set fit @{logfile @{"<filename>"@}@} @{@{no@}errorvariables@}
      unset fit
      show fit

@end example

The <filename> argument must be enclosed in single or double quotes.

If no filename is given or @ref{fit} is used the log file is
reset to its default value "fit.log" or the value of the environmental
variable `FIT_LOG`.

If the given logfile name ends with a / or \, it is interpreted to be
a directory name, and the actual filename will be "fit.log" in that
directory.

If the `errorvariables` option is turned on, the error of each fitted
parameter computed by @ref{fit} will be copied to a user-defined variable
whose name is formed by appending "_err" to the name of the parameter
itself.  This is useful mainly to put the parameter and its error onto
a plot of the data and the fitted function, for reference, as in:

@example
       set fit errorvariables
       fit f(x) 'datafile' using 1:2 via a, b
       print "error of a is:", a_err
       set label 'a=%6.2f', a, '+/- %6.2f', a_err
       plot 'datafile' using 1:2, f(x)

@end example

@node fontpath, format_, fit_, set-show
@subsection fontpath

@c ?commands set fontpath
@c ?commands show fontpath
@c ?set fontpath
@c ?show fontpath
@cindex fontpath
@opindex fontpath


The @ref{fontpath} setting defines additional locations for font files
searched when including font files. Currently only the postscript terminal
supports @ref{fontpath}. If a file cannot be found in the current directory,
the directories in @ref{fontpath} are tried. Further documentation concerning
the supported file formats is included in the `terminal postscript` section
of the documentation.

Syntax:
@example
      set fontpath @{"pathlist1" @{"pathlist2"...@}@}
      show fontpath

@end example

Path names may be entered as single directory names, or as a list of
path names separated by a platform-specific path separator, eg. colon
(':') on Unix, semicolon (';') on DOS/Windows/OS/2/Amiga platforms.
The @ref{fontpath}, @ref{save} and `save set` commands replace the
platform-specific separator with a space character (' ') for maximum
portability. If a directory name ends with an exclamation mark ('!') also
the subdirectories of this directory are searched for font files.

If the environmental variable GNUPLOT_FONTPATH is set, its contents are
appended to @ref{fontpath}.  If it is not set, a system dependent default value
is used. It is set by testing several directories for existence when using
the fontpath the first time. Thus, the first call of @ref{fontpath},
@ref{fontpath}, @ref{fontpath}, `plot`, or `splot` with embedded font
files takes a little more time. If you want to save this time you may
set the environmental variable GNUPLOT_FONTPATH since probing is switched
off, then. You can find out which is the default fontpath by using
@ref{fontpath}.

However, @ref{fontpath} prints the contents of user defined fontpath and
system fontpath separately.  Also, the @ref{save} and `save set` commands save
only the user specified parts of @ref{fontpath}, for portability reasons.

Many other terminal drivers access TrueType fonts via the gd library.
For these drivers the font search path is controlled by the environmental
variable GDFONTPATH.

@node format_, function_style, fontpath, set-show
@subsection format

@c ?commands set format
@c ?commands show format
@c ?set format
@c ?show format
@cindex format
@opindex format


@c ?format cb
The format of the tic-mark labels can be set with the `set format` command
or with the `set tics format` or individual `set @{axis@}tics format` commands.

Syntax:
@example
      set format @{<axes>@} @{"<format-string>"@}
      set format @{<axes>@} @{'<format-string>'@}
      show format

@end example

where <axes> is either `x`, `y`, `xy`, `x2`, `y2`, `z`, `cb` or nothing
(which applies the format to all axes). The following two commands are
equivalent:
@example
      set format y "%.2f"
      set ytics format "%.2f"

@end example

The length of the string is restricted to 100 characters.  The default format
is "% g", but other formats such as "%.2f" or "%3.0em" are often desirable.
The format "$%g$" is often desirable for LaTeX.  If no format string is given,
the format will be returned to the default.  If the empty string "" is given,
tics will have no labels, although the tic mark will still be plotted.
To eliminate the tic marks, use `unset xtics` or `set tics scale 0`.

Newline (\n) and enhanced text markup is accepted in the format string.
Use double-quotes rather than single-quotes in this case.  See also `syntax`.
Characters not preceded by "%" are printed verbatim.  Thus you can include
spaces and labels in your format string, such as "%g m", which will put " m"
after each number.  If you want "%" itself, double it: "%g %%".

See also `set xtics` for more information about tic labels, and
@ref{decimalsign} for how to use non-default decimal separators in numbers
printed this way.
See also
@uref{http://www.gnuplot.info/demo/electron.html,electron demo (electron.dem).
}

@menu
* gprintf_::                    
* format_specifiers::           
* time/date_specifiers::        
@end menu

@node gprintf_, format_specifiers, format_, format_
@subsubsection gprintf

@cindex gprintf
@findex gprintf


The string function gprintf("format",x) uses gnuplot's own format specifiers,
as do the gnuplot commands `set format`, @ref{timestamp}, and others. These
format specifiers are not the same as those used by the standard C-language
routine sprintf(). gprintf() accepts only a single variable to be formatted.
Gnuplot also provides an sprintf("format",x1,x2,...) routine if you prefer.
For a list of gnuplot's format options, see `format specifiers`.

@node format_specifiers, time/date_specifiers, gprintf_, format_
@subsubsection format specifiers

@c ?commands set format specifiers
@c ?set format specifiers
@c ?format specifiers
@cindex format_specifiers

The acceptable formats (if not in time/date mode) are:


@example
      Format       Explanation
      %f           floating point notation
      %e or %E     exponential notation; an "e" or "E" before the power
      %g or %G     the shorter of %e (or %E) and %f
      %x or %X     hex
      %o or %O     octal
      %t           mantissa to base 10
      %l           mantissa to base of current logscale
      %s           mantissa to base of current logscale; scientific power
      %T           power to base 10
      %L           power to base of current logscale
      %S           scientific power
      %c           character replacement for scientific power
      %P           multiple of pi

@end example


A 'scientific' power is one such that the exponent is a multiple of three.
Character replacement of scientific powers (`"%c"`) has been implemented
for powers in the range -18 to +18.  For numbers outside of this range the
format reverts to exponential.

Other acceptable modifiers (which come after the "%" but before the format
specifier) are "-", which left-justifies the number; "+", which forces all
numbers to be explicitly signed; " " (a space), which makes positive numbers
have a space in front of them where negative numbers have "-";
"#", which places a decimal point after
floats that have only zeroes following the decimal point; a positive integer,
which defines the field width; "0" (the digit, not the letter) immediately
preceding the field width, which indicates that leading zeroes are to be used
instead of leading blanks; and a decimal point followed by a non-negative
integer, which defines the precision (the minimum number of digits of an
integer, or the number of digits following the decimal point of a float).

Some systems may not support all of these modifiers but may also support
others; in case of doubt, check the appropriate documentation and
then experiment.

Examples:
@example
      set format y "%t"; set ytics (5,10)          # "5.0" and "1.0"
      set format y "%s"; set ytics (500,1000)      # "500" and "1.0"
      set format y "%+-12.3f"; set ytics(12345)    # "+12345.000  "
      set format y "%.2t*10^%+03T"; set ytic(12345)# "1.23*10^+04"
      set format y "%s*10^@{%S@}"; set ytic(12345)   # "12.345*10^@{3@}"
      set format y "%s %cg"; set ytic(12345)       # "12.345 kg"
      set format y "%.0P pi"; set ytic(6.283185)   # "2 pi"
      set format y "%.0f%%"; set ytic(50)          # "50%"

@end example

@example
      set log y 2; set format y '%l'; set ytics (1,2,3)
      #displays "1.0", "1.0" and "1.5" (since 3 is 1.5 * 2^1)

@end example

There are some problem cases that arise when numbers like 9.999 are printed
with a format that requires both rounding and a power.

If the data type for the axis is time/date, the format string must contain
valid codes for the 'strftime' function (outside of `gnuplot`, type "man
strftime").  See @ref{timefmt} for a list of the allowed input format codes.

@node time/date_specifiers,  , format_specifiers, format_
@subsubsection time/date specifiers

@c ?commands set format date_specifiers
@c ?commands set format time_specifiers
@c ?set format date_specifiers
@c ?set format time_specifiers
@c ?set date_specifiers
@c ?set time_specifiers
@cindex date_specifiers

@cindex time_specifiers

In time/date mode, the acceptable formats are:


@example
      Format       Explanation
      %a           abbreviated name of day of the week
      %A           full name of day of the week
      %b or %h     abbreviated name of the month
      %B           full name of the month
      %d           day of the month, 01--31
      %D           shorthand for "%m/%d/%y" (only output)
      %F           shorthand for "%Y-%m-%d" (only output)
      %k           hour, 0--23 (one or two digits)
      %H           hour, 00--23 (always two digits)
      %l           hour, 1--12 (one or two digits)
      %I           hour, 01--12 (always two digits)
      %j           day of the year, 1--366
      %m           month, 01--12
      %M           minute, 0--60
      %p           "am" or "pm"
      %r           shorthand for "%I:%M:%S %p" (only output)
      %R           shorthand for "%H:%M" (only output)
      %S           second, 0--60
      %T           shorthand for "%H:%M:%S" (only output)
      %U           week of the year (week starts on Sunday)
      %w           day of the week, 0--6 (Sunday = 0)
      %W           week of the year (week starts on Monday)
      %y           year, 0-99
      %Y           year, 4-digit

@end example


Except for the non-numerical formats, these may be preceded by a "0" ("zero",
not "oh") to pad the field length with leading zeroes, and a positive digit,
to define the minimum field width (which will be overridden if the specified
width is not large enough to contain the number).  There is a 24-character
limit to the length of the printed text; longer strings will be truncated.

Examples:

Suppose the text is "76/12/25 23:11:11".  Then
@example
      set format x                 # defaults to "12/25/76" \n "23:11"
      set format x "%A, %d %b %Y"  # "Saturday, 25 Dec 1976"
      set format x "%r %D"         # "11:11:11 pm 12/25/76"

@end example

Suppose the text is "98/07/06 05:04:03".  Then
@example
      set format x "%1y/%2m/%3d %01H:%02M:%03S"  # "98/ 7/  6 5:04:003"

@end example

@node function_style, functions, format_, set-show
@subsection function style

@c ?set function style
This form of the command is deprecated. Please see `set style function`.

@node functions, grid, function_style, set-show
@subsection functions

@c ?commands show functions
@c ?show functions
The @ref{functions} command lists all user-defined functions and their
definitions.

Syntax:
@example
      show functions

@end example

For information about the definition and usage of functions in `gnuplot`,
please see `expressions`.
See also
@uref{http://www.gnuplot.info/demo/spline.html,splines as user defined functions (spline.dem)
}
and
@uref{http://www.gnuplot.info/demo/airfoil.html,use of functions and complex variables for airfoils (airfoil.dem).
}

@node grid, hidden3d, functions, set-show
@subsection grid

@c ?commands set grid
@c ?commands unset grid
@c ?commands show grid
@c ?set grid
@c ?unset grid
@c ?show grid
@cindex grid
@opindex grid


@cindex nogrid

The `set grid` command allows grid lines to be drawn on the plot.

Syntax:
@example
      set grid @{@{no@}@{m@}xtics@} @{@{no@}@{m@}ytics@} @{@{no@}@{m@}ztics@}
               @{@{no@}@{m@}x2tics@} @{@{no@}@{m@}y2tics@}
               @{@{no@}@{m@}cbtics@}
               @{polar @{<angle>@}@}
               @{layerdefault | front | back@}
               @{ @{linestyle <major_linestyle>@}
                 | @{linetype | lt <major_linetype>@}
                   @{linewidth | lw <major_linewidth>@}
                 @{ , @{linestyle | ls <minor_linestyle>@}
                     | @{linetype | lt <minor_linetype>@}
                       @{linewidth | lw <minor_linewidth>@} @} @}
      unset grid
      show grid

@end example

The grid can be enabled and disabled for the major and/or minor tic
marks on any axis, and the linetype and linewidth can be specified
for major and minor grid lines, also via a predefined linestyle, as
far as the active terminal driver supports this.

Additionally, a polar grid can be selected for 2D plots---circles are drawn
to intersect the selected tics, and radial lines are drawn at definable
intervals.  (The interval is given in degrees or radians, depending on the
@ref{angles} setting.)  Note that a polar grid is no longer automatically
generated in polar mode.

The pertinent tics must be enabled before `set grid` can draw them; `gnuplot`
will quietly ignore instructions to draw grid lines at non-existent tics, but
they will appear if the tics are subsequently enabled.

If no linetype is specified for the minor gridlines, the same linetype as the
major gridlines is used.  The default polar angle is 30 degrees.

If `front` is given, the grid is drawn on top of the graphed data. If
`back` is given, the grid is drawn underneath the graphed data. Using
`front` will prevent the grid from being obscured by dense data. The
default setup, `layerdefault`, is equivalent to `back` for 2d plots.
In 3D plots the default is to split up the grid and the graph box into
two layers: one behind, the other in front of the plotted data and
functions. Since @ref{hidden3d} mode does its own sorting, it ignores
all grid drawing order options and passes the grid lines through the
hidden line removal machinery instead. These options actually affect
not only the grid, but also the lines output by @ref{border} and the
various ticmarks (see `set xtics`).

Z grid lines are drawn on the bottom of the plot.  This looks better if a
partial box is drawn around the plot---see @ref{border}.

@node hidden3d, historysize, grid, set-show
@subsection hidden3d

@c ?commands set hidden3d
@c ?commands unset hidden3d
@c ?commands show hidden3d
@c ?set hidden3d
@c ?unset hidden3d
@c ?show hidden3d
@cindex hidden3d
@opindex hidden3d


@cindex nohidden3d

The @ref{hidden3d} command enables hidden line removal for surface plotting
(see `splot`).  Some optional features of the underlying algorithm can also
be controlled using this command.

Syntax:
@example
      set hidden3d @{defaults@} |
                   @{ @{front|back@}
                     @{@{offset <offset>@} | @{nooffset@}@}
                     @{trianglepattern <bitpattern>@}
                     @{@{undefined <level>@} | @{noundefined@}@}
                     @{@{no@}altdiagonal@}
                     @{@{no@}bentover@} @}
      unset hidden3d
      show hidden3d

@end example

In contrast to the usual display in gnuplot, hidden line removal actually
treats the given function or data grids as real surfaces that can't be seen
through, so plot elements behind the surface will be hidden by it.  For this
to work, the surface needs to have 'grid structure' (see @ref{datafile}
about this), and it has to be drawn `with lines` or @ref{linespoints}.

When @ref{hidden3d} is set, both the hidden portion of the surface and possibly
its contours drawn on the base (see @ref{contour}) as well as the grid will
be hidden.  Each surface has its hidden parts removed with respect to itself
and to other surfaces, if more than one surface is plotted.  Contours drawn
on the surface (@ref{surface}) don't work.

Labels and arrows are always visible and are unaffected.  The key box is
never hidden by the surface. As of gnuplot version 4.2, @ref{hidden3d} also
affects 3D plotting styles `with points`, @ref{labels}, and @ref{vectors},
even if no surface is present in the graph.  Individual plots within the
graph may be explicitly excluded from this processing by appending the extra
option `nohidden3d` to the @ref{with} specifier.

Hidden3d does not affect solid surfaces drawn using the pm3d mode. To achieve
a similar effect purely for pm3d surfaces, use instead @ref{depthorder}.
To mix pm3d surfaces with normal @ref{hidden3d} processing, use the option
`set hidden3d front` to force all elements included in hidden3d processing to
be drawn after any remaining plot elements. Then draw the surface twice, once
`with lines lt -2` and a second time @ref{pm3d}. The first instance will
include the surface during calculation of occluded elements but will not draw
the surface itself.

Functions are evaluated at isoline intersections.  The algorithm interpolates
linearly between function points or data points when determining the visible
line segments.  This means that the appearance of a function may be different
when plotted with @ref{hidden3d} than when plotted with `nohidden3d` because in
the latter case functions are evaluated at each sample.  Please see
@ref{samples} and @ref{isosamples} for discussion of the difference.

The algorithm used to remove the hidden parts of the surfaces has some
additional features controllable by this command.  Specifying `defaults` will
set them all to their default settings, as detailed below.  If `defaults` is
not given, only explicitly specified options will be influenced: all others
will keep their previous values, so you can turn on/off hidden line removal
via `set @{no@}hidden3d`, without modifying the set of options you chose.

The first option, `offset`, influences the linestyle used for lines on the
'back' side.  Normally, they are drawn in a linestyle one index number higher
than the one used for the front, to make the two sides of the surface
distinguishable.  You can specify a different line style offset to add
instead of the default 1, by `offset <offset>`.  Option `nooffset` stands for
`offset 0`, making the two sides of the surface use the same linestyle.

Next comes the option `trianglepattern <bitpattern>`.  <bitpattern> must be
a number between 0 and 7, interpreted as a bit pattern.  Each bit determines
the visibility of one edge of the triangles each surface is split up into.
Bit 0 is for the 'horizontal' edges of the grid, Bit 1 for the 'vertical'
ones, and Bit 2 for the diagonals that split each cell of the original grid
into two triangles.  The default pattern is 3, making all horizontal and
vertical lines visible, but not the diagonals.  You may want to choose 7 to
see those diagonals as well.

The `undefined <level>` option lets you decide what the algorithm is to do
with data points that are undefined (missing data, or undefined function
values), or exceed the given x-, y- or z-ranges.  Such points can either be
plotted nevertheless, or taken out of the input data set.  All surface
elements touching a point that is taken out will be taken out as well, thus
creating a hole in the surface.  If <level> = 3, equivalent to option
`noundefined`, no points will be thrown away at all.  This may produce all
kinds of problems elsewhere, so you should avoid this.  <level> = 2 will
throw away undefined points, but keep the out-of-range ones.  <level> = 1,
the default, will get rid of out-of-range points as well.

By specifying `noaltdiagonal`, you can override the default handling of a
special case can occur if `undefined` is active (i.e. <level> is not 3).
Each cell of the grid-structured input surface will be divided in two
triangles along one of its diagonals.  Normally, all these diagonals have
the same orientation relative to the grid.  If exactly one of the four cell
corners is excluded by the `undefined` handler, and this is on the usual
diagonal, both triangles will be excluded.  However if the default setting
of `altdiagonal` is active, the other diagonal will be chosen for this cell
instead, minimizing the size of the hole in the surface.

The `bentover` option controls what happens to another special case, this
time in conjunction with the `trianglepattern`.  For rather crumply surfaces,
it can happen that the two triangles a surface cell is divided into are seen
from opposite sides (i.e. the original quadrangle is 'bent over'), as
illustrated in the following ASCII art:

@example
                                                              C----B
    original quadrangle:  A--B      displayed quadrangle:     |\   |
      ("set view 0,0")    | /|    ("set view 75,75" perhaps)  | \  |
                          |/ |                                |  \ |
                          C--D                                |   \|
                                                              A    D

@end example

If the diagonal edges of the surface cells aren't generally made visible by
bit 2 of the <bitpattern> there, the edge CB above wouldn't be drawn at all,
normally, making the resulting display hard to understand.  Therefore, the
default option of `bentover` will turn it visible in this case.  If you don't
want that, you may choose `nobentover` instead.
See also
@uref{http://www.gnuplot.info/demo/hidden.html,hidden line removal demo (hidden.dem)
}
and
@uref{http://www.gnuplot.info/demo/singulr.html,complex hidden line demo (singulr.dem).
}

@node historysize, isosamples, hidden3d, set-show
@subsection historysize

@c ?commands set historysize
@c ?set historysize
@c ?unset historysize
@cindex historysize
@opindex historysize


@cindex nohistorysize

Note: the command @ref{historysize} is only available when
gnuplot has been configured with the GNU readline.

Syntax:
@example
      set historysize <int>
      unset historysize

@end example

When leaving gnuplot, the value of historysize is used for
truncating the history to at most that much lines. The default
is 500.
@ref{historysize} will disable history truncation and thus
allow an infinite number of lines to be written to the history
file.

@node isosamples, key, historysize, set-show
@subsection isosamples

@c ?commands set isosamples
@c ?commands show isosamples
@c ?set isosamples
@c ?show isosamples
@cindex isosamples
@opindex isosamples


The isoline density (grid) for plotting functions as surfaces may be changed
by the @ref{isosamples} command.

Syntax:
@example
      set isosamples <iso_1> @{,<iso_2>@}
      show isosamples

@end example

Each function surface plot will have <iso_1> iso-u lines and <iso_2> iso-v
lines.  If you only specify <iso_1>, <iso_2> will be set to the same value
as <iso_1>.  By default, sampling is set to 10 isolines per u or v axis.
A higher sampling rate will produce more accurate plots, but will take longer.
These parameters have no effect on data file plotting.

An isoline is a curve parameterized by one of the surface parameters while
the other surface parameter is fixed.  Isolines provide a simple means to
display a surface.  By fixing the u parameter of surface s(u,v), the iso-u
lines of the form c(v) = s(u0,v) are produced, and by fixing the v parameter,
the iso-v lines of the form c(u) = s(u,v0) are produced.

When a function surface plot is being done without the removal of hidden
lines, @ref{samples}  controls the number of points sampled along each
isoline;  see @ref{samples} and @ref{hidden3d}. The contour algorithm
assumes that a function sample occurs at each isoline intersection, so
change in @ref{samples} as well as @ref{isosamples} may be desired when changing
the resolution of a function surface/contour.

@node key, label, isosamples, set-show
@subsection key

@c ?commands set key
@c ?commands unset key
@c ?commands show key
@c ?set key
@c ?unset key
@c ?show key
@cindex key
@opindex key


@cindex nokey

@cindex legend

The `set key` command enables a key (or legend) describing plots on a plot.

The contents of the key, i.e., the names given to each plotted data set and
function and samples of the lines and/or symbols used to represent them, are
determined by the @ref{title} and @ref{with} options of the @{`s`@}`plot` command.
Please see @ref{title} and @ref{with} for more information.

Syntax:
@example
      set key @{on|off@} @{default@}
              @{@{inside | outside@} | @{lmargin | rmargin | tmargin | bmargin@}
                | @{at <position>@}@}
              @{left | right | center@} @{top | bottom | center@}
              @{vertical | horizontal@} @{Left | Right@}
              @{@{no@}reverse@} @{@{no@}invert@}
              @{samplen <sample_length>@} @{spacing <vertical_spacing>@}
              @{width <width_increment>@}
              @{height <height_increment>@}
              @{@{no@}autotitle @{columnheader@}@}
              @{title "<text>"@} @{@{no@}enhanced@}
              @{font "<face>,<size>"@} @{textcolor <colorspec>@}
              @{@{no@}box @{ @{linestyle | ls <line_style>@}
                         | @{linetype | lt <line_type>@}
                           @{linewidth | lw <line_width>@}@}@}
      unset key
      show key

@end example

The key contains a title and a sample (line, point, box) for each plot
in the graph. The key may be turned off by requesting `set key off` or
`unset key`.  Individual key entries may be turned off by using the
`notitle` keyword in the corresponding plot command.

Elements within the key are stacked according to `vertical` or `horizontal`.
In the case of `vertical`, the key occupies as few columns as possible.  That
is, elements are aligned in a column until running out of vertical space at
which point a new column is started.  In the case of `horizontal`, the key
occupies as few rows as possible.

By default the key is placed in the upper right inside corner of the graph.
The keywords `left`, `right`, `top`, `bottom`, `center`, `inside`, `outside`,
@ref{lmargin}, @ref{rmargin}, @ref{tmargin}, @ref{bmargin} (, `above`, `over`, `below` and
`under`) may be used to automatically place the key in other positions of the
graph.  Also an `at <position>` may be given to indicate precisely where the
plot should be placed.  In this case, the keywords `left`, `right`, `top`,
`bottom` and `center` serve an analogous purpose for alignment.
For more information, see `key placement`.

Justification of the plot titles within the key is controlled by `Left` or
`Right` (default).  The text and sample can be reversed (`reverse`) and a
box can be drawn around the key (`box @{...@}`) in a specified `linetype`
and `linewidth`, or a user-defined `linestyle`.

By default the first plot label is at the top of the key and successive labels
are entered below it. The `invert` option causes the first label to be placed
at the bottom of the key, with successive labels entered above it. This option
is useful to force the vertical ordering of labels in the key to match the
order of box types in a stacked histogram.

The <height_increment> is a number of character heights to be added to or
subtracted from the height of the key box.  This is useful mainly when you are
putting a box around the key and want larger borders around the key entries.

All plotted curves of `plot`s and `splot`s are titled according to the
default option `autotitles`. The automatic generation of titles can be
suppressed by `noautotitles`; then only those titles explicitly defined
by `(s)plot ... title ...` will be drawn.

@cindex columnheader

The command `set key autotitle columnheader` causes the first entry in each
column of input data to be interpreted as a text string and used as a title for
the corresponding plot. If the quantity being plotted is a function of data
from several columns, gnuplot may be confused as to which column to draw the
title from. In this case it is necessary to specify the column explicitly in
the plot command, e.g.

@example
      plot "datafile" using (($2+$3)/$4) title columnhead(3) with lines

@end example

An overall title can be put on the key (`title "<text>"`)---see also `syntax`
for the distinction between text in single- or double-quotes.  The key title
uses the same justification as do the plot titles.

The defaults for `set key` are `on`, `right`, `top`, `vertical`, `Right`,
`noreverse`, `noinvert`, `samplen 4`, `spacing 1.25`, `title ""`, and
`nobox`.  The default <linetype> is the same as that used for the plot
borders.  Entering `set key default` returns the key to its default
configuration.

The key is drawn as a sequence of lines, with one plot described on each
line.  On the right-hand side (or the left-hand side, if `reverse` is
selected) of each line is a representation that attempts to mimic the way the
curve is plotted.  On the other side of each line is the text description
(the line title), obtained from the `plot` command.  The lines are vertically
arranged so that an imaginary straight line divides the left- and right-hand
sides of the key.  It is the coordinates of the top of this line that are
specified with the `set key` command.  In a `plot`, only the x and y
coordinates are used to specify the line position.  For a `splot`, x, y and
z are all used as a 3D location mapped using the same mapping as the graph
itself to form the required 2D screen position of the imaginary line.

When using the TeX or PostScript drivers, or similar drivers where formatting
information is embedded in the string, `gnuplot` is unable to calculate
correctly the width of the string for key positioning.  If the key is to be
positioned at the left, it may be convenient to use the combination  `set key
left Left reverse`.  The box and gap in the grid will be the width of the
literal string.

If `splot` is being used to draw contours, the contour labels will be listed
in the key.  If the alignment of these labels is poor or a different number
of decimal places is desired, the label format can be specified.  See
@ref{clabel} for details.

Examples:

This places the key at the default location:
@example
      set key default

@end example

This disables the key:
@example
      unset key

@end example

This places a key at coordinates 2,3.5,2 in the default (first) coordinate
system:
@example
      set key at 2,3.5,2

@end example

This places the key below the graph:
@example
      set key below

@end example

This places the key in the bottom left corner, left-justifies the text,
gives it a title, and draws a box around it in linetype 3:
@example
      set key left bottom Left title 'Legend' box 3

@end example

@menu
* key_placement::               
* key_samples::                 
@end menu

@node key_placement, key_samples, key, key
@subsubsection key placement

@c ?commands set key placement
@c ?set key placement
@c ?key placement
To understand positioning, the best concept is to think of a region, i.e.,
inside/outside, or one of the margins.  Along with the region, keywords
`left/center/right` (l/c/r) and `top/center/bottom` (t/c/b) control where
within the particular region the key should be placed.

When in `inside` mode, the keywords `left` (l), `right` (r), `top` (t),
`bottom` (b), and `center` (c) push the key out toward the plot boundary as
illustrated:

@example
     t/l   t/c   t/r

@end example

@example
     c/l    c    c/r

@end example

@example
     b/l   b/c   b/r

@end example


When in `outside` mode, automatic placement is similar to the above
illustration, but with respect to the view, rather than the graph boundary.
That is, a border is moved inward to make room for the key outside of
the plotting area, although this may interfere with other labels and may
cause an error on some devices.  The particular plot border that is moved
depends upon the position described above and the stacking direction.  For
options centered in one of the dimensions, there is no ambiguity about which
border to move.  For the corners, when the stack direction is `vertical`, the
left or right border is moved inward appropriately.  When the stack direction
is `horizontal`, the top or bottom border is moved inward appropriately.

The margin syntax allows automatic placement of key regardless of stack
direction.  When one of the margins @ref{lmargin} (lm), @ref{rmargin} (rm),
@ref{tmargin} (tm), and @ref{bmargin} (bm) is combined with a single, non-conflicting
direction keyword, the following illustrated positions may contain the key:

@example
          l/tm  c/tm  r/tm

@end example

@example
     t/lm                  t/rm

@end example

@example
     c/lm                  c/rm

@end example

@example
     b/lm                  b/rm

@end example

@example
          l/bm  c/bm  r/bm

@end example


Keywords `above` and `over` are synonymous with @ref{tmargin}.  For version
compatibility, `above` or `over` without an additional l/c/r or stack direction
keyword uses `center` and `horizontal`.  Keywords `below` and `under` are
synonymous with @ref{bmargin}.  For compatibility, `below` or `under` without an
additional l/c/r or stack  direction keyword uses `center` and `horizontal`.  A
further compatibility issue is that `outside` appearing without an additional
t/b/c or stack direction keyword uses `top`, `right` and `vertical` (i.e., the
same as t/rm above).

The <position> can be a simple x,y,z as in previous versions, but these can
be preceded by one of five keywords (`first`, `second`, `graph`, `screen`,
`character`) which selects the coordinate system in which the position of
the first sample line is specified.  See `coordinates` for more details.
The effect of `left`, `right`, `top`, `bottom`, and `center` when <position>
is given is to align the key as though it were text positioned using the
label command, i.e., `left` means left align with key to the right of
<position>, etc.

@node key_samples,  , key_placement, key
@subsubsection key samples

@c ?commands set key samples
@c ?set key samples
@c ?key samples
By default, each plot on the graph generates a corresponding entry in the key.
This entry contains a plot title and a sample line/point/box of the same color
and fill properties as used in the plot itself.  The font and textcolor
properties control the appearance of the individual plot titles that appear in
the key. Setting the textcolor to "rgb variable" causes the text for each key
entry to be the same color as the line or fill color for that plot.
This was the default in some earlier versions of gnuplot.

The length of the sample line can be controlled by `samplen`.  The sample
length is computed as the sum of the tic length and <sample_length> times the
character width.  `samplen` also affects the positions of point samples in
the key since these are drawn at the midpoint of the sample line, even if
the sample line itself is not drawn.

The vertical spacing between lines is controlled by `spacing`.  The spacing
is set equal to the product of the pointsize, the vertical tic size, and
<vertical_spacing>.  The program will guarantee that the vertical spacing is
no smaller than the character height.

The <width_increment> is a number of character widths to be added to or
subtracted from the length of the string.  This is useful only when you are
putting a box around the key and you are using control characters in the text.
`gnuplot` simply counts the number of characters in the string when computing
the box width; this allows you to correct it.

@node label, lmargin, key, set-show
@subsection label

@c ?commands set label
@c ?commands unset label
@c ?commands show label
@c ?set label
@c ?unset label
@c ?show label
@cindex label
@opindex label


@cindex nolabel

Arbitrary labels can be placed on the plot using the `set label` command.

Syntax:
@example
      set label @{<tag>@} @{"<label text>"@} @{at <position>@}
                @{left | center | right@}
                @{norotate | rotate @{by <degrees>@}@}
                @{font "<name>@{,<size>@}"@}
                @{noenhanced@}
                @{front | back@}
                @{textcolor <colorspec>@}
                @{point <pointstyle> | nopoint@}
                @{offset <offset>@}
      unset label @{<tag>@}
      show label

@end example

The <position> is specified by either x,y or x,y,z, and may be preceded by
`first`, `second`, `graph`, `screen`, or `character` to select the coordinate
system.  See `coordinates` for details.

The tag is an integer that is used to identify the label. If no <tag>
is given, the lowest unused tag value is assigned automatically.  The
tag can be used to delete or modify a specific label.  To change any
attribute of an existing label, use the `set label` command with the
appropriate tag, and specify the parts of the label to be changed.

The <label text> can be a string constant, a string variable, or a string-
valued expression. See `strings`, @ref{sprintf}, and @ref{gprintf}.

By default, the text is placed flush left against the point x,y,z.  To adjust
the way the label is positioned with respect to the point x,y,z, add the
justification parameter, which may be `left`, `right` or `center`,
indicating that the point is to be at the left, right or center of the text.
Labels outside the plotted boundaries are permitted but may interfere with
axis labels or other text.

If `rotate` is given, the label is written vertically (if the terminal can do
so, of course).  If `rotate by <degrees>` is given, conforming terminals will
try to write the text at the specified angle; non-conforming terminals will
treat this as vertical text.

Font and its size can be chosen explicitly by `font "<name>@{,<size>@}"` if the
terminal supports font settings.  Otherwise the default font of the terminal
will be used.

Normally the enhanced text mode string interpretation, if enabled for the
current terminal, is applied to all text strings including label text.
The `noenhanced` property can be used to exempt a specific label from the
enhanced text mode processing.  The can be useful if the label contains
underscores, for example. See `enhanced text`.

If `front` is given, the label is written on top of the graphed data. If
`back` is given (the default), the label is written underneath the graphed
data.  Using `front` will prevent a label from being obscured by dense data.

`textcolor <colorspec>` changes the color of the label text. <colorspec> can be
a linetype, an rgb color, or a palette mapping. See help for @ref{colorspec} and
@ref{palette}.  `textcolor` may be abbreviated `tc`.
@example
   `tc default` resets the text color to its default state.
   `tc lt <n>` sets the text color to that of line type <n>.
   `tc ls <n>` sets the text color to that of line style <n>.
   `tc palette z` selects a palette color corresponding to the label z position.
   `tc palette cb <val>` selects a color corresponding to <val> on the colorbar.
   `tc palette fraction <val>`, with 0<=val<=1, selects a color corresponding to
       the mapping [0:1] to grays/colors of the @ref{palette}.
   `tc rgb "#RRGGBB"` selects an arbitrary 24-bit RGB color.

@end example

If a <pointstyle> is given, using keywords `lt`, `pt` and `ps`, see @ref{style},
a point with the given style and color of the given line type is plotted at
the label position and the text of the label is displaced slightly.
This option is used by default for placing labels in `mouse` enhanced
terminals.  Use `nopoint` to turn off the drawing of a point near
the label (this is the default).

The displacement defaults to 1,1 in @ref{pointsize} units if a <pointstyle> is
given, 0,0 if no <pointstyle> is given.  The displacement can be controlled
by the optional `offset <offset>` where <offset> is specified by either x,y
or x,y,z, and may be preceded by `first`, `second`, `graph`, `screen`, or
`character` to select the coordinate system.  See `coordinates` for details.

If one (or more) axis is timeseries, the appropriate coordinate should be
given as a quoted time string according to the @ref{timefmt} format string.
See @ref{xdata} and @ref{timefmt}.

The EEPIC, Imagen, LaTeX, and TPIC drivers allow \\ in a string to specify
a newline.

Label coordinates and text can also be read from a data file (see @ref{labels}).

Examples:

To set a label at (1,2) to "y=x", use:
@example
      set label "y=x" at 1,2

@end example

To set a Sigma of size 24, from the Symbol font set, at the center of
the graph, use:
@example
      set label "S" at graph 0.5,0.5 center font "Symbol,24"

@end example

To set a label "y=x^2" with the right of the text at (2,3,4), and tag the
label as number 3, use:
@example
      set label 3 "y=x^2" at 2,3,4 right

@end example

To change the preceding label to center justification, use:
@example
      set label 3 center

@end example

To delete label number 2, use:
@example
      unset label 2

@end example

To delete all labels, use:
@example
      unset label

@end example

To show all labels (in tag order), use:
@example
      show label

@end example

To set a label on a graph with a timeseries on the x axis, use, for example:
@example
      set timefmt "%d/%m/%y,%H:%M"
      set label "Harvest" at "25/8/93",1

@end example

To display a freshly fitted parameter on the plot with the data and the
fitted function, do this after the @ref{fit}, but before the `plot`:
@example
      set label sprintf("a = %3.5g",par_a) at 30,15
      bfit = gprintf("b = %s*10^%S",par_b)
      set label bfit at 30,20

@end example

To display a function definition along with its fitted parameters, use:
@example
      f(x)=a+b*x
      fit f(x) 'datafile' via a,b
      set label GPFUN_f at graph .05,.95
      set label sprintf("a = %g", a) at graph .05,.90 
      set label sprintf("b = %g", b) at graph .05,.85

@end example

To set a label displaced a little bit from a small point:
@example
      set label 'origin' at 0,0 point lt 1 pt 2 ps 3 offset 1,-1

@end example

To set a label whose color matches the z value (in this case 5.5) of some
point on a 3D splot colored using pm3d:
@example
      set label 'text' at 0,0,5.5 tc palette z

@end example


@node lmargin, loadpath, label, set-show
@subsection lmargin

@c ?commands set lmargin
@c ?set lmargin
@cindex lmargin
@opindex lmargin


The command @ref{lmargin} sets the size of the left margin.
Please see @ref{margin} for details.

@node loadpath, locale, lmargin, set-show
@subsection loadpath

@c ?commands set loadpath
@c ?commands show loadpath
@c ?set loadpath
@c ?show loadpath
@cindex loadpath
@opindex loadpath


The @ref{loadpath} setting defines additional locations for data and command
files searched by the @ref{call}, `load`, `plot` and `splot` commands.  If a
file cannot be found in the current directory, the directories in
@ref{loadpath} are tried.

Syntax:
@example
      set loadpath @{"pathlist1" @{"pathlist2"...@}@}
      show loadpath

@end example

Path names may be entered as single directory names, or as a list of
path names separated by a platform-specific path separator, eg. colon
(':') on Unix, semicolon (';') on DOS/Windows/OS/2/Amiga platforms.
The @ref{loadpath}, @ref{save} and `save set` commands replace the
platform-specific separator with a space character (' ') for maximum
portability.

If the environment variable GNUPLOT_LIB is set, its contents are
appended to @ref{loadpath}.  However, @ref{loadpath} prints the contents
of user defined loadpath and system loadpath separately.  Also, the
@ref{save} and `save set` commands save only the user specified parts of
@ref{loadpath}, for portability reasons.

@node locale, logscale, loadpath, set-show
@subsection locale

@c ?commands set locale
@c ?set locale
@cindex locale
@opindex locale


The @ref{locale} setting determines the language with which `@{x,y,z@}@{d,m@}tics`
will write the days and months.

Syntax:
@example
      set locale @{"<locale>"@}

@end example

<locale> may be any language designation acceptable to your installation.
See your system documentation for the available options.  The command
`set locale ""` will try to determine the locale from the LC_TIME, LC_ALL,
or LANG environment variables.

To change the decimal point locale, see @ref{decimalsign}.
To change the character encoding to the current locale, see @ref{encoding}.

@node logscale, macros, locale, set-show
@subsection logscale

@c ?commands set logscale
@c ?commands unset logscale
@c ?commands show logscale
@c ?set logscale
@c ?unset logscale
@c ?show logscale
@c ?set log
@cindex logscale
@opindex logscale


@cindex nologscale

Syntax:
@example
      set logscale <axes> <base>
      unset logscale <axes>
      show logscale

@end example

where <axes> may be any combinations of `x`, `x2`, `y`, `y2`, `z`, and `cb` in
any order, and where <base> is the base of the log scaling.  If <base> is not
given, then 10 is assumed.  If <axes> is not given, then all axes are assumed.
The command @ref{logscale} turns off log scaling for the specified axes.

Examples:

To enable log scaling in both x and z axes:
@example
      set logscale xz

@end example

To enable scaling log base 2 of the y axis:
@example
      set logscale y 2

@end example

To enable z and color log axes for a pm3d plot:
@example
      set logscale zcb

@end example

To disable z axis log scaling:
@example
      unset logscale z

@end example

@node macros, mapping, logscale, set-show
@subsection macros

@c ?commands set macros
@c ?commands show macros
@c ?set macros
@c ?show macros
If command line macro substitution is enabled, then tokens in the command line
of the form @@<stringvariablename> will be replaced by the text string contained
in <stringvariablename>. See `substitution`.

Syntax:
@example
     set macros

@end example


@node mapping, margin, macros, set-show
@subsection mapping

@c ?commands set mapping
@c ?commands show mapping
@c ?set mapping
@c ?show mapping
@cindex mapping
@opindex mapping


If data are provided to `splot` in spherical or cylindrical coordinates,
the @ref{mapping} command should be used to instruct `gnuplot` how to
interpret them.

Syntax:
@example
      set mapping @{cartesian | spherical | cylindrical@}

@end example

A cartesian coordinate system is used by default.

For a spherical coordinate system, the data occupy two or three columns
(or @ref{using} entries).  The first two are interpreted as the azimuthal
and polar angles theta and phi (or "longitude" and "latitude"), in the
units specified by @ref{angles}.  The radius r is taken from the third
column if there is one, or is set to unity if there is no third column.
The mapping is:

@example
      x = r * cos(theta) * cos(phi)
      y = r * sin(theta) * cos(phi)
      z = r * sin(phi)

@end example

Note that this is a "geographic" spherical system, rather than a "polar"
one (that is, phi is measured from the equator, rather than the pole).

For a cylindrical coordinate system, the data again occupy two or three
columns.  The first two are interpreted as theta (in the units specified by
@ref{angles}) and z.  The radius is either taken from the third column or set
to unity, as in the spherical case.  The mapping is:

@example
      x = r * cos(theta)
      y = r * sin(theta)
      z = z

@end example

The effects of @ref{mapping} can be duplicated with the @ref{using} filter on the
`splot` command, but @ref{mapping} may be more convenient if many data files are
to be processed.  However even if @ref{mapping} is used, @ref{using} may still be
necessary if the data in the file are not in the required order.

@ref{mapping} has no effect on `plot`.
@c ^ See also
@uref{http://www.gnuplot.info/demo/world.html,world.dem: mapping demos.
}

@node margin, mouse, mapping, set-show
@subsection margin

@c ?commands set margin
@c ?commands show margin
@c ?set margin
@c ?show margin
@cindex margin
@opindex margin


The computed margins can be overridden by the @ref{margin} commands.  @ref{margin} shows the current settings.

Syntax:
@example
      set bmargin @{@{at screen@} <margin>@}
      set lmargin @{@{at screen@} <margin>@}
      set rmargin @{@{at screen@} <margin>@}
      set tmargin @{@{at screen@} <margin>@}
      show margin

@end example

The default units of <margin> are character heights or widths, as appropriate.
A positive value defines the absolute size of the margin.  A negative value
(or none) causes `gnuplot` to revert to the computed value.  For 3D plots,
only the left margin can be set using character units.

The keywords `at screen` indicates that the margin is specified as a fraction
of the full drawing area. This can be used to precisely line up the corners of
individual 2D and 3D graphs in a multiplot. This placement ignores the current
values of @ref{origin} and @ref{size}, and is intended as an alternative 
method for positioning graphs within a multiplot.

Normally the margins of a plot are automatically calculated based on tics,
tic labels, axis labels, the plot title, the timestamp and the size of the
key if it is outside the borders.  If, however, tics are attached to the
axes (`set xtics axis`, for example), neither the tics themselves nor their
labels will be included in either the margin calculation or the calculation
of the positions of other text to be written in the margin.  This can lead
to tic labels overwriting other text if the axis is very close to the border.

@node mouse, multiplot, margin, set-show
@subsection mouse

@c ?commands set mouse
@c ?commands unset mouse
@c ?set mouse
@c ?unset mouse
@cindex mousing

@cindex mouse
@opindex mouse


@cindex nomouse

The command `set mouse` enables mouse actions. Currently the pm, x11, ggi,
windows and wxt terminals are mouse enhanced. There are two mouse modes. The
2d-graph mode works for 2d graphs and for maps (i.e. splots with @ref{view}
having z-rotation 0, 90, 180, 270 or 360 degrees, including `set view map`)
and it allows tracing the position over graph, zooming, annotating graph etc.
For 3d graphs `splot`, the view and scaling of the graph can be changed with
mouse buttons 1 and 2. If additionally to these buttons the modifier <ctrl> is
hold down, the coordinate system only is rotated which is useful for large
data sets. A vertical motion of Button 2 with the shift key hold down changes
the @ref{xyplane}.

Mousing is not available in multiplot mode. When multiplot is finished using
@ref{multiplot}, then the mouse will be turned on again and acts on the
last plot (like replot does).

Syntax:
@example
      set mouse @{doubleclick <ms>@} @{nodoubleclick@} \
                @{@{no@}zoomcoordinates@} \
                @{noruler | ruler @{at x,y@}@} \
                @{polardistance@{deg|tan@} | nopolardistance@} \
                @{format <string>@} \
                @{clipboardformat <int>/<string>@} \
                @{mouseformat <int>/<string>@} \
                @{@{no@}labels @{"labeloptions"@}@} \
                @{@{no@}zoomjump@} @{@{no@}verbose@}
      unset mouse

@end example

The doubleclick resolution is given in milliseconds and used for Button 1
which copies the current mouse position to the `clipboard`. If you want that
to be done by single clicking a value of 0 ms can be used. The default value
is 300 ms.

The option `zoomcoordinates` determines if the coordinates of the zoom box are
drawn at the edges while zooming. This is on by default.

The options `noruler` and `ruler` switch the ruler off and on, the
latter optionally setting the origin at the given coordinates. While
the ruler is on, the distance in user units from the ruler origin to
the mouse is displayed continuously. By default, toggling the ruler
has the key binding 'r'.

The option `polardistance` determines if the distance between the mouse cursor
and the ruler is also shown in polar coordinates (distance and angle in
degrees or tangent (slope)). This corresponds to the default key binding '5'.

The `format` option takes a fprintf like format string which determines how
floating point numbers are printed to the drivers window and the clipboard.
The default is "% #g".

`clipboardformat` and `mouseformat` are used for formatting the text on
Button1 and Button2 actions -- copying the coordinates to the clipboard and
temporarily annotating the mouse position. This corresponds to the key
bindings '1', '2', '3', '4' (see the driver's documentation). If the argument
is a string this string is used as c format specifier and should contain two
float specifiers, e.g. `set mouse mouseformat "mouse = %5.2g, %10.2f"`. Use
`set mouse mouseformat ""` to turn this string off again.

The following formats are available (format 6 may only be selected if the
format string was specified already):

@example
 0   real coordinates in  brackets e.g. [1.23, 2.45]
 1   real coordinates w/o brackets e.g.  1.23, 2.45
 2   x == timefmt                       [(as set by @ref{timefmt}), 2.45]
 3   x == date                          [31. 12. 1999, 2.45]
 4   x == time                          [23:59, 2.45]
 5   x == date / time                   [31. 12. 1999 23:59, 2.45]
 6   alt. format, specified as string   ""

@end example

@cindex labels

Choose the option @ref{labels} to define persistent gnuplot labels using Button 2.
The default is `nolabels`, which makes Button 2 draw only a temporary label at
the mouse position. Labels are drawn with the current setting of `mouseformat`.
The `labeloptions` string is passed to the `set label` command.  The default is
"point pointstyle 1" which will plot a small plus at the label position.
Temporary labels will disappear at the next @ref{replot} or mouse zoom operation.
Persistent labels can be removed by holding the Ctrl-Key down while clicking
Button 2 on the label's point. The threshold for how close you must be to the
label is also determined by the @ref{pointsize}.

If the option `zoomjump` is on, the mouse pointer will be automatically
offset a small distance after starting a zoom region with button 3. This can
be useful to avoid a tiny (or even empty) zoom region. `zoomjump` is off by
default.

If the option `verbose` is turned on the communication commands are shown
during execution. This option can also be toggled by hitting `6` in the
driver's window. `verbose` is off by default.

Press 'h' in the driver's window for a short summary of the mouse and key
bindings.  This will also display user defined bindings or `hotkeys` which
can be defined using the `bind` command, see help for `bind`.  Note, that user
defined `hotkeys` may override the default bindings.

Press 'q' in the driver's window to close the window. This key cannot be
overridden with the `bind` command.

See also help for `bind` and `label`.

@menu
* X11_mouse::                   
@end menu

@node X11_mouse,  , mouse, mouse
@subsubsection X11 mouse

@c ?mouse x11_mouse
@cindex x11_mouse

@c ?x11 mouse
If multiple X11 plot windows have been opened using the `set term x11 <n>`
terminal option, then only the current plot window supports the entire
range of mouse commands and hotkeys.  The other windows will, however,
continue to display mouse coordinates at the lower left.

For consistency with other screen terminals, X11 mouse support is turned on by
default, wherever the standard input comes from. However, on some UNIX
flavors, special input devices as /dev/null might not be `select-able`; using
such devices with the mouse turned on will hang gnuplot. Please turn off
mousing with `unset mouse` if you are in this situation.

@node multiplot, mx2tics, mouse, set-show
@subsection multiplot

@c ?commands set multiplot
@c ?commands unset multiplot
@c ?set multiplot
@c ?unset multiplot
@cindex multiplot
@opindex multiplot


@cindex nomultiplot

The command @ref{multiplot} places `gnuplot` in the multiplot mode, in which
several plots are placed on the same page, window, or screen.

Syntax:
@example
      set multiplot @{ layout <rows>,<cols>
                      @{rowsfirst|columnsfirst@} @{downwards|upwards@}
                      @{title <page title>@}
                      @{scale <xscale>@{,<yscale>@}@} @{offset <xoff>@{,<yoff>@}@}
                    @}
      unset multiplot

@end example

For some terminals, no plot is displayed until the command @ref{multiplot}
is given, which causes the entire page to be drawn and then returns gnuplot
to its normal single-plot mode.  For other terminals, each separate `plot`
command produces an updated display, either by redrawing all previous ones
and the newly added plot, or by just adding the new plot to the existing
display.

The area to be used by the next plot is not erased before doing the
new plot.  The @ref{clear} command can be used to do this if wanted, as is
typically the case for "inset" plots.

Any labels or arrows that have been defined will be drawn for each plot
according to the current size and origin (unless their coordinates are
defined in the `screen` system).  Just about everything else that can be
`set` is applied to each plot, too.  If you want something to appear only
once on the page, for instance a single time stamp, you'll need to put a `set
time`/`unset time` pair around one of the `plot`, `splot` or @ref{replot}
commands within the @ref{multiplot}/@ref{multiplot} block.

The multiplot title is separate from the individual plot titles, if any.
Space is reserved for it at the top of the page, spanning the full width
of the canvas.

The commands @ref{origin} and @ref{size} must be used to correctly position
each plot if no layout is specified or if fine tuning is desired.  See
@ref{origin} and @ref{size} for details of their usage.

Example:
@example
      set multiplot
      set size 0.4,0.4
      set origin 0.1,0.1
      plot sin(x)
      set size 0.2,0.2
      set origin 0.5,0.5
      plot cos(x)
      unset multiplot

@end example

This displays a plot of cos(x) stacked above a plot of sin(x).

@ref{size} and @ref{origin} refer to the entire plotting area used for each
plot.  Please also see @ref{size}.  If you want to have the axes
themselves line up, you can guarantee that the margins are the same size with
the @ref{margin} commands.  See @ref{margin} for their use.  Note that the
margin settings are absolute, in character units, so the appearance of the
graph in the remaining space will depend on the screen size of the display
device, e.g., perhaps quite different on a video display and a printer.

With the `layout` option you can generate simple multiplots without having
to give the @ref{size} and @ref{origin} commands before each plot:  Those
are generated automatically, but can be overridden at any time.  With
`layout` the display will be divided by a grid with <rows> rows and
<cols> columns.  This grid is filled rows first or columns first depending on
whether the corresponding option is given in the multiplot command.  The stack
of plots can grow `downwards` or `upwards`.
Default is `rowsfirst` and `downwards`.

Each plot can be scaled by `scale` and shifted with `offset`; if the y-values
for scale or offset are omitted, the x-value will be used.  @ref{multiplot}
will turn off the automatic layout and restore the values of @ref{size} and
@ref{origin} as they were before `set multiplot layout`.

Example:
@example
      set size 1,1
      set origin 0,0
      set multiplot layout 3,2 columnsfirst scale 1.1,0.9
      [ up to 6 plot commands here ]
      unset multiplot

@end example

The above example will produce 6 plots in 2 columns filled top to bottom,
left to right.  Each plot will have a horizontal size of 1.1/2 and a vertical
size of 0.9/3.

See also
@uref{http://gnuplot.sourceforge.net/demo/multiplt.html,multiplot demo (multiplt.dem)
}

@node mx2tics, mxtics, multiplot, set-show
@subsection mx2tics

@c ?commands set mx2tics
@c ?commands unset mx2tics
@c ?commands show mx2tics
@c ?set mx2tics
@c ?unset mx2tics
@c ?show mx2tics
@cindex mx2tics
@opindex mx2tics


@cindex nomx2tics

Minor tic marks along the x2 (top) axis are controlled by @ref{mx2tics}.
Please see @ref{mxtics}.

@node mxtics, my2tics, mx2tics, set-show
@subsection mxtics

@c ?commands set mxtics
@c ?commands unset mxtics
@c ?commands show mxtics
@c ?set mxtics
@c ?unset mxtics
@c ?show mxtics
@cindex mxtics
@opindex mxtics


@cindex nomxtics

Minor tic marks along the x axis are controlled by @ref{mxtics}.  They can be
turned off with @ref{mxtics}.  Similar commands control minor tics along
the other axes.

Syntax:
@example
      set mxtics @{<freq> | default@}
      unset mxtics
      show mxtics

@end example

The same syntax applies to @ref{mytics}, @ref{mztics}, @ref{mx2tics}, @ref{my2tics} and
`mcbtics`.

<freq> is the number of sub-intervals (NOT the number of minor tics) between
major tics (the default for a linear axis is either two or five
depending on the major tics, so there are one or four minor
tics between major tics). Selecting `default` will return the number of minor
ticks to its default value.

If the axis is logarithmic, the number of sub-intervals will be set to a
reasonable number by default (based upon the length of a decade).  This will
be overridden if <freq> is given.  However the usual minor tics (2, 3, ...,
8, 9 between 1 and 10, for example) are obtained by setting <freq> to 10,
even though there are but nine sub-intervals.

To set minor tics at arbitrary positions, use the ("<label>" <pos> <level>,
...) form of `set @{x|x2|y|y2|z@}tics` with <label> empty and <level> set to 1.

The `set m@{x|x2|y|y2|z@}tics` commands work only when there are uniformly
spaced major tics.  If all major tics were placed explicitly by
`set @{x|x2|y|y2|z@}tics`, then minor tic commands are ignored.  Implicit
major tics and explicit minor tics can be combined using
`set @{x|x2|y|y2|z@}tics` and `set @{x|x2|y|y2|z@}tics add`.

Examples:
@example
      set xtics 0, 5, 10
      set xtics add (7.5)
      set mxtics 5
@end example

Major tics at 0,5,7.5,10, minor tics at 1,2,3,4,6,7,8,9
@example
      set logscale y
      set ytics format ""
      set ytics 1e-6, 10, 1
      set ytics add ("1" 1, ".1" 0.1, ".01" 0.01, "10^-3" 0.001, \
                     "10^-4" 0.0001)
      set mytics 10
@end example

Major tics with special formatting, minor tics at log positions

By default, minor tics are off for linear axes and on for logarithmic axes.
They inherit the settings for `axis|border` and `@{no@}mirror` specified for
the major tics.  Please see `set xtics` for information about these.

@node my2tics, mytics, mxtics, set-show
@subsection my2tics

@c ?commands set my2tics
@c ?commands unset my2tics
@c ?commands show my2tics
@c ?set my2tics
@c ?unset my2tics
@c ?show my2tics
@cindex my2tics
@opindex my2tics


@cindex nomy2tics

Minor tic marks along the y2 (right-hand) axis are controlled by @ref{my2tics}.  Please see @ref{mxtics}.

@node mytics, mztics, my2tics, set-show
@subsection mytics

@c ?commands set mytics
@c ?commands unset mytics
@c ?commands show mytics
@c ?set mytics
@c ?unset mytics
@c ?show mytics
@cindex mytics
@opindex mytics


@cindex nomytics

Minor tic marks along the y axis are controlled by @ref{mytics}.  Please
see @ref{mxtics}.

@node mztics, object, mytics, set-show
@subsection mztics

@c ?commands set mztics
@c ?commands unset mztics
@c ?commands show mztics
@c ?set mztics
@c ?unset mztics
@c ?show mztics
@cindex mztics
@opindex mztics


@cindex nomztics

Minor tic marks along the z axis are controlled by @ref{mztics}.  Please
see @ref{mxtics}.

@node object, offsets, mztics, set-show
@subsection object

@cindex object
@opindex object


@c ?commands set object
@c ?commands show object
@c ?set object
@c ?show object
The @ref{object} command defines a single object which will appear in all
subsequent 2D plots. You may define as many objects as you like. Currently the
supported object types are @ref{rectangle}, `circle`, @ref{ellipse}, and @ref{polygon}.
Rectangles inherit a default set of style properties (fill, color, border) from
those set by the command @ref{rectangle}, but each object can also be
given individual style properties. Circles, ellipses, and polygons  inherit the
fill style from `set style fill`.

Syntax:
@example
    set object <index>
        <object-type> <object-properties>
        @{front|back|behind@} @{fc|fillcolor <colorspec>@} @{fs <fillstyle>@}
        @{default@} @{lw|linewidth <width>@}

@end example

<object-type> is either @ref{rectangle}, @ref{ellipse}, `circle`, or @ref{polygon}.
Each object type has its own set of characteristic properties.

Setting `front` will draw the object in front of all plot elements, but
behind any labels that are also marked `front`. Setting `back` will place the
object behind all plot curves and labels. Setting `behind` will place the
object behind everything including the axes and `back` rectangles, thus
@example
    set object rectangle from screen 0,0 to screen 1,1 behind
@end example

can be used to provide a colored background for the entire graph or page.

The fill color of the object is taken from the <colorspec>. `fillcolor`
may be abbreviated `fc`.  The fill style is taken from <fillstyle>.
See @ref{colorspec} and `fillstyle`.  If the keyword `default` is given,
these properties are inherited from the default settings at the time a plot
is drawn. See @ref{rectangle}.

@menu
* rectangle::                   
* ellipse::                     
* circle::                      
* polygon::                     
@end menu

@node rectangle, ellipse, object, object
@subsubsection rectangle

@cindex rectangle

@c ?commands set object rectangle
@c ?commands show object rectangle
@c ?set object rectangle
@c ?show object rectangle
Syntax:
@example
    set object <index> rectangle
        @{from <position> @{to|rto@} <position> |
         center <position> size <w>,<h> |
         at <position> size <w>,<h>@}

@end example

The position of the rectangle may be specified by giving the position of two
diagonal corners (bottom left and top right) or by giving the position of the
center followed by the width and the height.  In either case the positions
may be given in axis, graph, or screen coordinates. See `coordinates`.
The options `at` and `center` are synonyms.

Examples:
@example
    # Force the entire area enclosed by the axes to have background color cyan
    set object 1 rect from graph 0, graph 0 to graph 1, graph 1 back
    set object 1 rect fc rgb "cyan" fillstyle solid 1.0

@end example

@example
    # Position a red square with lower left at 0,0 and upper right at 2,3
    set object 2 rect from 0,0 to 2,3 fc lt 1

@end example

@example
    # Position an empty rectangle (no fill) with a blue border
    set object 3 rect from 0,0 to 2,3 fs empty border rgb "blue"

@end example

@example
    # Return fill and color to the default style but leave vertices unchanged
    set object 2 rect default

@end example

@node ellipse, circle, rectangle, object
@subsubsection ellipse

@cindex ellipse

@c ?commands set object ellipse
@c ?commands show object ellipse
@c ?set object ellipse
@c ?show object ellipse
Syntax:
@example
    set object <index> ellipse @{at|center@} <position> size <w>,<h>
        @{angle <orientation>@}
        @{<other-object-properties>@}

@end example

The position of the ellipse is specified by giving the center followed by
the width and the height (actually the major and minor axes). The keywords
`at` and `center` are synonyms.  The center position may be given in axis,
graph, or screen coordinates. See `coordinates`. The major and minor axis
lengths must be given in axis coordinates.  The orientation of the ellipse
is specified by the angle between the horizontal axis and the first axis
of the ellipse.  NB: If the x and y axis scales are not equal, then the
major/minor axis ratio will no longer be correct after rotation. This may
be fixed in a later gnuplot version.

Note that `set object ellipse size <2r>,<2r>` does not in general produce
the same result as `set object circle <r>`.  The circle radius is always
interpreted in terms of units along the x axis, and will always produce a
circle even if the x and y axis scales are different and even if the aspect
ratio of your plot is not 1.  'Set object ellipse' interprets the first '2r'
in terms of x axis units and the second '2r' in terms of y axis units.
This will only produce a circle if the x and y axis scales are identical and
the plot aspect ratio is 1.


@node circle, polygon, ellipse, object
@subsubsection circle

@cindex circle

@c ?commands set object circle
@c ?commands show object circle
@c ?set object circle
@c ?show object circle
Syntax:
@example
    set object <index> circle @{at|center@} <position> size <radius>
        @{arc [<begin>:<end>]@}
        @{<other-object-properties>@}

@end example

The position of the circle is specified by giving the position of the center
center followed by the radius.  The keywords `at` and `center` are synonyms.
The position and radius may be given in x-axis, graph, or canvas
coordinates. See `coordinates`. In all cases the radius is calculated
relative to the horizontal scale of the axis, graph, or canvas.  Any
disparity between the horizontal and vertical scaling will be corrected for
so that the result is always a circle.

By default a full circle is drawn. The optional qualifier `arc` specifies
a starting angle and ending angle, in degrees, for one arc of the circle.
The arc is always drawn counterclockwise.


@node polygon,  , circle, object
@subsubsection polygon

@cindex polygon

@c ?commands set object polygon
@c ?commands show object polygon
@c ?set object polygon
@c ?show object polygon
Syntax:
@example
    set object <index> polygon
        from <position> to <position> ... @{to <position>@}
@end example

or
@example
        from <position> rto <position> ... @{rto <position>@}

@end example

The position of the polygon may be specified by giving the position of a
sequence of vertices. These may be given in axis, graph, or screen coordinates.
If relative coordinates are used (rto) then the coordinate type must match
that of the previous vertex.
See `coordinates`.

Example:
@example
    set object 1 polygon from 0,0 to 1,1 to 2,0
    set object 1 fc rgb "cyan" fillstyle solid 1.0 border lt -1

@end example


@node offsets, origin, object, set-show
@subsection offsets

@c ?commands set offsets
@c ?commands unset offsets
@c ?commands show offsets
@c ?set offsets
@c ?unset offsets
@c ?show offsets
@cindex offsets
@opindex offsets


@cindex nooffsets

Offsets provide a mechanism to put an empty boundary around the data inside
an autoscaled graph.  The offsets only affect the x1 and y1 axes, and only in
2D `plot` commands.

Syntax:
@example
      set offsets <left>, <right>, <top>, <bottom>
      unset offsets
      show offsets

@end example

Each offset may be a constant or an expression.  Each defaults to 0.
By default, the left and right offsets are given in units of the first x axis,
the top and bottom offsets in units of the first y axis.  Alternatively, you
may specify the offsets as a fraction of the total axis range by using the
keyword "graph".  A positive offset expands the axis range in the specified
direction, e.g., a positive bottom offset makes ymin more negative.  Negative
offsets, while permitted, can have unexpected interactions with autoscaling
and clipping.  To prevent the auto-scaling from further adjusting your axis
ranges, it is useful to also specify "set auto fix".

Example:
@example
      set auto fix
      set offsets graph 0.05, 0, 2, 2
      plot sin(x)

@end example

This graph of sin(x) will have a y range [-3:3] because the function
will be autoscaled to [-1:1] and the vertical offsets are each two.
The x range will be [-11:10] because the default is [-10:10] and it has
been expanded to the left by 0.05 of that total range.

@node origin, output, offsets, set-show
@subsection origin

@c ?commands set origin
@c ?commands show origin
@c ?set origin
@c ?show origin
@cindex origin
@opindex origin


The @ref{origin} command is used to specify the origin of a plotting surface
(i.e., the graph and its margins) on the screen.  The coordinates are given
in the `screen` coordinate system (see `coordinates` for information about
this system).

Syntax:
@example
      set origin <x-origin>,<y-origin>

@end example

@node output, parametric_, origin, set-show
@subsection output

@c ?commands set output
@c ?commands show output
@c ?set output
@c ?show output
@cindex output
@opindex output


@c ?output file
By default, screens are displayed to the standard output. The @ref{output}
command redirects the display to the specified file or device.

Syntax:
@example
      set output @{"<filename>"@}
      show output

@end example

The filename must be enclosed in quotes.  If the filename is omitted, any
output file opened by a previous invocation of @ref{output} will be closed
and new output will be sent to STDOUT.  (If you give the command `set output
"STDOUT"`, your output may be sent to a file named "STDOUT"!  ["May be", not
"will be", because some terminals, like `x11` or `wxt`, ignore @ref{output}.])

When both @ref{terminal} and @ref{output} are used together, it is safest to
give @ref{terminal} first, because some terminals set a flag which is needed
in some operating systems.  This would be the case, for example, if the
operating system needs to know whether or not a file is to be formatted in
order to open it properly.

On machines with popen functions (Unix), output can be piped through a shell
command if the first non-whitespace character of the filename is '|'.
For instance,

@example
      set output "|lpr -Plaser filename"
      set output "|lp -dlaser filename"

@end example

On MSDOS machines, `set output "PRN"` will direct the output to the default
printer.  On VMS, output can be sent directly to any spooled device.  It is
also possible to send the output to DECnet transparent tasks, which allows
some flexibility.

@node parametric_, plot_, output, set-show
@subsection parametric

@c ?commands set parametric
@c ?commands unset parametric
@c ?commands show parametric
@c ?set parametric
@c ?unset parametric
@c ?show parametric
@cindex parametric
@opindex parametric


@cindex noparametric

The `set parametric` command changes the meaning of `plot` (`splot`) from
normal functions to parametric functions.  The command `unset parametric`
restores the plotting style to normal, single-valued expression plotting.

Syntax:
@example
      set parametric
      unset parametric
      show parametric

@end example

For 2D plotting, a parametric function is determined by a pair of parametric
functions operating on a parameter.  An example of a 2D parametric function
would be `plot sin(t),cos(t)`, which draws a circle (if the aspect ratio is
set correctly---see @ref{size}).  `gnuplot` will display an error message if
both functions are not provided for a parametric `plot`.

For 3D plotting, the surface is described as x=f(u,v), y=g(u,v), z=h(u,v).
Therefore a triplet of functions is required.  An example of a 3D parametric
function would be `cos(u)*cos(v),cos(u)*sin(v),sin(u)`, which draws a sphere.
`gnuplot` will display an error message if all three functions are not
provided for a parametric `splot`.

The total set of possible plots is a superset of the simple f(x) style plots,
since the two functions can describe the x and y values to be computed
separately.  In fact, plots of the type t,f(t) are equivalent to those
produced with f(x) because the x values are computed using the identity
function.  Similarly, 3D plots of the type u,v,f(u,v) are equivalent to
f(x,y).

Note that the order the parametric functions are specified is xfunction,
yfunction (and zfunction) and that each operates over the common parametric
domain.

Also, the `set parametric` function implies a new range of values.  Whereas
the normal f(x) and f(x,y) style plotting assume an xrange and yrange (and
zrange), the parametric mode additionally specifies a trange, urange, and
vrange.  These ranges may be set directly with @ref{trange}, @ref{urange},
and @ref{vrange}, or by specifying the range on the `plot` or `splot`
commands.  Currently the default range for these parametric variables is
[-5:5].  Setting the ranges to something more meaningful is expected.

@node plot_, pm3d, parametric_, set-show
@subsection plot

@c ?commands show plot
@c ?show plot
The `show plot` command shows the current plotting command as it results
from the last `plot` and/or `splot` and possible subsequent @ref{replot} commands.

In addition, the `show plot add2history` command adds this current plot
command into the `history`. It is useful if you have used @ref{replot} to add
more curves to the current plot and you want to edit the whole command now.

@node pm3d, palette, plot_, set-show
@subsection pm3d

@c ?commands set pm3d
@c ?commands show pm3d
@c ?set pm3d
@c ?show pm3d
@cindex pm3d
@opindex pm3d


pm3d is an `splot` style for drawing palette-mapped 3d and 4d data as
color/gray maps and surfaces.  It uses a pm3d algorithm which allows plotting
gridded as well as non-gridded data without preprocessing, even when the data
scans do not have the same number of points.

Drawing of color surfaces is available on terminals supporting filled colored
polygons with color mapping specified by @ref{palette}. Currently supported
terminals include

@example
  Screen terminals:
    OS/2 Presentation Manager
    X11
    Linux VGA (vgagl)
    GGI
    Windows
    AquaTerm (Mac OS X)
    wxWidgets (wxt)
  Files:
    PostScript
    pslatex, pstex, epslatex
    gif, png, jpeg
    (x)fig
    tgif
    cgm
    pdf
    svg
    emf

@end example

Let us first describe how a map/surface is drawn.  The input data come from an
evaluated function or from an @ref{file}.  Each surface consists of a
sequence of separate scans (isolines).  The pm3d algorithm fills the region
between two neighbouring points in one scan with another two points in the
next scan by a gray (or color) according to z-values (or according to an
additional 'color' column, see help for @ref{using}) of these 4 corners; by default
the 4 corner values are averaged, but this can be changed by the option
`corners2color`.  In order to get a reasonable surface, the neighbouring scans
should not cross and the number of points in the neighbouring scans should not
differ too much; of course, the best plot is with scans having same number of
points.  There are no other requirements (e.g. the data need not be gridded).
Another advantage is that the pm3d algorithm does not draw anything outside of
the input (measured or calculated) region.

Surface coloring works with the following input data:

1. splot of function or of data file with one or three data columns: The
gray/color scale is obtained by mapping the averaged (or `corners2color`)
z-coordinate of the four corners of the above-specified quadrangle into the
range [min_color_z,max_color_z] of @ref{zrange} or @ref{cbrange} providing a gray value
in the range [0:1].  This value can be used directly as the gray for gray maps.
The normalized gray value can be further mapped into a color---see @ref{palette}
for the complete description.

2. splot of data file with two or four data columns: The gray/color value is
obtained by using the last-column coordinate instead of the z-value, thus
allowing the color and the z-coordinate be mutually independent.  This can be
used for 4d data drawing.

Other notes:

1. The term 'scan' referenced above is used more among physicists than the
term 'iso_curve' referenced in gnuplot documentation and sources.  You measure
maps recorded one scan after another scan, that's why.

2. The 'gray' or 'color' scale is a linear mapping of a continuous variable
onto a smoothly varying palette of colors. The mapping is shown in a
rectangle next to the main plot. This documentation refers to this as a
"colorbox", and refers to the indexing variable as lying on the colorbox axis.
See `set colorbox`, @ref{cbrange}.

3. To use pm3d coloring to generate a two-dimensional plot rather than a 3D
surface, use `set view map` or `set pm3d map`.

Syntax (the options can be given in any order):
@example
      set pm3d @{
                 @{ at <bst combination> @}
                 @{ interpolate <steps/points in scan, between scans> @}
                 @{ scansautomatic | scansforward | scansbackward | depthorder @}
                 @{ flush @{ begin | center | end @} @}
                 @{ ftriangles | noftriangles @}
                 @{ clip1in | clip4in @}
                 @{ corners2color @{ mean|geomean|median|min|max|c1|c2|c3|c4 @} @}
                 @{ hidden3d <linestyle> | nohidden3d @}
                 @{ implicit | explicit @}
                 @{ map @}
               @}
      show pm3d
      unset pm3d

@end example

Color surface is drawn if data or function @ref{style} is set to pm3d globally or
via 'with' option, or if the option `implicit` is on---then the pm3d surface
is combined with the line surface mesh. See bottom of this section for mode
details.

Color surface can be drawn at the base or top (then it is a gray/color planar
map) or at z-coordinates of surface points (gray/color surface).  This is
defined by the `at` option with a string of up to 6 combinations of `b`, `t`
and `s`. For instance, `at b` plots at bottom only, `at st` plots firstly
surface and then top map, while `at bstbst` will never by seriously used.

Colored quadrangles are plotted one after another.  When plotting surfaces
(`at s`), the later quadrangles overlap (overdraw) the previous ones.
(Gnuplot is not virtual reality tool to calculate intersections of filled
polygon meshes.)  You may try to switch between `scansforward` and
`scansbackward` to force the first scan of the data to be plotted first or
last.  The default is `scansautomatic` where gnuplot makes a guess about scans
order.  On the other hand, the @ref{depthorder} option completely reorders the
quadrangles. The rendering is performed after a depth sorting, which allows to
visualize even complicated surfaces; see @ref{depthorder} for more details.

If two subsequent scans do not have same number of points, then it has to be
decided whether to start taking points for quadrangles from the beginning of
both scans (`flush begin`), from their ends (`flush end`) or to center them
(`flush center`).  Note, that `flush (center|end)` are incompatible with
`scansautomatic`: if you specify `flush center` or `flush end` and
`scansautomatic` is set, it is silently switched to `scansforward`.

If two subsequent scans do not have the same number of points, the option
`ftriangles` specifies whether color triangles are drawn at the scan tail(s)
where there are not enough points in either of the scan. This can be used to
draw a smooth map boundary.

Clipping with respect to x, y coordinates of quadrangles can be done in two
ways.  `clip1in`: all 4 points of each quadrangle must be defined and at least
1 point of the quadrangle must lie in the x and y ranges.  `clip4in`: all 4
points of each quadrangle must lie in the x and y ranges.

There is a single gray/color value associated to each drawn pm3d quadrangle
(no smooth color change among vertices).  The value is calculated from
z-coordinates from the surrounding corners according to `corners2color
<option>`.  The options 'mean' (default), 'geomean' and 'median' produce
various kinds of surface color smoothing, while options 'min' and 'max' choose
minimal or maximal value, respectively. This may not be desired for pixel
images or for maps with sharp and intense peaks, in which case the options
'c1', 'c2', 'c3' or 'c4' can be used instead to assign the quadrangle color
based on the z-coordinate of only one corner.  Some experimentation may be
needed to determine which corner corresponds to 'c1', as the orientation
depends on the drawing direction.  Because the pm3d algorithm does not extend
the colored surface outside the range of the input data points, the 'c<j>'
coloring options will result in pixels along two edges of the grid not
contributing to the color of any quadrangle.  For example, applying the pm3d
algorithm to the 4x4 grid of data points in script `demo/pm3d.dem` (please have
a look) produces only (4-1)x(4-1)=9 colored rectangles.

Another drawing algorithm, which would draw quadrangles around a given node
by taking corners from averaged (x,y)-coordinates of its surrounding 4 nodes
while using node's color, could be implemented in the future. This is already
done for drawing images (2D grids) via `image` and @ref{rgbimage} styles.

Notice that ranges of z-values and color-values for surfaces are adjustable
independently by @ref{zrange}, @ref{cbrange}, as well as `set log` for z or
cb.  Maps can be adjusted by the cb-axis only; see also `set view map` and
`set colorbox`.

The option @ref{hidden3d} takes as the argument a linestyle which must be created
by `set style line ...`. (The style need not to be present when setting pm3d,
but it must be present when plotting).  If set, lines are drawn using the
specified line style, taking into account hidden line removal.  This is by
far more efficient than using the command @ref{hidden3d} as it doesn't really
calculate hidden line removal, but just draws the filled polygons in the
correct order. So the recommended choice when using pm3d is
@example
      set pm3d at s hidden3d 100
      set style line 100 lt 5 lw 0.5
      unset hidden3d
      unset surf
      splot x*x+y*y

@end example

There used to be an option @{transparent|solid@} to this command.  Now
you get the same effect from `set grid @{front|layerdefault@}`,
respectively.

The `set pm3d map` is an abbreviation for `set pm3d at b`; `set view map`;
@ref{pm3d}; @ref{pm3d};.
It is used for backwards compatibility, when `set view map` was not available.
Take care that you properly use @ref{zrange} and @ref{cbrange} for input data point
filtering and color range scaling, respectively; and also `set (no)surface`
seems to have a (side?) effect.

The option `interpolate m,n` will interpolate grid points into a finer mesh,
and color each quadrangle appropriately.  For data files, this will smoothen
the color surface, and enhance spikes in a color surface. For functions,
interpolation makes little sense, except to trade off precision for memory.
It would usually make more sense to use @ref{samples} and @ref{isosamples} when
working with functions. For positive m and n, each quadrangle or triangle
is interpolated m-times and n-times in the respective direction.  For negative
m and n, the interpolation frequency is chosen so that there will be at least
|m| and |n| points drawn; you can consider this as a special gridding function.
Zeros, i.e. `interpolation 0,0`, will automatically choose an optimal number of
interpolated surface points.

The coloring setup as well as the color box drawing are determined by
@ref{palette}.  There can be only one palette for the current plot.  Drawing
of several surfaces with different palettes can be achieved by @ref{multiplot}
with fixed @ref{origin} and @ref{size}; don't forget to use `set palette maxcolors`
when your terminal is running out of available colors.

On gnuplot start-up, mode is `explicit`. For historical and thus compatibility
reasons, commands `set pm3d;` (i.e. no options) and `set pm3d at X ...` (i.e.
`at` is the first option) sets mode `implicit`. Further, `set pm3d;` sets up
the other options to their default.

If the option `implicit` is on, all surface plots will be plotted additionally
to the default type, e.g.
@example
      splot 'fred.dat' with lines, 'lola.dat' with lines
@end example

would give both plots (meshes) additionally to a pm3d surface. That's what you
are used to after `set pm3d;`.

If the option `explicit` is on (or `implicit` is off) only plots specified
by the @ref{pm3d} attribute are plotted with a pm3d surface, e.g.:
@example
      splot 'fred.dat' with lines, 'lola.dat' with pm3d
@end example

would plot 'fred.dat' with lines (and only lines) and 'lola.dat' with
a pm3d surface.

If you set the default data or function style to @ref{pm3d}, e.g.:
@example
      set style data pm3d
@end example

then the options `implicit` and `explicit` have no effect.

Note that when plotting several plots, they are plotted in the order given
on the command line. This can be of interest especially for filled surfaces
which can overwrite and therefore hide part of earlier plots.

If @ref{pm3d} is specified in the `splot` command line, then it accepts the
'at' option.  The following plots draw three color surfaces at different
altitudes:
@example
      set border 4095
      set pm3d at s
      splot 10*x with pm3d at b, x*x-y*y, x*x+y*y with pm3d at t

@end example

See also help for @ref{palette}, @ref{cbrange}, `set colorbox`, @ref{pm3d}
and definitely the demo file `demo/pm3d.dem`.

@menu
* depthorder::                  
@end menu

@node depthorder,  , pm3d, pm3d
@subsubsection depthorder

@c ?commands set pm3d depthorder
@c ?set pm3d depthorder
@c ?pm3d depthorder
@cindex depthorder

By default the quadrangles making up a pm3d solid surface are rendered in the
order they are encountered along the surface grid points.  This order may be
controlled by the options `scansautomatic`|`scansforward`|`scansbackward`.
These scan options are not in general compatible with hidden-surface removal.

Gnuplot does not do true hidden surface removal for solid surfaces, but often
it is sufficient to render the component quadrangles in order from furthest
to closest.  This mode may be selected using the options
@example
      set pm3d depthorder hidden3d
@end example

The @ref{depthorder} option orders the solid quadrangles; the @ref{hidden3d} option
similarly orders the bounding lines (if drawn).  Note that the global option
@ref{hidden3d} does not affect pm3d surfaces.

@node palette, pointsize, pm3d, set-show
@subsection palette

@c ?commands set palette
@c ?commands show palette
@c ?set palette
@c ?show palette
@cindex palette
@opindex palette


Palette is a color storage for use by @ref{pm3d}, filled color contours or
polygons, color histograms, color gradient background, and whatever it is
or it will be implemented...  Here it stands for a palette of smooth
"continuous" colors or grays, but let's call it just a palette.

Color palettes require terminal entries for filled color polygons and
palettes of smooth colors, are currently available for terminals listed in
help for @ref{pm3d}. The range of color values are adjustable independently by
@ref{cbrange} and `set log cb`. The whole color palette is
visualized in the `colorbox`.

Syntax:
@example
      set palette
      set palette @{
                 @{ gray | color @}
                 @{ gamma <gamma> @}
                 @{   rgbformulae <r>,<g>,<b>
                   | defined @{ ( <gray1> <color1> @{, <grayN> <colorN>@}... ) @}
                   | file '<filename>' @{datafile-modifiers@}
                   | functions <R>,<G>,<B>
                 @}
                 @{ model @{ RGB | HSV | CMY | YIQ | XYZ @} @}
                 @{ positive | negative @}
                 @{ nops_allcF | ps_allcF @}
                 @{ maxcolors <maxcolors> @}
               @}
      show palette
      show palette palette <n> @{@{float | int@}@}
      show palette gradient
      show palette fit2rgbformulae
      show palette rgbformulae
      show colornames

@end example

@ref{palette} (i.e. without options) sets up the default values.
Otherwise, the options can be given in any order.
@ref{palette} shows the current palette properties.

`show palette gradient` displays the gradient defining the palette (if
appropriate).  @ref{rgbformulae} prints the available fixed gray -->
color transformation formulae.  @ref{colornames} prints the known color names.

`show palette palette <n>` prints to the screen or to the file given by
@ref{print} a table of RGB triplets calculated for the current palette settings
and a palette having <n> discrete colors.  The default wide table can be
limited to 3 columns of r,g,b float values [0..1] or integer values [0..255]
by options float or int, respectively.  This way, the current gnuplot color
palette can be loaded into other imaging applications, for example Octave.
Additionally to this textual list of RGB table, you can use the @ref{palette}
command to plot the R,G,B profiles for the current palette.

The following options determine the coloring properties.

Figure using this palette can be `gray` or `color`.  For instance, in @ref{pm3d}
color surfaces the gray of each small spot is obtained by mapping the averaged
z-coordinate of the 4 corners of surface quadrangles into the range
[min_z,max_z] providing range of grays [0:1]. This value can be used directly
as the gray for gray maps. The color map requires a transformation gray -->
(R,G,B), i.e. a mapping [0:1] --> ([0:1],[0:1],[0:1]).

Basically two different types of mappings can be used:  Analytic formulae to
convert gray to color, or discrete mapping tables which are interpolated.
@ref{rgbformulae} and @ref{functions} use analytic formulae whereas
@ref{defined} and @ref{file} use interpolated tables.  @ref{rgbformulae} reduces the size of postscript output to a minimum.

The command `show palette fit2rgbformulae` finds the best matching @ref{rgbformulae} for the current @ref{palette}. Naturally, it makes sense
to use it for non-rgbformulae palettes. This command can be found useful
mainly for external programs using the same rgbformulae definition of palettes
as gnuplot, like zimg (
@uref{http://zimg.sourceforge.net,http://zimg.sourceforge.net
}
).

`set palette gray` switches to a gray only palette. @ref{rgbformulae},
@ref{defined}, @ref{file} and @ref{functions} switch
to a color mapping. `set palette color` is an easy way to switch back from the
gray palette to the last color mapping.

Automatic gamma correction via `set palette gamma <gamma>` can be done for
gray maps only (`set palette gray`).  Linear mapping to gray is for gamma
equals 1, see @ref{palette}.  Gamma is ignored for color mappings.

Most terminals support only discrete number of colors (e.g. 256 colors in
gif).  All entries of the palette remaining after the default gnuplot linetype
colors declaration are allocated for pm3d by default.  Then @ref{multiplot} could
fail if there are no more color positions in the terminal available.  Then you
should use `set palette maxcolors <maxcolors>` with a reasonably small value.
This option can also be used to separate levels of z=constant in discrete
steps, thus to emulate filled contours. Default value of 0 stays for
allocating all remaining entries in the terminal palette or for to use exact
mapping to RGB.

RGB color space might not be the most useful color space to work in.  For that
reason you may change the color space with `model` to one of `RGB`, `HSV`,
`CMY`, `YIQ` and `XYZ`.  Using color names for @ref{defined} tables
and a color space other than RGB will result in funny colors.  All explanation
have been written for RGB color space, so please note, that `R` can be `H`,
`C`, `Y`, or `X`, depending on the actual color space (`G` and `B`
accordingly).

All values for all color spaces are limited to [0,1].

RGB stands for Red, Green and Blue;  CMY stands for Cyan, Magenta and Yellow;
HSV stands for Hue, Saturation, and Value;  YIQ is the color model used by
the U.S. Commercial Color Television Broadcasting, it is basically an RGB
recoding with downward compatibility for black and white television;
XYZ are the three primary colors of the color model defined by the 'Commission
Internationale de l'Eclairage' (CIE).
For more information on color models see:
@uref{http://en.wikipedia.org/wiki/Color_space,http://en.wikipedia.org/wiki/Color_space
}


@menu
* rgbformulae::                 
* defined_::                    
* functions_::                  
* file::                        
* gamma_correction::            
* postscript::                  
@end menu

@node rgbformulae, defined_, palette, palette
@subsubsection rgbformulae

@c ?commands set palette rgbformulae
@c ?set palette rgbformulae
@c ?palette rgbformulae
@cindex rgbformulae

@cindex colors

For @ref{rgbformulae} three suitable mapping functions have
to be chosen.  This is done via `rgbformulae <r>,<g>,<b>`.  The available
mapping functions are listed by @ref{rgbformulae}.  Default is
`7,5,15`, some other examples are `3,11,6`, `21,23,3` or `3,23,21`.  Negative
numbers, like `3,-11,-6`, mean inverted color (i.e.  1-gray passed into the
formula, see also `positive` and `negative` options below).

Some nice schemes in RGB color space
@example
   7,5,15   ... traditional pm3d (black-blue-red-yellow)
   3,11,6   ... green-red-violet
   23,28,3  ... ocean (green-blue-white); try also all other permutations
   21,22,23 ... hot (black-red-yellow-white)
   30,31,32 ... color printable on gray (black-blue-violet-yellow-white)
   33,13,10 ... rainbow (blue-green-yellow-red)
   34,35,36 ... AFM hot (black-red-yellow-white)

@end example

A full color palette in HSV color space
@example
   3,2,2    ... red-yellow-green-cyan-blue-magenta-red

@end example

Please note that even if called @ref{rgbformulae} the formulas might actually
determine the <H>,<S>,<V> or <X>,<Y>,<Z> or ... color components as usual.

Use `positive` and `negative` to invert the figure colors.
@c ^ <a name="positive"></a>
@c ^ <a name="negative"></a>

Note that it is possible to find a set of the best matching rgbformulae for any
other color scheme by the command
@example
   show palette fit2rgbformulae

@end example

@node defined_, functions_, rgbformulae, palette
@subsubsection defined

@c ?commands set palette defined
@c ?set palette defined
@c ?palette defined
@cindex colors

Gray-to-rgb mapping can be manually set by use of @ref{defined}:  A color gradient
is defined and used to give the rgb values.  Such a  gradient is a piecewise
linear mapping from gray values in [0,1] to the RGB space [0,1]x[0,1]x[0,1].
You have to specify the gray values and the corresponding RGB values in
between a linear interpolation shall take place:

Syntax:
@example
      set palette  defined @{ ( <gray1> <color1> @{, <grayN> <colorN>@}... ) @}

@end example

<grayX> are gray values which are mapped to [0,1] and <colorX> are the
corresponding rgb colors.  The color can be specified in three different
ways:

@example
     <color> :=  @{ <r> <g> <b> | '<color-name>' | '#rrggbb' @}

@end example

Either by three numbers (each in [0,1]) for red, green and blue, separated by
whitespace, or the name of the color in quotes or X style color specifiers
also in quotes.  You may freely mix the three types in a gradient definition,
but the named color "red" will be something strange if RGB is not selected
as color space.  Use @ref{colornames} for a list of known color names.

Please note, that even if written as <r>, this might actually be the
<H> component in HSV color space or <X> in CIE-XYZ space, or ...
depending on the selected color model.

The <gray> values have to form an ascending sequence of real numbers; the
sequence will be automatically rescaled to [0,1].

@ref{defined} (without a gradient definition in braces) switches to
RGB color space and uses a preset full-spectrum color gradient.
Use `show palette gradient` to display the gradient.

Examples:

To produce a gray palette (useless but instructive) use:
@example
      set palette model RGB
      set palette defined ( 0 "black", 1 "white" )

@end example

To produce a blue yellow red palette use (all equivalent):
@example
      set palette defined ( 0 "blue", 1 "yellow", 2 "red" )
      set palette defined ( 0 0 0 1, 1 1 1 0, 2 1 0 0 )
      set palette defined ( 0 "#0000ff", 1 "#ffff00", 2 "#ff0000" )

@end example

To produce some rainbow-like palette use:
@example
      set palette defined ( 0 "blue", 3 "green", 6 "yellow", 10 "red" )

@end example

Full color spectrum within HSV color space:
@example
      set palette model HSV
      set palette defined ( 0 0 1 1, 1 1 1 1 )
      set palette defined ( 0 0 1 0, 1 0 1 1, 6 0.8333 1 1, 7 0.8333 0 1)

@end example

To produce a palette with few colors only use:
@example
      set palette model RGB maxcolors 4
      set palette defined ( 0 "blue", 1 "green", 2 "yellow", 3 "red" )

@end example

'Traffic light' palette (non-smooth color jumps at gray = 1/3 and 2/3).
@example
      set palette model RGB
      set palette defined (0 "dark-green", 1 "green", 1 "yellow", \
                           2 "dark-yellow", 2 "red", 3 "dark-red" )

@end example


@node functions_, file, defined_, palette
@subsubsection functions

@c ?commands set palette functions
@c ?set palette functions
@c ?palette functions
Use `set palette functions <Rexpr>, <Gexpr>, <Bexpr>` to define three formulae
for the R(gray), G(gray) and B(gray) mapping.  The three formulae may depend
on the variable `gray` which will take values in [0,1] and should also
produce values in [0,1].
Please note that <Rexpr> might be a formula for the H-value if HSV color
space has been chosen (same for all other formulae and color spaces).

Examples:

To produce a full color palette use:
@example
      set palette model HSV functions gray, 1, 1

@end example

A nice black to gold palette:
@example
      set palette model XYZ functions gray**0.35, gray**0.5, gray**0.8

@end example

A gamma-corrected black and white palette
@example
      gamma = 2.2
      color(gray) = gray**(1./gamma)
      set palette model RGB functions color(gray), color(gray), color(gray)

@end example


@node file, gamma_correction, functions_, palette
@subsubsection file

@c ?commands set palette file
@c ?set palette file
@c ?palette file
@ref{file} is basically a `set palette defined (<gradient>)` where
<gradient> is read from a datafile.  Either 4 columns (gray,R,G,B) or
just three columns (R,G,B) have to be selected via the @ref{using} data file
modifier.  In the three column case, the line number will be used as gray.
The gray range is automatically rescaled to [0,1].  The file is read as a
normal data file, so all datafile modifiers can be used.
Please note, that `R` might actually be e.g. `H` if HSV color space is
selected.

As usual <filename> may be `'-'` which means that the data follow the command
inline and are terminated by a single `e` on a line of its own.

Use `show palette gradient` to display the gradient.

Examples:

Read in a palette of RGB triples each in range [0,255]:
@example
      set palette file 'some-palette' using ($1/255):($2/255):($3/255)

@end example

Equidistant rainbow (blue-green-yellow-red) palette:
@example
      set palette model RGB file "-"
      0 0 1
      0 1 0
      1 1 0
      1 0 0
      e

@end example

Binary palette files are supported as well, see `binary general`. Example:
put 64 triplets of R,G,B doubles into file palette.bin and load it by
@example
      set palette file "palette.bin" binary record=64 using 1:2:3

@end example



@node gamma_correction, postscript, file, palette
@subsubsection gamma correction

@c ?commands set palette gamma-correction
@c ?set palette gamma-correction
@c ?palette gamma-correction
@cindex gamma-correction

For gray mappings gamma correction can be turned on by `set palette gamma
<gamma>`.  <gamma> defaults to 1.5 which is quite suitable for most
terminals.

For color mappings no automatic gamma correction is done by gnuplot.  However,
you may easily implement gamma correction.  Here is an example for a gray
scale image by use of explicit functions for the red, green and blue component
with slightly different values of gamma

Example:
@example
      set palette model RGB
      set palette functions gray**0.64, gray**0.67, gray**0.70

@end example

To use gamma correction with interpolated gradients specify intermediate
gray values with appropriate colors.  Instead of

@example
      set palette defined ( 0 0 0 0, 1 1 1 1 )

@end example

use e.g.

@example
      set palette defined ( 0 0 0 0, 0.5 .73 .73 .73, 1 1 1 1 )

@end example

or even more intermediate points until the linear interpolation fits the
"gamma corrected" interpolation well enough.


@node postscript,  , gamma_correction, palette
@subsubsection postscript

@c ?commands set palette postscript
@c ?set palette postscript
In order to reduce the size of postscript files, the gray value and not all
three calculated r,g,b values are written to the file.  Therefore the
analytical formulae are coded directly in the postscript language as a header
just before the pm3d drawing, see /g and /cF definitions.  Usually, it makes
sense to write therein definitions of only the 3 formulae used.  But for
multiplot or any other reason you may want to manually edit the
transformations directly in the postscript file.  This is the default option
`nops_allcF`.  Using the option `ps_allcF` writes postscript definitions of
all formulae.  This you may find interesting if you want to edit the
postscript file in order to have different palettes for different surfaces
in one graph.  Well, you can achieve this functionality by @ref{multiplot} with
fixed @ref{origin} and @ref{size}.

If pm3d map has been plotted from gridded or almost regular data with an
output to a postscript file, then it is possible to reduce the size of this
postscript file up to at about 50% by the enclosed awk script
`pm3dCompress.awk`.  This you may find  interesting if you intend to keep the
file for including it into your publication or before downloading a very large
file into a slow printer. Usage:
@example
    awk -f pm3dCompress.awk thefile.ps >smallerfile.ps

@end example

If pm3d map has been plotted from rectangular gridded data with an output
to a postscript file, then it is possible to reduce the file size even more
by the enclosed awk script `pm3dConvertToImage.awk`.  Usage:
@example
    awk -f pm3dConvertToImage.awk <thefile.ps >smallerfile.ps

@end example

You may manually change the postscript output from gray to color and vice
versa and change the definition of <maxcolors>.

@node pointsize, polar, palette, set-show
@subsection pointsize

@c ?commands set pointsize
@c ?commands show pointsize
@c ?set pointsize
@c ?show pointsize
@cindex pointsize
@opindex pointsize


The @ref{pointsize} command scales the size of the points used in plots.

Syntax:
@example
      set pointsize <multiplier>
      show pointsize

@end example

The default is a multiplier of 1.0.  Larger pointsizes may be useful to
make points more visible in bitmapped graphics.

The pointsize of a single plot may be changed on the `plot` command.
See @ref{with} for details.

Please note that the pointsize setting is not supported by all terminal
types.

@node polar, print_, pointsize, set-show
@subsection polar

@c ?commands set polar
@c ?commands unset polar
@c ?commands show polar
@c ?set polar
@c ?unset polar
@c ?show polar
@cindex polar
@opindex polar


@cindex nopolar

The `set polar` command changes the meaning of the plot from rectangular
coordinates to polar coordinates.

Syntax:
@example
      set polar
      unset polar
      show polar

@end example

In polar coordinates, the dummy variable (t) is an angle.  The default range
of t is [0:2*pi], or, if degree units have been selected, to [0:360] (see
@ref{angles}).

The command `unset polar` changes the meaning of the plot back to the default
rectangular coordinate system.

The `set polar` command is not supported for `splot`s.  See the @ref{mapping}
command for similar functionality for `splot`s.

While in polar coordinates the meaning of an expression in t is really
r = f(t), where t is an angle of rotation.  The trange controls the domain
(the angle) of the function, and the x and y ranges control the range of the
graph in the x and y directions.  Each of these ranges, as well as the
rrange, may be autoscaled or set explicitly.  Ffor details of all the @ref{ranges}
commands, see @ref{xrange}.

Example:
@example
      set polar
      plot t*sin(t)
      plot [-2*pi:2*pi] [-3:3] [-3:3] t*sin(t)

@end example

The first `plot` uses the default polar angular domain of 0 to 2*pi.  The
radius and the size of the graph are scaled automatically.  The second `plot`
expands the domain, and restricts the size of the graph to [-3:3] in both
directions.

You may want to `set size square` to have `gnuplot` try to make the aspect
ratio equal to unity, so that circles look circular.
See also
@uref{http://www.gnuplot.info/demo/polar.html,polar demos (polar.dem)
}
and
@uref{http://www.gnuplot.info/demo/poldat.html,polar data plot (poldat.dem).
}

@node print_, rmargin, polar, set-show
@subsection print

@c ?commands set print
@c ?commands show print
@c ?set print
@c ?show print
The @ref{print} command redirects the output of the @ref{print} command to a file.

Syntax:
@example
      set print
      set print "-"
      set print "<filename>"
      set print "<filename>" append
      set print "|<shell_command>"

@end example

Without "<filename>", the output file is restored to <STDERR>.  The <filename>
"-" means <STDOUT>. The `append` flag causes the file to be opened in append
mode.  A <filename> starting with "|" is opened as a pipe to the
<shell_command> on platforms that support piping.

@node rmargin, rrange, print_, set-show
@subsection rmargin

@c ?commands set rmargin
@c ?set rmargin
@cindex rmargin
@opindex rmargin


The command @ref{rmargin} sets the size of the right margin.
Please see @ref{margin} for details.

@node rrange, samples, rmargin, set-show
@subsection rrange

@c ?commands set rrange
@c ?commands show rrange
@c ?set rrange
@c ?show rrange
@cindex rrange
@opindex rrange


The @ref{rrange} command sets the range of the radial coordinate for a
graph in polar mode.  Please see @ref{xrange} for details.

@node samples, size, rrange, set-show
@subsection samples

@c ?commands set samples
@c ?commands show samples
@c ?set samples
@c ?show samples
@cindex samples
@opindex samples


The sampling rate of functions, or for interpolating data, may be changed
by the @ref{samples} command.

Syntax:
@example
      set samples <samples_1> @{,<samples_2>@}
      show samples

@end example

By default, sampling is set to 100 points.  A higher sampling rate will
produce more accurate plots, but will take longer.  This parameter has no
effect on data file plotting unless one of the interpolation/approximation
options is used.  See @ref{smooth} re 2D data and @ref{cntrparam} and
@ref{dgrid3d} re 3D data.

When a 2D graph is being done, only the value of <samples_1> is relevant.

When a surface plot is being done without the removal of hidden lines, the
value of samples specifies the number of samples that are to be evaluated for
the isolines.  Each iso-v line will have <sample_1> samples and each iso-u
line will have <sample_2> samples.  If you only specify <samples_1>,
<samples_2> will be set to the same value as <samples_1>.  See also
@ref{isosamples}.

@node size, style, samples, set-show
@subsection size

@c ?commands set size
@c ?commands show size
@c ?set size
@c ?show size
@cindex size
@opindex size


@c ?aspect ratio
Syntax:
@example
      set size @{@{no@}square | ratio <r> | noratio@} @{<xscale>,<yscale>@}
      show size

@end example

The <xscale> and <yscale> values are scale factors for the size of the plot,
which includes the graph, labels, and margins.

Important note:
@example
      In earlier versions of gnuplot, some terminal types used the values from
      @ref{size} to control also the size of the output canvas; others did not.
      In version 4.4 almost all terminals now follow the following convention:

@end example

`set term <terminal_type> size <XX>, <YY>` controls the size of the output
file, or `canvas`. Please see individual terminal documentation for allowed
values of the size parameters.  By default, the plot will fill this canvas.

`set size <XX>, <YY>` scales the plot itself relative to the size of the
canvas.  Scale values less than 1 will cause the plot to not fill the entire
canvas.  Scale values larger than 1 will cause only a portion of the plot to
fit on the canvas.  Please be aware that setting scale values larger than 1
may cause problems on some terminal types.

`ratio` causes `gnuplot` to try to create a graph with an aspect ratio of <r>
(the ratio of the y-axis length to the x-axis length) within the portion of
the plot specified by <xscale> and <yscale>.

The meaning of a negative value for <r> is different.  If <r>=-1, gnuplot
tries to set the scales so that the unit has the same length on both the x
and y axes (suitable for geographical data, for instance).  If <r>=-2, the
unit on y has twice the length of the unit on x, and so on.

The success of `gnuplot` in producing the requested aspect ratio depends on
the terminal selected.  The graph area will be the largest rectangle of
aspect ratio <r> that will fit into the specified portion of the output
(leaving adequate margins, of course).

`square` is a synonym for `ratio 1`.

Both `noratio` and `nosquare` return the graph to the default aspect ratio
of the terminal, but do not return <xscale> or <yscale> to their default
values (1.0).

`ratio` and `square` have no effect on 3D plots, but do affect 3D projections
created using `set view map`.  See also `set view equal`, which forces
the x and y axes of a 3D onto the same scale.

Examples:

To set the size so that the plot fills the available canvas:
@example
      set size 1,1

@end example

To make the graph half size and square use:
@example
      set size square 0.5,0.5

@end example

To make the graph twice as high as wide use:
@example
      set size ratio 2

@end example

See also
@uref{http://www.gnuplot.info/demo/airfoil.html,airfoil demo.
}

@node style, surface, size, set-show
@subsection style

@c ?set style
@c ?show style
@c ?unset style
@c ^ <a name="set style <style>"></a>
Default plotting styles are chosen with the `set style data` and
`set style function` commands.  See @ref{with} for information about how to
override the default plotting style for individual functions and data sets.
See `plotting styles` for a complete list of styles.

Syntax:
@example
      set style function <style>
      set style data <style>
      show style function
      show style data

@end example

Default styles for specific plotting elements may also be set.

Syntax:
@example
      set style arrow <n> <arrowstyle>
      set style fill <fillstyle>
      set style histogram <histogram style options>
      set style line <n> <linestyle>

@end example


@menu
* set_style_arrow::             
* set_style_data::              
* set_style_fill::              
* set_style_function::          
* set_style_increment::         
* set_style_line::              
* set_style_rectangle::         
@end menu

@node set_style_arrow, set_style_data, style, style
@subsubsection set style arrow

@c ?commands set style arrow
@c ?commands unset style arrow
@c ?commands show style arrow
@c ?set style arrow
@c ?unset style arrow
@c ?show style arrow
@cindex arrowstyle

@c ^ <a name="arrowtype"></a>
@c ^ <a name="arrowwidth"></a>
Each terminal has a default set of arrow and point types, which can be seen
by using the command @ref{test}.  @ref{arrow} defines a set of arrow types
and widths and point types and sizes so that you can refer to them later by
an index instead of repeating all the information at each invocation.

Syntax:
@example
      set style arrow <index> default
      set style arrow <index> @{nohead | head | heads@}
                              @{size <length>,<angle>@{,<backangle>@}@}
                              @{filled | empty | nofilled@}
                              @{front | back@}
                              @{ @{linestyle | ls <line_style>@}
                                | @{linetype | lt <line_type>@}
                                  @{linewidth | lw <line_width@} @}
      unset style arrow
      show style arrow

@end example

<index> is an integer that identifies the arrowstyle.

If `default` is given all arrow style parameters are set to their default
values.

If the linestyle <index> already exists, only the given parameters are
changed while all others are preserved.  If not, all undefined values are
set to the default values.

Specifying `nohead` produces arrows drawn without a head---a line segment.
This gives you yet another way to draw a line segment on the plot.  By
default, arrows have one head. Specifying `heads` draws arrow heads on both
ends of the line.

Head size can be controlled by `size <length>,<angle>` or
`size <length>,<angle>,<backangle>`, where `<length>` defines length of each
branch of the arrow head and `<angle>` the angle (in degrees) they make with
the arrow.  `<Length>` is in x-axis units; this can be changed by `first`,
`second`, `graph`, `screen`, or `character` before the <length>;  see
`coordinates` for details.  `<Backangle>` only takes effect when `filled`
or `empty` is also used.  Then, `<backangle>` is the angle (in degrees) the
back branches make with the arrow (in the same direction as `<angle>`).
The `fig` terminal has a restricted backangle function. It supports three
different angles. There are two thresholds: Below 70 degrees, the arrow head
gets an indented back angle. Above 110 degrees, the arrow head has an acute
back angle. Between these thresholds, the back line is straight.

Specifying `filled` produces filled arrow heads (if heads are used).
Filling is supported on filled-polygon capable terminals, see help of @ref{pm3d}
for their list, otherwise the arrow heads are closed but not filled.
The same result (closed but not filled arrow head) is reached by specifying
`empty`.  Further, filling and outline is obviously not supported on
terminals drawing arrows by their own specific routines, like `metafont`,
`metapost`, `latex` or `tgif`.

The line style may be selected from a user-defined list of line styles
(see `set style line`) or may be defined here by providing values for
`<line_type>` (an index from the default list of styles) and/or
`<line_width>` (which is a  multiplier for the default width).

Note, however, that if a user-defined line style has been selected, its
properties (type and width) cannot be altered merely by issuing another
@ref{arrow} command with the appropriate index and `lt` or `lw`.

If `front` is given, the arrows are written on top of the graphed data. If
`back` is given (the default), the arrow is written underneath the graphed
data.  Using `front` will prevent a arrow from being obscured by dense data.

Examples:

To draw an arrow without an arrow head and double width, use:
@example
      set style arrow 1 nohead lw 2
      set arrow arrowstyle 1

@end example

See also @ref{arrow} for further examples.


@node set_style_data, set_style_fill, set_style_arrow, style
@subsubsection set style data

@c ?commands set style data
@c ?commands show style data
@c ?set style data
@c ?show style data
@c ?data style
The `set style data` command changes the default plotting style for data
plots.

Syntax:
@example
      set style data <plotting-style>
      show style data

@end example

See `plotting styles` for the choices.  If no choice is given, the choices are
listed.  `show style data` shows the current default data plotting style.

@node set_style_fill, set_style_function, set_style_data, style
@subsubsection set style fill

@c ?commands set style fill
@c ?commands show style fill
@c ?set style fill
@c ?show style fill
@cindex fillstyle

The `set style fill` command is used to set the default style of the plot
elements in plots with boxes, histograms, candlesticks and filledcurves.
This default can be superseded by fillstyles attached to individual plots.
See also 'set style rectangle'.

Syntax:
@example
      set style fill @{empty
                      | @{transparent@} solid @{<density>@}
                      | @{transparent@} pattern @{<n>@}@}
                     @{border @{<colorspec>@} | noborder@}

@end example

The default fillstyle is `empty`.

The `solid` option causes filling with a solid color, if the terminal
supports that. The <density> parameter specifies the intensity of the
fill color. At a <density> of 0.0, the box is empty, at <density> of 1.0,
the inner area is of the same color as the current linetype.
Some terminal types can vary the density continuously; others implement
only a few levels of partial fill.  If no <density> parameter is given,
it defaults to 1.

The `pattern` option causes filling to be done with a fill pattern supplied
by the terminal driver.  The kind and number of available fill patterns
depend on the terminal driver.  If multiple datasets using filled boxes are
plotted, the pattern cycles through all available pattern types, starting
from pattern <n>, much as the line type cycles for multiple line plots.

The `empty` option causes filled boxes not to be filled. This is the default.

By default, @ref{border}, the box is bounded by a solid line of the current
linetype. `border <colorspec>` allows you to change the color of the border.
`noborder` specifies that no bounding lines are drawn.


@noindent --- SET STYLE FILL TRANSPARENT ---

@c ?commands set style fill transparent
@c ?set style fill transparent
@c ?fillstyle transparent
@cindex transparent

Some terminals support the attribute `transparent` for filled areas.
In the case of transparent solid fill areas, the `density` parameter is
interpreted as an alpha value; that is, density 0 is fully transparent,
density 1 is fully opaque.  In the case of transparent pattern fill, the
background of the pattern is either fully transparent or fully opaque.


@example
      terminal   solid pattern    pm3d
      --------------------------------
      gif           no     yes      no
      jpeg         yes      no     yes
      pdf          yes     yes     yes
      png    TrueColor   index     yes
      post          no     yes      no
      svg          yes      no     yes
      wxt          yes     yes     yes
      x11           no     yes      no

@end example

Note that there may be additional limitations on the creation or viewing of
graphs containing transparent fill areas.  For example, the png terminal can
only use transparent fill if the "truecolor" option is set.  Some pdf viewers
may not correctly display the fill areas even if they are correctly described
in the pdf file. Ghostscript/gv does not correctly display pattern-fill areas
even though actual PostScript printers generally have no problem.

@node set_style_function, set_style_increment, set_style_fill, style
@subsubsection set style function

@c ?commands set style function
@c ?commands show style function
@c ?set style function
@c ?show style function
@c ?function style
The `set style function` command changes the default plotting style for
function plots.

Syntax:
@example
      set style function <plotting-style>
      show style function

@end example

See `plotting styles` for the choices.  If no choice is given, the choices are
listed.  `show style function` shows the current default function plotting
style.

@node set_style_increment, set_style_line, set_style_function, style
@subsubsection set style increment

@c ?commands set style increment
@c ?commands show style increment
@c ?set style increment
@c ?show style increment
Syntax:
@example
      set style increment @{default|userstyles@}
      show style increment

@end example

By default, successive plots within the same graph will use successive
linetypes from the default set for the current terminal type.
However, choosing `set style increment user` allows you to step through
the user-defined line styles rather than through the default linetypes.

Example:

@example
      set style line 1 lw 2 lc rgb "gold"
      set style line 2 lw 2 lc rgb "purple"
      set style line 4 lw 1 lc rgb "sea-green"
      set style increment user

@end example

@example
      plot f1(x), f2(x), f3(x), f4(x)

@end example

should plot functions f1, f2, f4 in your 3 newly defined line styles.
If a user-defined line style is not found then the corresponding default
linetype is used instead.  E.g. in the example above, f3(x) will be plotted
using the default linetype 3.


@node set_style_line, set_style_rectangle, set_style_increment, style
@subsubsection set style line

@c ?commands set style line
@c ?commands unset style line
@c ?commands show style line
@c ?set style line
@c ?unset style line
@c ?show style line
@cindex linestyle

@cindex linewidth

@cindex linewidth

@cindex interval

@cindex linespoints

@cindex pointinterval

Each terminal has a default set of line and point types, which can be seen
by using the command @ref{test}.  `set style line` defines a set of line types
and widths and point types and sizes so that you can refer to them later by
an index instead of repeating all the information at each invocation.

Syntax:
@example
      set style line <index> default
      set style line <index> @{@{linetype  | lt@} <line_type> | <colorspec>@}
                             @{@{linecolor | lc@} <colorspec>@}
                             @{@{linewidth | lw@} <line_width>@}
                             @{@{pointtype | pt@} <point_type>@}
                             @{@{pointsize | ps@} <point_size>@}
                             @{@{pointinterval | pi@} <interval>@}
                             @{palette@}
      unset style line
      show style line

@end example

If `default` is given all line style parameters are set to their default
values.

If the linestyle <index> already exists, only the given parameters are
changed while all others are preserved.  If not, all undefined values are
set to the default values.

The line and point types default to the index value. The exact symbol that is
drawn for that index value may vary from one terminal type to another.

The line width and point size are multipliers for the current terminal's
default width and size (but note that <point_size> here is unaffected by
the multiplier given by the command@ref{pointsize}).

The `pointinterval` controls the spacing between points in a plot drawn with
style @ref{linespoints}.  The default is 0 (every point is drawn). For example,
`set style line N pi 3` defines a linestyle that uses pointtype N, pointsize
and linewidth equal to the current defaults for the terminal, and will draw
every 3rd point in plots using @ref{linespoints}.  A negative value for the
interval is treated the same as a positive value, except that some terminals
will try to interrupt the line where it passes through the point symbol.

Linestyles created by this mechanism do not replace the default linetype
styles; both may be used.  If you want plots to use the defined styles in
preference to the default linetypes, please see `set style increment`.

Not all terminals support the `linewidth` and @ref{pointsize} features; if
not supported, the option will be ignored.

Terminal-independent colors may be assigned using either
`linecolor <colorspec>` or `linetype <colorspec>`, abbreviated `lc` or `lt`.
This requires giving a RGB color triple, a known palette color name,
a fractional index into the current palette, or a constant value from the
current mapping of the palette onto cbrange.
See `colors`, @ref{colorspec}, @ref{palette}, @ref{colornames}, @ref{cbrange}.

`set style line <n> linetype <lt>` will set both a terminal-dependent dot/dash
pattern and color. The commands`set style line <n> linecolor <colorspec>` or
`set style line <n> linetype <colorspec>` will set a new line color while
leaving the existing dot-dash pattern unchanged.

In 3d mode (`splot` command), the special keyword @ref{palette} is allowed as a
shorthand for "linetype palette z".  The color value corresponds to the
z-value (elevation) of the splot, and varies smoothly along a line or surface.

Examples:
Suppose that the default lines for indices 1, 2, and 3 are red, green, and
blue, respectively, and the default point shapes for the same indices are a
square, a cross, and a triangle, respectively.  Then

@example
      set style line 1 lt 2 lw 2 pt 3 ps 0.5

@end example

defines a new linestyle that is green and twice the default width and a new
pointstyle that is a half-sized triangle.  The commands

@example
      set style function lines
      plot f(x) lt 3, g(x) ls 1

@end example

will create a plot of f(x) using the default blue line and a plot of g(x)
using the user-defined wide green line.  Similarly the commands

@example
      set style function linespoints
      plot p(x) lt 1 pt 3, q(x) ls 1

@end example

will create a plot of p(x) using the default triangles connected by a red
line and q(x) using small triangles connected by a green line.

@example
      splot sin(sqrt(x*x+y*y))/sqrt(x*x+y*y) w l pal

@end example

creates a surface plot using smooth colors according to @ref{palette}. Note,
that this works only on some terminals. See also @ref{palette}, @ref{pm3d}.

@example
      set style line 10 linetype 1 linecolor rgb "cyan"

@end example

will assign linestyle 10 to be a solid cyan line on any terminal that
supports rgb colors.


@node set_style_rectangle,  , set_style_line, style
@subsubsection set style rectangle

@c ?commands set style rectangle
@c ?commands unset style rectangle
@c ?commands show style rectangle
@c ?set style rectangle
@c ?unset style rectangle
@c ?show style rectangle

Rectangles defined with the @ref{object} command can have individual styles.
However, if the object is not assigned a private style then it inherits a
default that is taken from the @ref{rectangle} command.

Syntax:
@example
    set style rectangle @{front|back@} @{lw|linewidth <lw>@}
                        @{fillcolor <colorspec>@} @{fs <fillstyle>@}

@end example

See @ref{colorspec} and `fillstyle`.  `fillcolor` may be abbreviated as `fc`.

Examples:
@example
    set style rectangle back fc rgb "white" fs solid 1.0 border lt -1
    set style rectangle fc linsestyle 3 fs pattern 2 noborder

@end example

The default values correspond to solid fill with the background color and a
black border.


@node surface, table, style, set-show
@subsection surface

@c ?commands set surface
@c ?commands unset surface
@c ?commands show surface
@c ?set surface
@c ?unset surface
@c ?show surface
@cindex surface
@opindex surface


@cindex nosurface

The command @ref{surface} controls the display of surfaces by `splot`.

Syntax:
@example
      set surface
      unset surface
      show surface

@end example

The surface is drawn with the style specified by @ref{with}, or else the
appropriate style, data or function.

@ref{surface} will cause `splot` to not draw points or lines corresponding
to any of the function or data file points.  If you want to turn off the surface
for an individual function or data file while leaving the others active, use
the `nosurface` keyword in the `splot` command.  Contours may still be drawn on
the surface, depending on the @ref{contour} option.  The combination
`unset surface; set contour base` is useful for displaying contours on the grid
base.  See also @ref{contour}. 

@node table, terminal, surface, set-show
@subsection table

@c ?commands set table
@c ?set table
@cindex table
@opindex table


When @ref{table} mode is enabled, `plot` and `splot` commands print out a
multicolumn ASCII table of X Y @{Z@} R values rather than creating an actual
plot on the current terminal.  The character R takes on one of three values:
"i" if the point is in the active range, "o" if it is out-of-range, or "u"
if it is undefined.  The data format is determined by the format of the axis
labels (see `set format`), and the columns are separated by single spaces.
This can be useful if you want to generate contours and then save them for
further use, perhaps for plotting with `plot`;  see @ref{contour} for example.
The same method can be used to save interpolated data
(see @ref{samples} and @ref{dgrid3d}).

Syntax:
@example
      set table @{"outfile"@}
      plot <whatever>
      unset table

@end example

Tabular output is written to the named file, if any, otherwise it is written
to the current value of @ref{output}.  You must explicitly @ref{table}
in order to go back to normal plotting on the current terminal.

@node terminal, termoption, table, set-show
@subsection terminal

@c ?commands set terminal
@c ?commands show terminal
@c ?set terminal
@c ?set term
@c ?show terminal
@c ?show term
@c ?set terminal push
@c ?set term push
@c ?terminal push
@c ?term push
@cindex push

@c ?set terminal pop
@c ?set term pop
@c ?terminal pop
@c ?term pop
@cindex pop

`gnuplot` supports many different graphics devices.  Use @ref{terminal} to
tell `gnuplot` what kind of output to generate. Use @ref{output} to redirect
that output to a file or device.

Syntax:
@example
      set terminal @{<terminal-type> | push | pop@}
      show terminal

@end example

If <terminal-type> is omitted, `gnuplot` will list the available terminal
types.  <terminal-type> may be abbreviated.

If both @ref{terminal} and @ref{output} are used together, it is safest to
give @ref{terminal} first, because some terminals set a flag which is needed
in some operating systems.

Several terminals have many additional options.  For example, see `png`,
or `postscript`.
The options used by a previous invocation `set term <term> <options>` of a
given `<term>` are remembered, thus subsequent `set term <term>` does
not reset them.  This helps in printing, for instance, when switching
among different terminals---previous options don't have to be repeated.

The command `set term push` remembers the current terminal including its
settings while `set term pop` restores it. This is equivalent to `save term`
and `load term`, but without accessing the filesystem. Therefore they can be
used to achieve platform independent restoring of the terminal after printing,
for instance. After gnuplot's startup, the default terminal or that from
`startup` file is pushed automatically. Therefore portable scripts can rely
that `set term pop` restores the default terminal on a given platform unless
another terminal has been pushed explicitly.

For more information, see the `complete list of terminals`.

@node termoption, tics, terminal, set-show
@subsection termoption

@c ?commands set termoption
@c ?set termoption
@cindex termoption
@opindex termoption


The @ref{termoption} command allows you to change the behaviour of the
current terminal without requiring a new @ref{terminal} command. Only one
option can be changed per command, and only a small number of options can
be changed this way. Currently the only options accepted are

@example
     set termoption @{no@}enhanced
     set termoption font "<fontname>@{,<fontsize>@}"
     set termoption @{solid|dashed@}
     set termoption @{linewidth <lw>@}@{lw <lw>@}

@end example


@node tics, ticslevel, termoption, set-show
@subsection tics

@c ?commands set tics
@c ?commands unset tics
@c ?commands show tics
@c ?set tics
@c ?unset tics
@c ?show tics
@cindex tics
@opindex tics


Control of the major (labelled) tics on all axes at once is possible with the
`set tics` command.

Fine control of the major (labelled) tics on all axes at once is possible
with the `set tics` command.  The tics may be turned off with the `unset tics`
command, and may be turned on (the default state) with `set tics`.  Similar
commands (by preceding 'tics' by the axis name) control the major tics on a
single axis.

Syntax:
@example
      set tics @{axis | border@} @{@{no@}mirror@}
               @{in | out@} @{scale @{default | <major> @{,<minor>@}@}@}
               @{@{no@}rotate @{by <ang>@}@} @{offset <offset> | nooffset@}
               @{ format "formatstring" @} @{ font "name@{,<size>@}" @}
               @{ textcolor <colorspec> @}
      set tics @{front | back@}
      unset tics
      show tics

@end example

The options in the first set above can be applied individually to
any or all axes, i.e., x, y, z, x2, y2, and cb.

Set tics `front` or `back` applies to all axes at once, but only for 2D plots
(not splot).  It controls whether the tics are placed behind or in front of
the plot elements, in the case that there is overlap.

`axis` or @ref{border} tells `gnuplot` to put the tics (both the tics themselves
and the accompanying labels) along the axis or the border, respectively.  If
the axis is very close to the border, the `axis` option will move the
tic labels to outside the border in case the border is printed (see
@ref{border}).  The relevant margin settings will usually be sized badly by
the automatic layout algorithm in this case.

`mirror` tells `gnuplot` to put unlabelled tics at the same positions on the
opposite border.  `nomirror` does what you think it does.

`in` and `out` change the tic marks to be drawn inwards or outwards.

With `scale`, the size of the tic marks can be adjusted. If <minor> is not
specified, it is 0.5*<major>.  The default size 1.0 for major tics and 0.5
for minor tics is requested by `scale default`.

`rotate` asks `gnuplot` to rotate the text through 90 degrees, which will be
done if the terminal driver in use supports text rotation.  `norotate`
cancels this. `rotate by <ang>` asks for rotation by <ang> degrees, supported
by some terminal types.

The defaults are `border mirror norotate` for tics on the x and y axes, and
`border nomirror norotate` for tics on the x2 and y2 axes.  For the z axis,
the default is `nomirror`.

The <offset> is specified by either x,y or x,y,z, and may be preceded by
`first`, `second`, `graph`, `screen`, or `character` to select the
coordinate system. <offset> is the offset of the tics texts from their
default positions, while the default coordinate system is `character`.
See `coordinates` for details. `nooffset` switches off the offset.

`set tics` with no options restores to place tics inwards. Every other
options are retained.

See also `set xtics` for more control of major (labelled) tic marks and
@ref{mxtics} for control of minor tic marks.  These commands provide control
at a axis by axis basis.

@node ticslevel, ticscale, tics, set-show
@subsection ticslevel

@c ?commands set ticslevel
@c ?commands show ticslevel
@c ?set ticslevel
@c ?show ticslevel
@cindex ticslevel
@opindex ticslevel


Deprecated. See @ref{xyplane}.

@node ticscale, timestamp, ticslevel, set-show
@subsection ticscale

@c ?commands set ticscale
@c ?commands show ticscale
@c ?set ticscale
@c ?show ticscale
@cindex ticscale
@opindex ticscale


The @ref{ticscale} command is deprecated, use `set tics scale` instead.

@node timestamp, timefmt, ticscale, set-show
@subsection timestamp

@c ?commands set timestamp
@c ?commands unset timestamp
@c ?commands show timestamp
@c ?set timestamp
@c ?unset timestamp
@c ?show timestamp
@cindex timestamp
@opindex timestamp


@cindex notimestamp

The command @ref{timestamp} places the time and date of the plot in the left
margin.

Syntax:
@example
      set timestamp @{"<format>"@} @{top|bottom@} @{@{no@}rotate@}
                    @{offset <xoff>@{,<yoff>@}@} @{font "<fontspec>"@}
      unset timestamp
      show timestamp

@end example

The format string allows you to choose the format used to write the date and
time.  Its default value is what asctime() uses: "%a %b %d %H:%M:%S %Y"
(weekday, month name, day of the month, hours, minutes, seconds, four-digit
year).  With `top` or `bottom` you can place the timestamp at the top or
bottom of the left margin (default: bottom).  `rotate` lets you write the
timestamp vertically, if your terminal supports vertical text.  The constants
<xoff> and <yoff> are offsets that let you adjust the position more finely.
<font> is used to specify the font with which the time is to be written.

The abbreviation `time` may be used in place of @ref{timestamp}.

Example:
@example
      set timestamp "%d/%m/%y %H:%M" offset 80,-2 font "Helvetica"

@end example

See @ref{timefmt} for more information about time format strings.

@node timefmt, title_, timestamp, set-show
@subsection timefmt

@c ?commands set timefmt
@c ?commands show timefmt
@c ?set timefmt
@c ?show timefmt
@cindex timefmt
@opindex timefmt


This command applies to timeseries where data are composed of dates/times.
It has no meaning unless the command `set xdata time` is given also.

Syntax:
@example
      set timefmt "<format string>"
      show timefmt

@end example

The string argument tells `gnuplot` how to read timedata from the datafile.
The valid formats are:


@example
      Format       Explanation
      %d           day of the month, 1--31
      %m           month of the year, 1--12
      %y           year, 0--99
      %Y           year, 4-digit
      %j           day of the year, 1--365
      %H           hour, 0--24
      %M           minute, 0--60
      %s           seconds since the Unix epoch (1970-01-01, 00:00 UTC)
      %S           second, 0--60
      %b           three-character abbreviation of the name of the month
      %B           name of the month

@end example

Any character is allowed in the string, but must match exactly.  \t (tab) is
recognized.  Backslash-octals (\nnn) are converted to char.  If there is no
separating character between the time/date elements, then %d, %m, %y, %H, %M
and %S read two digits each, %Y reads four digits and %j reads three digits.
%b requires three characters, and %B requires as many as it needs.

Spaces are treated slightly differently.  A space in the string stands for
zero or more whitespace characters in the file.  That is, "%H %M" can be used
to read "1220" and "12     20" as well as "12 20".

Each set of non-blank characters in the timedata counts as one column in the
`using n:n` specification.  Thus `11:11  25/12/76  21.0` consists of three
columns.  To avoid confusion, `gnuplot` requires that you provide a complete
@ref{using} specification if your file contains timedata.

Since `gnuplot` cannot read non-numerical text, if the date format includes
the day or month in words, the format string must exclude this text.  But
it can still be printed with the "%a", "%A", "%b", or "%B" specifier:
see `set format` for more details about these and other options for printing
timedata.  (`gnuplot` will determine the proper month and weekday from the
numerical values.)

See also @ref{xdata} and `Time/date` for more information.

Example:
@example
      set timefmt "%d/%m/%Y\t%H:%M"
@end example

tells `gnuplot` to read date and time separated by tab.  (But look closely at
your data---what began as a tab may have been converted to spaces somewhere
along the line; the format string must match what is actually in the file.)
See also
@uref{http://www.gnuplot.info/demo/timedat.html,time data demo.
}

@node title_, tmargin, timefmt, set-show
@subsection title

@c ?commands set title
@c ?commands show title
@c ?set title
@c ?show title
@cindex title
@opindex title


The @ref{title} command produces a plot title that is centered at the top of
the plot.  @ref{title} is a special case of `set label`.

Syntax:
@example
      set title @{"<title-text>"@} @{offset <offset>@} @{font "<font>@{,<size>@}"@}
                @{@{textcolor | tc@} @{<colorspec> | default@}@} @{@{no@}enhanced@}
      show title

@end example

If <offset> is specified by either x,y or x,y,z the title is moved by the
given offset.  It may be preceded by `first`, `second`, `graph`, `screen`,
or `character` to select the coordinate system.  See `coordinates` for
details.  By default, the `character` coordinate system is used.  For
example, "`set title offset 0,-1`" will change only the y offset of the
title, moving the title down by roughly the height of one character.  The
size of a character depends on both the font and the terminal.

<font> is used to specify the font with which the title is to be written;
the units of the font <size> depend upon which terminal is used.

`textcolor <colorspec>` changes the color of the text. <colorspec> can be a
linetype, an rgb color, or a palette mapping. See help for @ref{colorspec} and
@ref{palette}.

`noenhanced` requests that the title not be processed by the enhanced text
mode parser, even if enhanced text mode is currently active.

@ref{title} with no parameters clears the title.

See `syntax` for details about the processing of backslash sequences and
the distinction between single- and double-quotes.

@node tmargin, trange, title_, set-show
@subsection tmargin

@c ?commands set tmargin
@c ?set tmargin
@cindex tmargin
@opindex tmargin


The command @ref{tmargin} sets the size of the top margin.
Please see @ref{margin} for details.

@node trange, urange, tmargin, set-show
@subsection trange

@c ?commands set trange
@c ?commands show trange
@c ?set trange
@c ?show trange
@cindex trange
@opindex trange


The @ref{trange} command sets the parametric range used to compute x and y
values when in parametric or polar modes.  Please see @ref{xrange} for
details.

@node urange, variables, trange, set-show
@subsection urange

@c ?commands set urange
@c ?commands show urange
@c ?set urange
@c ?show urange
@cindex urange
@opindex urange


The @ref{urange} and @ref{vrange} commands set the parametric ranges used
to compute x, y, and z values when in `splot` parametric mode.
Please see @ref{xrange} for details.

@node variables, version, urange, set-show
@subsection variables

@c ?commands show variables
@c ?show variables all
@c ?show variables
The @ref{variables} command lists the current value of user-defined and
internal variables. Gnuplot internally defines variables whose names begin
with GPVAL_, MOUSE_, FIT_, and TERM_.

Syntax:
@example
      show variables      # show variables that do not begin with GPVAL_
      show variables all  # show all variables including those beginning GPVAL_
      show variables NAME # show only variables beginning with NAME

@end example


@node version, view, variables, set-show
@subsection version

@c ?show version
The @ref{version} command lists the version of gnuplot being run, its last
modification date, the copyright holders, and email addresses for the FAQ,
the gnuplot-info mailing list, and reporting bugs--in short, the information
listed on the screen when the program is invoked interactively.

Syntax:
@example
      show version @{long@}

@end example

When the `long` option is given, it also lists the operating system, the
compilation options used when `gnuplot` was installed, the location of the
help file, and (again) the useful email addresses.

@node view, vrange, version, set-show
@subsection view

@c ?commands set view
@c ?commands show view
@c ?set view
@c ?set view map
@c ?show view
@cindex view
@opindex view


The @ref{view} command sets the viewing angle for `splot`s.  It controls how
the 3D coordinates of the plot are mapped into the 2D screen space.  It
provides controls for both rotation and scaling of the plotted data, but
supports orthographic projections only.  It supports both 3D projection or
orthogonal 2D projection into a 2D plot-like map.

Syntax:
@example
      set view <rot_x>@{,@{<rot_z>@}@{,@{<scale>@}@{,<scale_z>@}@}@}
      set view map
      set view @{no@}equal @{xy|xyz@}
      show view

@end example

where <rot_x> and <rot_z> control the rotation angles (in degrees) in a
virtual 3D coordinate system aligned with the screen such that initially
(that is, before the rotations are performed) the screen horizontal axis is
x, screen vertical axis is y, and the axis perpendicular to the screen is z.
The first rotation applied is <rot_x> around the x axis.  The second rotation
applied is <rot_z> around the new z axis.

Command `set view map` is used to represent the drawing as a map. It can be
used for @ref{contour} plots, or for color @ref{pm3d} maps. In the latter, take care
that you properly use @ref{zrange} and @ref{cbrange} for input data point filtering
and color range scaling, respectively.

<rot_x> is bounded to the [0:180] range with a default of 60 degrees, while
<rot_z> is bounded to the [0:360] range with a default of 30 degrees.
<scale> controls the scaling of the entire `splot`, while <scale_z> scales
the z axis only.  Both scales default to 1.0.

Examples:
@example
      set view 60, 30, 1, 1
      set view ,,0.5

@end example

The first sets all the four default values.  The second changes only scale,
to 0.5.

@menu
* equal_axes::                  
@end menu

@node equal_axes,  , view, view
@subsubsection equal_axes

@c ?set view equal_axes
@c ?set view equal
@c ?view equal_axes
@c ?view equal
The command `set view equal xy` forces the unit length of the x and y axes
to be on the same scale, and chooses that scale so that the plot will fit on
the page.  The command `set view equal xyz` additionally sets the z axis 
scale to match the x and y axes; however there is no guarantee that the
current z axis range will fit within the plot boundary.
By default all three axes are scaled independently to fill the available area.

See also @ref{xyplane}.

@node vrange, x2data, view, set-show
@subsection vrange

@c ?commands set vrange
@c ?commands show vrange
@c ?set vrange
@c ?show vrange
@cindex vrange
@opindex vrange


The @ref{urange} and @ref{vrange} commands set the parametric ranges used
to compute x, y, and z values when in `splot` parametric mode.
Please see @ref{xrange} for details.

@node x2data, x2dtics, vrange, set-show
@subsection x2data

@c ?commands set x2data
@c ?commands show x2data
@c ?set x2data
@c ?show x2data
@cindex x2data
@opindex x2data


The @ref{x2data} command sets data on the x2 (top) axis to timeseries
(dates/times).  Please see @ref{xdata}.

@node x2dtics, x2label, x2data, set-show
@subsection x2dtics

@c ?commands set x2dtics
@c ?commands unset x2dtics
@c ?commands show x2dtics
@c ?set x2dtics
@c ?unset x2dtics
@c ?show x2dtics
@cindex x2dtics
@opindex x2dtics


@cindex nox2dtics

The @ref{x2dtics} command changes tics on the x2 (top) axis to days of the
week.  Please see @ref{xdtics} for details.

@node x2label, x2mtics, x2dtics, set-show
@subsection x2label

@c ?commands set x2label
@c ?commands show x2label
@c ?set x2label
@c ?show x2label
@cindex x2label
@opindex x2label


The @ref{x2label} command sets the label for the x2 (top) axis.
Please see @ref{xlabel}.

@node x2mtics, x2range, x2label, set-show
@subsection x2mtics

@c ?commands set x2mtics
@c ?commands unset x2mtics
@c ?commands show x2mtics
@c ?set x2mtics
@c ?unset x2mtics
@c ?show x2mtics
@cindex x2mtics
@opindex x2mtics


@cindex nox2mtics

The @ref{x2mtics} command changes tics on the x2 (top) axis to months of the
year.  Please see @ref{xmtics} for details.

@node x2range, x2tics, x2mtics, set-show
@subsection x2range

@c ?commands set x2range
@c ?commands show x2range
@c ?set x2range
@c ?show x2range
@cindex x2range
@opindex x2range


The @ref{x2range} command sets the horizontal range that will be displayed on
the x2 (top) axis.  Please see @ref{xrange} for details.

@node x2tics, x2zeroaxis, x2range, set-show
@subsection x2tics

@c ?commands set x2tics
@c ?commands unset x2tics
@c ?commands show x2tics
@c ?set x2tics
@c ?unset x2tics
@c ?show x2tics
@cindex x2tics
@opindex x2tics


@cindex nox2tics

The @ref{x2tics} command controls major (labelled) tics on the x2 (top) axis.
Please see `set xtics` for details.

@node x2zeroaxis, xdata, x2tics, set-show
@subsection x2zeroaxis

@c ?commands set x2zeroaxis
@c ?commands unset x2zeroaxis
@c ?commands show x2zeroaxis
@c ?set x2zeroaxis
@c ?unset x2zeroaxis
@c ?show x2zeroaxis
@cindex x2zeroaxis
@opindex x2zeroaxis


@cindex nox2zeroaxis

The @ref{x2zeroaxis} command draws a line at the origin of the x2 (top) axis
(y2 = 0).  For details, please see @ref{zeroaxis}.

@node xdata, xdtics, x2zeroaxis, set-show
@subsection xdata

@c ?commands set xdata
@c ?commands show xdata
@c ?set xdata
@c ?show xdata
@cindex xdata
@opindex xdata


This command sets the datatype on the x axis to time/date.  A similar command
does the same thing for each of the other axes.

Syntax:
@example
      set xdata @{time@}
      show xdata

@end example

The same syntax applies to @ref{ydata}, @ref{zdata}, @ref{x2data}, @ref{y2data} and @ref{cbdata}.

The `time` option signals that the datatype is indeed time/date.  If the
option is not specified, the datatype reverts to normal.

See @ref{timefmt} to tell gnuplot how to read date or time data.  The
time/date is converted to seconds from start of the century.  There is
currently only one timefmt, which implies that all the time/date columns must
conform to this format.  Specification of ranges should be supplied as quoted
strings according to this format to avoid interpretation of the time/date as
an expression.

The function 'strftime' (type "man strftime" on unix to look it up) is used
to print tic-mark labels.  `gnuplot` tries to figure out a reasonable format
for this  unless the `set format x "string"` has supplied something that does
not look like a decimal format (more than one '%' or neither %f nor %g).

See also `Time/date` for more information.

@node xdtics, xlabel, xdata, set-show
@subsection xdtics

@c ?commands set xdtics
@c ?commands unset xdtics
@c ?commands show xdtics
@c ?set xdtics
@c ?unset xdtics
@c ?show xdtics
@cindex xdtics
@opindex xdtics


@cindex noxdtics

The @ref{xdtics} commands converts the x-axis tic marks to days of the week
where 0=Sun and 6=Sat.  Overflows are converted modulo 7 to dates.  `set
noxdtics` returns the labels to their default values.  Similar commands do
the same things for the other axes.

Syntax:
@example
      set xdtics
      unset xdtics
      show xdtics

@end example

The same syntax applies to @ref{ydtics}, @ref{zdtics}, @ref{x2dtics}, @ref{y2dtics} and
@ref{cbdtics}.

See also the `set format` command.

@node xlabel, xmtics, xdtics, set-show
@subsection xlabel

@c ?commands set xlabel
@c ?commands show xlabel
@c ?set xlabel
@c ?show xlabel
@cindex xlabel
@opindex xlabel


The @ref{xlabel} command sets the x axis label.  Similar commands set labels
on the other axes.

Syntax:
@example
      set xlabel @{"<label>"@} @{offset <offset>@} @{font "<font>@{,<size>@}"@}
                 @{@{textcolor | tc@} @{lt <line_type> | default@}@} @{@{no@}enhanced@}
                 @{rotate by <degrees>@}
      show xlabel

@end example

The same syntax applies to @ref{x2label}, @ref{ylabel}, @ref{y2label}, @ref{zlabel} and
@ref{cblabel}.

If <offset> is specified by either x,y or x,y,z the label is moved by the
given offset.  It may be preceded by `first`, `second`, `graph`, `screen`,
or `character` to select the coordinate system.  See `coordinates` for
details.  By default, the `character` coordinate system is used.  For
example, "`set xlabel offset -1,0`" will change only the x offset of the
title, moving the label roughly one character width to the left.  The size
of a character depends on both the font and the terminal.

<font> is used to specify the font in which the label is written; the units
of the font <size> depend upon which terminal is used.

`textcolor lt <n>` sets the text color to that of line type <n>.

`noenhanced` requests that the label text not be processed by the enhanced text
mode parser, even if enhanced text mode is currently active.

To clear a label, put no options on the command line, e.g., "@ref{y2label}".

The default positions of the axis labels are as follows:

xlabel:  The x-axis label is centered below the bottom axis.

ylabel:  The position of the y-axis label depends on the terminal, and can be
one of the following three positions:

1. Horizontal text flushed left at the top left of the plot.  Terminals that
cannot rotate text will probably use this method.  If @ref{x2tics} is also
in use, the ylabel may overwrite the left-most x2tic label.  This may be
remedied by adjusting the ylabel position or the left margin.

2. Vertical text centered vertically at the left of the plot.  Terminals
that can rotate text will probably use this method.

3. Horizontal text centered vertically at the left of the plot.  The EEPIC,
LaTeX and TPIC drivers use this method.  The EEPIC driver will produce a
stack of characters so as not to overwrite the plot. With other drivers
(such as LaTeX and TPIC), the user probably has to insert line breaks
using \\ to prevent the ylabel from overwriting the plot.

zlabel: The z-axis label is centered along the z axis and placed in the space
above the grid level.

cblabel: The color box axis label is centered along the box and placed below
or right according to horizontal or vertical color box gradient.

y2label: The y2-axis label is placed to the right of the y2 axis.  The
position is terminal-dependent in the same manner as is the y-axis label.

x2label: The x2-axis label is placed above the top axis but below the plot
title.  It is also possible to create an x2-axis label by using new-line
characters to make a multi-line plot title, e.g.,

@example
      set title "This is the title\n\nThis is the x2label"

@end example

Note that double quotes must be used.  The same font will be used for both
lines, of course.

The orientation (rotation angle) of the x, x2, y and y2 axis labels can be
explicitly changed from the default setting, but this applies only to 2D plots
and only on terminals that support text rotation.

If you are not satisfied with the default position of an axis label, use `set
label` instead--that command gives you much more control over where text is
placed.

Please see `syntax` for further information about backslash processing
and the difference between single- and double-quoted strings.

@node xmtics, xrange, xlabel, set-show
@subsection xmtics

@c ?commands set xmtics
@c ?commands unset xmtics
@c ?commands show xmtics
@c ?set xmtics
@c ?unset xmtics
@c ?show xmtics
@cindex xmtics
@opindex xmtics


@cindex noxmtics

The @ref{xmtics} command converts the x-axis tic marks to months of the
year where 1=Jan and 12=Dec.  Overflows are converted modulo 12 to months.
The tics are returned to their default labels by @ref{xmtics}.  Similar
commands perform the same duties for the other axes.

Syntax:
@example
      set xmtics
      unset xmtics
      show xmtics

@end example

The same syntax applies to @ref{x2mtics}, @ref{ymtics}, @ref{y2mtics}, @ref{zmtics} and
@ref{cbmtics}.

See also the `set format` command.

@node xrange, xtics, xmtics, set-show
@subsection xrange

@c ?commands set xrange
@c ?commands show xrange
@c ?set xrange
@c ?show xrange
@cindex writeback

@cindex restore

@cindex xrange
@opindex xrange


The @ref{xrange} command sets the horizontal range that will be displayed.
A similar command exists for each of the other axes, as well as for the
polar radius r and the parametric variables t, u, and v.

Syntax:
@example
      set xrange @{ [@{@{<min>@}:@{<max>@}@}] @{@{no@}reverse@} @{@{no@}writeback@} @}
                 | restore
      show xrange

@end example

where <min> and <max> terms are constants, expressions or an asterisk to set
autoscaling.  If the data are time/date, you must give the range as a quoted
string according to the @ref{timefmt} format.  Any value omitted will not be
changed.

The same syntax applies to @ref{yrange}, @ref{zrange}, @ref{x2range}, @ref{y2range}, @ref{cbrange},
@ref{rrange}, @ref{trange}, @ref{urange} and @ref{vrange}.

The `reverse` option reverses the direction of the axis, e.g., `set xrange
[0:1] reverse` will produce an axis with 1 on the left and 0 on the right.
This is identical to the axis produced by `set xrange [1:0]`, of course.
`reverse` is intended primarily for use with @ref{autoscale}.

The `writeback` option essentially saves the range found by @ref{autoscale} in
the buffers that would be filled by @ref{xrange}.  This is useful if you wish
to plot several functions together but have the range determined by only
some of them.  The `writeback` operation is performed during the `plot`
execution, so it must be specified before that command.  To restore,
the last saved horizontal range use `set xrange restore`.  For example,

@example
      set xrange [-10:10]
      set yrange [] writeback
      plot sin(x)
      set yrange restore
      replot x/2

@end example

results in a yrange of [-1:1] as found only from the range of sin(x); the
[-5:5] range of x/2 is ignored.  Executing @ref{yrange} after each command
in the above example should help you understand what is going on.

In 2-d, @ref{xrange} and @ref{yrange} determine the extent of the axes, @ref{trange}
determines the range of the parametric variable in parametric mode or the
range of the angle in polar mode.  Similarly in parametric 3-d, @ref{xrange},
@ref{yrange}, and @ref{zrange} govern the axes and @ref{urange} and @ref{vrange} govern the
parametric variables.

In polar mode, @ref{rrange} determines the radial range plotted.  <rmin> acts as
an additive constant to the radius, whereas <rmax> acts as a clip to the
radius---no point with radius greater than <rmax> will be plotted.  @ref{xrange}
and @ref{yrange} are affected---the ranges can be set as if the graph was of
r(t)-rmin, with rmin added to all the labels.

Any range may be partially or totally autoscaled, although it may not make
sense to autoscale a parametric variable unless it is plotted with data.

Ranges may also be specified on the `plot` command line.  A range given on
the plot line will be used for that single `plot` command; a range given by
a `set` command will be used for all subsequent plots that do not specify
their own ranges.  The same holds true for `splot`.

Examples:

To set the xrange to the default:
@example
      set xrange [-10:10]

@end example

To set the yrange to increase downwards:
@example
      set yrange [10:-10]

@end example

To change zmax to 10 without affecting zmin (which may still be autoscaled):
@example
      set zrange [:10]

@end example

To autoscale xmin while leaving xmax unchanged:
@example
      set xrange [*:]

@end example

@node xtics, xyplane, xrange, set-show
@subsection xtics

@c ?commands set xtics
@c ?commands unset xtics
@c ?commands show xtics
@c ?set xtics
@c ?unset xtics
@c ?show xtics
@cindex xtics
@opindex xtics


@cindex noxtics

Fine control of the major (labelled) tics on the x axis is possible with the
`set xtics` command.  The tics may be turned off with the `unset xtics`
command, and may be turned on (the default state) with `set xtics`.  Similar
commands control the major tics on the y, z, x2 and y2 axes.

Syntax:
@example
      set xtics @{axis | border@} @{@{no@}mirror@}
                @{in | out@} @{scale @{default | <major> @{,<minor>@}@}@}
                @{@{no@}rotate @{by <ang>@}@} @{offset <offset> | nooffset@}
                @{add@}
                @{  autofreq
                 | <incr>
                 | <start>, <incr> @{,<end>@}
                 | (@{"<label>"@} <pos> @{<level>@} @{,@{"<label>"@}...) @}
                @{ format "formatstring" @} @{ font "name@{,<size>@}" @}
                @{ rangelimited @}
                @{ textcolor <colorspec> @}
      unset xtics
      show xtics

@end example

The same syntax applies to @ref{ytics}, @ref{ztics}, @ref{x2tics}, @ref{y2tics} and @ref{cbtics}.

`axis` or @ref{border} tells `gnuplot` to put the tics (both the tics themselves
and the accompanying labels) along the axis or the border, respectively.  If
the axis is very close to the border, the `axis` option will move the
tic labels to outside the border.  The relevant margin settings will usually
be sized badly by the automatic layout algorithm in this case.

`mirror` tells `gnuplot` to put unlabelled tics at the same positions on the
opposite border.  `nomirror` does what you think it does.

`in` and `out` change the tic marks to be drawn inwards or outwards.

With `scale`, the size of the tic marks can be adjusted. If <minor> is not
specified, it is 0.5*<major>.  The default size 1.0 for major tics and 0.5
for minor tics is requested by `scale default`.

`rotate` asks `gnuplot` to rotate the text through 90 degrees, which will be
done if the terminal driver in use supports text rotation.  `norotate`
cancels this. `rotate by <ang>` asks for rotation by <ang> degrees, supported
by some terminal types.

The defaults are `border mirror norotate` for tics on the x and y axes, and
`border nomirror norotate` for tics on the x2 and y2 axes.  For the z axis,
the `@{axis | border@}` option is not available and the default is
`nomirror`.  If you do want to mirror the z-axis tics, you might want to
create a bit more room for them with @ref{border}.

The <offset> is specified by either x,y or x,y,z, and may be preceded by
`first`, `second`, `graph`, `screen`, or `character` to select the
coordinate system. <offset> is the offset of the tics texts from their
default positions, while the default coordinate system is `character`.
See `coordinates` for details. `nooffset` switches off the offset.

Example:

Move xtics more closely to the plot.
@example
      set xtics offset 0,graph 0.05

@end example

`set xtics` with no options restores the default border or axis if xtics are
being displayed;  otherwise it has no effect.  Any previously specified tic
frequency or position @{and labels@} are retained.

Positions of the tics are calculated automatically by default or if the
`autofreq` option is given; otherwise they may be specified in either of
two forms:

The implicit <start>, <incr>, <end> form specifies that a series of tics will
be plotted on the axis between the values <start> and <end> with an increment
of <incr>.  If <end> is not given, it is assumed to be infinity.  The
increment may be negative.  If neither <start> nor <end> is given, <start> is
assumed to be negative infinity, <end> is assumed to be positive infinity,
and the tics will be drawn at integral multiples of <incr>.  If the axis is
logarithmic, the increment will be used as a multiplicative factor.

If you specify to a negative <start> or <incr> after a numerical value
(e.g., `rotate by <angle>` or `offset <offset>`), the parser fails because
it subtracts <start> or <incr> from that value.  As a workaround, specify
`0-<start>` resp. `0-<incr>` in that case.

Example:
@example
      set xtics border offset 0,0.5 -5,1,5
@end example

Fails with 'invalid expression' at the last comma.
@example
      set xtics border offset 0,0.5 0-5,1,5
@end example

or
@example
      set xtics offset 0,0.5 border -5,1,5
@end example

Sets tics at the border, tics text with an offset of 0,0.5 characters, and
sets the start, increment, and end to -5, 1, and 5, as requested.

The `set grid` options 'front', 'back' and 'layerdefault' affect the drawing
order of the xtics, too.

Examples:

Make tics at 0, 0.5, 1, 1.5, ..., 9.5, 10.
@example
      set xtics 0,.5,10

@end example

Make tics at ..., -10, -5, 0, 5, 10, ...
@example
      set xtics 5

@end example

Make tics at 1, 100, 1e4, 1e6, 1e8.
@example
      set logscale x; set xtics 1,100,1e8

@end example

The explicit ("<label>" <pos> <level>, ...) form allows arbitrary tic
positions or non-numeric tic labels.  In this form, the tics do not
need to be listed in numerical order.  Each tic has a
position, optionally with a label.  Note that the label is
a string enclosed by quotes.  It may be a constant string, such as
"hello", may contain formatting information for converting the
position into its label, such as "%3f clients", or may be empty, "".
See `set format` for more information.  If no string is given, the
default label (numerical) is used.

An explicit tic mark has a third parameter, the "level".  The default
is level 0, a major tic.  A level of 1 generates a minor tic.  If the
level is specified, then the label must also be supplied.

Examples:
@example
      set xtics ("low" 0, "medium" 50, "high" 100)
      set xtics (1,2,4,8,16,32,64,128,256,512,1024)
      set ytics ("bottom" 0, "" 10, "top" 20)
      set ytics ("bottom" 0, "" 10 1, "top" 20)

@end example

In the second example, all tics are labelled.  In the third, only the end
tics are labelled.  In the fourth, the unlabeled tic is a minor tic.

Normally if explicit tics are given, they are used instead of auto-generated
tics. Conversely if you specify `set xtics auto` or the like it will erase
any previously specified explicit tics. You can mix explicit and auto-
generated tics by using the keyword `add`, which must appear before
the tic style being added.

Example:
@example
      set xtics 0,.5,10
      set xtics add ("Pi" 3.14159)

@end example

This will automatically generate tic marks every 0.5 along x, but will
also add an explicit labeled tic mark at pi.

However they are specified, tics will only be plotted when in range.

Format (or omission) of the tic labels is controlled by `set format`, unless
the explicit text of a label is included in the `set xtics ("<label>")` form.

Minor (unlabelled) tics can be added automatically by the @ref{mxtics}
command, or at explicit positions by the `set xtics ("" <pos> 1, ...)` form.

@menu
* xtics_time_data::             
* xtics_rangelimited::          
@end menu

@node xtics_time_data, xtics_rangelimited, xtics, xtics
@subsubsection xtics time_data

@c ?set xtics time_axis tics
@c ?xtics time_axis tics
@c ?time_axis tics
In case of timeseries data, axis tic position values must be given as quoted
dates or times according to the format @ref{timefmt}. If the <start>, <incr>, <end>
form is used, <start> and <end> must be given according to @ref{timefmt}, but
<incr> must be in seconds.  Times will be written out according to the format
given on `set format`, however.

Examples:
@example
      set xdata time
      set timefmt "%d/%m"
      set xtics format "%b %d"
      set xrange ["01/12":"06/12"]
      set xtics "01/12", 172800, "05/12"

@end example

@example
      set xdata time
      set timefmt "%d/%m"
      set xtics format "%b %d"
      set xrange ["01/12":"06/12"]
      set xtics ("01/12", "" "03/12", "05/12")
@end example

Both of these will produce tics "Dec 1", "Dec 3", and "Dec 5", but in the
second example the tic at "Dec 3" will be unlabelled.

@node xtics_rangelimited,  , xtics_time_data, xtics
@subsubsection xtics rangelimited

@c ?set xtics rangelimited
@c ?xtics rangelimited
@cindex rangelimited

@cindex range-frame

This option limits both the auto-generated axis tic labels and the
corresponding plot border to the range of values actually present in the data
that has been plotted.  Note that this is independent of the current range 
limits for the plot. For example, suppose that the data in "file.dat" all lies
in the range 2 < y < 4.  Then the following commands will create a plot for
which the left-hand plot border (y axis) is drawn for only this portion of the
total y range, and only the axis tics in this region are generated.
I.e., the plot will be scaled to the full range on y, but there will be a gap
between 0 and 2 on the left border and another gap between 4 and 10. This
style is sometimes refered to as a `range-frame` graph.
@example
      set border 3
      set yrange [0:10]
      set ytics nomirror rangelimited
      plot "file.dat"

@end example

@node xyplane, xzeroaxis, xtics, set-show
@subsection xyplane

@c ?commands set xyplane
@c ?commands show xyplane
@c ?set xyplane
@c ?show xyplane
@cindex xyplane
@opindex xyplane


The @ref{xyplane} command adjusts the position at which the xy plane is drawn
in a 3D plot.  The synonym "set ticslevel" is accepted for backwards
compatibility.

Syntax:
@example
      set xyplane at <zvalue>
      set xyplane relative <frac>
      set ticslevel <frac>        # equivalent to set xyplane relative
      show xyplane

@end example

The form `set xyplane relative <frac>` places the xy plane below the range in
Z, where the distance from the xy plane to Zmin is given as a fraction of the
total range in z.  The default value is 0.5.  Negative values are permitted,
but tic labels on the three axes may overlap.  The older, deprecated, form
@ref{ticslevel} is retained for backwards compatibility.

To place the xy-plane at a position 'pos' on the z-axis, @ref{ticslevel} may
be set equal to  (pos - zmin) / (zmin - zmax).  However, this position will
change if the z range is changed.

The alternative form `set xyplane at <zvalue>` fixes the placement of the
xy plane at a specific Z value regardless of the current z range. Thus to
force the x, y, and z axes to meet at a common origin one would specify
`set xyplane at 0`.

See also @ref{view}, and @ref{zeroaxis}.

@node xzeroaxis, y2data, xyplane, set-show
@subsection xzeroaxis

@c ?commands set xzeroaxis
@c ?commands unset xzeroaxis
@c ?commands show xzeroaxis
@c ?set xzeroaxis
@c ?unset xzeroaxis
@c ?show xzeroaxis
@cindex xzeroaxis
@opindex xzeroaxis


@cindex noxzeroaxis

The @ref{xzeroaxis} command draws a line at y = 0.  For details,
please see @ref{zeroaxis}.

@node y2data, y2dtics, xzeroaxis, set-show
@subsection y2data

@c ?commands set y2data
@c ?commands show y2data
@c ?set y2data
@c ?show y2data
@cindex y2data
@opindex y2data


The @ref{y2data} command sets y2 (right-hand) axis data to timeseries
(dates/times).  Please see @ref{xdata}.

@node y2dtics, y2label, y2data, set-show
@subsection y2dtics

@c ?commands set y2dtics
@c ?commands unset y2dtics
@c ?set y2dtics
@c ?unset y2dtics
@c ?show y2dtics
@cindex y2dtics
@opindex y2dtics


@cindex noy2dtics

The @ref{y2dtics} command changes tics on the y2 (right-hand) axis to days of
the week.  Please see @ref{xdtics} for details.

@node y2label, y2mtics, y2dtics, set-show
@subsection y2label

@c ?commands set y2label
@c ?commands show y2label
@c ?set y2label
@c ?show y2label
@cindex y2label
@opindex y2label


The @ref{y2label} command sets the label for the y2 (right-hand) axis.
Please see @ref{xlabel}.

@node y2mtics, y2range, y2label, set-show
@subsection y2mtics

@c ?commands set y2mtics
@c ?commands unset y2mtics
@c ?commands show y2mtics
@c ?set y2mtics
@c ?unset y2mtics
@c ?show y2mtics
@cindex y2mtics
@opindex y2mtics


@cindex noy2mtics

The @ref{y2mtics} command changes tics on the y2 (right-hand) axis to months
of the year.  Please see @ref{xmtics} for details.

@node y2range, y2tics, y2mtics, set-show
@subsection y2range

@c ?commands set y2range
@c ?commands show y2range
@c ?set y2range
@c ?show y2range
@cindex y2range
@opindex y2range


The @ref{y2range} command sets the vertical range that will be displayed on
the y2 (right-hand) axis.  Please see @ref{xrange} for details.

@node y2tics, y2zeroaxis, y2range, set-show
@subsection y2tics

@c ?commands set y2tics
@c ?commands unset y2tics
@c ?commands show y2tics
@c ?set y2tics
@c ?unset y2tics
@c ?show y2tics
@cindex y2tics
@opindex y2tics


@cindex noy2tics

The @ref{y2tics} command controls major (labelled) tics on the y2 (right-hand)
axis.  Please see `set xtics` for details.

@node y2zeroaxis, ydata, y2tics, set-show
@subsection y2zeroaxis

@c ?commands set y2zeroaxis
@c ?commands unset y2zeroaxis
@c ?commands show y2zeroaxis
@c ?set y2zeroaxis
@c ?unset y2zeroaxis
@c ?show y2zeroaxis
@cindex y2zeroaxis
@opindex y2zeroaxis


@cindex noy2zeroaxis

The @ref{y2zeroaxis} command draws a line at the origin of the y2 (right-hand)
axis (x2 = 0).  For details, please see @ref{zeroaxis}.

@node ydata, ydtics, y2zeroaxis, set-show
@subsection ydata

@c ?commands set ydata
@c ?commands show ydata
@c ?set ydata
@c ?show ydata
@cindex ydata
@opindex ydata


The @ref{ydata} commands sets y-axis data to timeseries (dates/times).
Please see @ref{xdata}.

@node ydtics, ylabel, ydata, set-show
@subsection ydtics

@c ?commands set ydtics
@c ?commands unset ydtics
@c ?commands show ydtics
@c ?set ydtics
@c ?unset ydtics
@c ?show ydtics
@cindex ydtics
@opindex ydtics


@cindex noydtics

The @ref{ydtics} command changes tics on the y axis to days of the week.
Please see @ref{xdtics} for details.

@node ylabel, ymtics, ydtics, set-show
@subsection ylabel

@c ?commands set ylabel
@c ?commands show ylabel
@c ?set ylabel
@c ?show ylabel
@cindex ylabel
@opindex ylabel


This command sets the label for the y axis.  Please see @ref{xlabel}.

@node ymtics, yrange, ylabel, set-show
@subsection ymtics

@c ?commands set ymtics
@c ?commands unset ymtics
@c ?commands show ymtics
@c ?set ymtics
@c ?unset ymtics
@c ?show ymtics
@cindex ymtics
@opindex ymtics


@cindex noymtics

The @ref{ymtics} command changes tics on the y axis to months of the year.
Please see @ref{xmtics} for details.

@node yrange, ytics, ymtics, set-show
@subsection yrange

@c ?commands set yrange
@c ?commands show yrange
@c ?set yrange
@c ?show yrange
@cindex yrange
@opindex yrange


The @ref{yrange} command sets the vertical range that will be displayed on
the y axis.  Please see @ref{xrange} for details.

@node ytics, yzeroaxis, yrange, set-show
@subsection ytics

@c ?commands set ytics
@c ?commands unset ytics
@c ?commands show ytics
@c ?set ytics
@c ?unset ytics
@c ?show ytics
@cindex ytics
@opindex ytics


@cindex noytics

The @ref{ytics} command controls major (labelled) tics on the y axis.
Please see `set xtics` for details.

@node yzeroaxis, zdata, ytics, set-show
@subsection yzeroaxis

@c ?commands set yzeroaxis
@c ?commands unset yzeroaxis
@c ?commands show yzeroaxis
@c ?set yzeroaxis
@c ?unset yzeroaxis
@c ?show yzeroaxis
@cindex yzeroaxis
@opindex yzeroaxis


@cindex noyzeroaxis

The @ref{yzeroaxis} command draws a line at x = 0.  For details,
please see @ref{zeroaxis}.

@node zdata, zdtics, yzeroaxis, set-show
@subsection zdata

@c ?commands set zdata
@c ?commands show zdata
@c ?set zdata
@c ?show zdata
@cindex zdata
@opindex zdata


The @ref{zdata} command sets zaxis data to timeseries (dates/times).
Please see @ref{xdata}.

@node zdtics, zzeroaxis, zdata, set-show
@subsection zdtics

@c ?commands set zdtics
@c ?commands unset zdtics
@c ?commands show zdtics
@c ?set zdtics
@c ?unset zdtics
@c ?show zdtics
@cindex zdtics
@opindex zdtics


@cindex nozdtics

The @ref{zdtics} command changes tics on the z axis to days of the week.
Please see @ref{xdtics} for details.

@node zzeroaxis, cbdata, zdtics, set-show
@subsection zzeroaxis

@c ?commands set zzeroaxis
@c ?commands unset zzeroaxis
@c ?commands show zzeroaxis
@c ?set zzeroaxis
@c ?unset zzeroaxis
@c ?show zzeroaxis
@cindex zzeroaxis
@opindex zzeroaxis


@cindex nozzeroaxis

The @ref{zzeroaxis} command draws a line through (x=0,y=0).  This has no effect
on 2D plots, including splot with `set view map`. For details, please
see @ref{zeroaxis} and @ref{xyplane}.

@node cbdata, cbdtics, zzeroaxis, set-show
@subsection cbdata

@c ?commands set cbdata
@c ?commands show cbdata
@c ?set cbdata
@c ?show cbdata
@cindex cbdata
@opindex cbdata


Set color box axis data to timeseries (dates/times).  Please see @ref{xdata}.

@node cbdtics, zero, cbdata, set-show
@subsection cbdtics

@c ?commands set cbdtics
@c ?commands unset cbdtics
@c ?commands show cbdtics
@c ?set cbdtics
@c ?unset cbdtics
@c ?show cbdtics
@cindex cbdtics
@opindex cbdtics


@cindex nocbdtics

The @ref{cbdtics} command changes tics on the color box axis to days of the
week. Please see @ref{xdtics} for details.

@node zero, zeroaxis, cbdtics, set-show
@subsection zero

@c ?commands set zero
@c ?commands show zero
@c ?set zero
@c ?show zero
@cindex zero
@opindex zero


The `zero` value is the default threshold for values approaching 0.0.

Syntax:
@example
      set zero <expression>
      show zero

@end example

`gnuplot` will not plot a point if its imaginary part is greater in magnitude
than the `zero` threshold.  This threshold is also used in various other
parts of `gnuplot` as a (crude) numerical-error threshold.  The default
`zero` value is 1e-8.  `zero` values larger than 1e-3 (the reciprocal of the
number of pixels in a typical bitmap display) should probably be avoided, but
it is not unreasonable to set `zero` to 0.0.

@node zeroaxis, zlabel, zero, set-show
@subsection zeroaxis

@c ?commands set zeroaxis
@c ?commands unset zeroaxis
@c ?commands show zeroaxis
@c ?set zeroaxis
@c ?unset zeroaxis
@c ?show zeroaxis
@cindex zeroaxis
@opindex zeroaxis


The x axis may be drawn by @ref{xzeroaxis} and removed by @ref{xzeroaxis}.
Similar commands behave similarly for the y, x2, y2, and z axes.

Syntax:
@example
      set @{x|x2|y|y2|z@}zeroaxis @{ @{linestyle | ls <line_style>@}
                                 | @{ linetype | lt <line_type>@}
                                   @{ linewidth | lw <line_width>@}@}
      unset @{x|x2|y|y2|z@}zeroaxis
      show @{x|y|z@}zeroaxis

@end example


By default, these options are off.  The selected zero axis is drawn
with a line of type <line_type> and width <line_width> (if supported
by the terminal driver currently in use), or a user-defined style
<line_style>.

If no linetype is specified, any zero axes selected will be drawn
using the axis linetype (linetype 0).

@ref{zeroaxis} is equivalent to @ref{yzeroaxis}.
Note that the z-axis must be set separately using @ref{zzeroaxis}.

Examples:

To simply have the y=0 axis drawn visibly:

@example
       set xzeroaxis

@end example

If you want a thick line in a different color or pattern, instead:

@example
       set xzeroaxis linetype 3 linewidth 2.5

@end example

@node zlabel, zmtics, zeroaxis, set-show
@subsection zlabel

@c ?commands set zlabel
@c ?commands show zlabel
@c ?set zlabel
@c ?show zlabel
@cindex zlabel
@opindex zlabel


This command sets the label for the z axis.  Please see @ref{xlabel}.

@node zmtics, zrange, zlabel, set-show
@subsection zmtics

@c ?commands set zmtics
@c ?commands unset zmtics
@c ?commands show zmtics
@c ?set zmtics
@c ?unset zmtics
@c ?show zmtics
@cindex zmtics
@opindex zmtics


@cindex nozmtics

The @ref{zmtics} command changes tics on the z axis to months of the year.
Please see @ref{xmtics} for details.

@node zrange, ztics, zmtics, set-show
@subsection zrange

@c ?commands set zrange
@c ?commands show zrange
@c ?set zrange
@c ?show zrange
@cindex zrange
@opindex zrange


The @ref{zrange} command sets the range that will be displayed on the z axis.
The zrange is used only by `splot` and is ignored by `plot`.  Please see
@ref{xrange} for details.

@node ztics, cblabel, zrange, set-show
@subsection ztics

@c ?commands set ztics
@c ?commands unset ztics
@c ?commands show ztics
@c ?set ztics
@c ?unset ztics
@c ?show ztics
@cindex ztics
@opindex ztics


@cindex noztics

The @ref{ztics} command controls major (labelled) tics on the z axis.
Please see `set xtics` for details.

@node cblabel, cbmtics, ztics, set-show
@subsection cblabel

@c ?commands set cblabel
@c ?commands show cblabel
@c ?set cblabel
@c ?show cblabel
@cindex cblabel
@opindex cblabel


This command sets the label for the color box axis.  Please see @ref{xlabel}.

@node cbmtics, cbrange, cblabel, set-show
@subsection cbmtics

@c ?commands set cbmtics
@c ?commands unset cbmtics
@c ?commands show cbmtics
@c ?set cbmtics
@c ?unset cbmtics
@c ?show cbmtics
@cindex cbmtics
@opindex cbmtics


@cindex nocbmtics

The @ref{cbmtics} command changes tics on the color box axis to months of the
year. Please see @ref{xmtics} for details.

@node cbrange, cbtics, cbmtics, set-show
@subsection cbrange

@c ?commands set cbrange
@c ?commands show cbrange
@c ?set cbrange
@c ?show cbrange
@cindex cbrange
@opindex cbrange


The @ref{cbrange} command sets the range of values which are colored using
the current @ref{palette} by styles @ref{pm3d}, `with image` and @ref{palette}.
Values outside of the color range use color of the nearest extreme.

If the cb-axis is autoscaled in `splot`, then the colorbox range is taken from
@ref{zrange}.  Points drawn in `splot ... pm3d|palette` can be filtered by using
different @ref{zrange} and @ref{cbrange}.

Please see @ref{xrange} for details on @ref{cbrange} syntax. See also
@ref{palette} and `set colorbox`.

@node cbtics,  , cbrange, set-show
@subsection cbtics

@c ?commands set cbtics
@c ?commands unset cbtics
@c ?commands show cbtics
@c ?set cbtics
@c ?unset cbtics
@c ?show cbtics
@cindex cbtics
@opindex cbtics


@cindex nocbtics

The @ref{cbtics} command controls major (labelled) tics on the color box axis.
Please see `set xtics` for details.

@node shell, splot, set-show, Commands
@section shell

@c ?commands shell
@cindex shell
@cmindex shell


The @ref{shell} command spawns an interactive shell.  To return to `gnuplot`,
type `logout` if using VMS, @ref{exit} or the END-OF-FILE character if using
Unix, `endcli` if using AmigaOS, or @ref{exit} if using MS-DOS or OS/2.

There are two ways of spawning a shell command: using @ref{system} command
or via `!` ($ if using VMS). The former command takes a string as a
parameter and thus it can be used anywhere among other gnuplot commands,
while the latter syntax requires to be the only command on the line. Control
will return immediately to `gnuplot` after this command is executed.  For
example, in AmigaOS, MS-DOS or OS/2,

@example
      ! dir
@end example

or
@example
      system "dir"

@end example

prints a directory listing and then returns to `gnuplot`.

Other examples of the former syntax:
@example
       system "date"; set time; plot "a.dat"
       print=1; if (print) replot; set out; system "lpr x.ps"

@end example

@node splot, system_, shell, Commands
@section splot

@c ?commands splot
@cindex splot
@cmindex splot


`splot` is the command for drawing 3D plots (well, actually projections on
a 2D surface, but you knew that).  It can create a plot from functions or
data read from files in a manner very similar to the `plot` command.
`splot` provides only a single x, y, and z axis; there is no equivalent to the
x2 and y2 secondary axes provided by `plot`.

See `plot` for features common to the `plot` command; only differences are
discussed in detail here.

Syntax:
@example
      splot @{<ranges>@}
            @{<iteration>@}
            <function> | "<datafile>" @{datafile-modifiers@}@}
            @{<title-spec>@} @{with <style>@}
            @{, @{definitions@{,@}@} <function> ...@}

@end example

where either a <function> or the name of a data file enclosed in quotes is
supplied.  The function can be a mathematical expression, or a triple of
mathematical expressions in parametric mode.

By default `splot` draws the xy plane completely below the plotted data.
The offset between the lowest ztic and the xy plane can be changed by @ref{xyplane}.  The orientation of a `splot` projection is controlled by
@ref{view}.  See @ref{view} and @ref{xyplane} for more information.

The syntax for setting ranges on the `splot` command is the same as for
`plot`.  In non-parametric mode, the order in which ranges must be given is
@ref{xrange}, @ref{yrange}, and @ref{zrange}.  In parametric mode, the order is @ref{urange},
@ref{vrange}, @ref{xrange}, @ref{yrange}, and @ref{zrange}.

The @ref{title} option is the same as in `plot`.  The operation of @ref{with} is also
the same as in `plot`, except that the plotting styles available to `splot`
are limited to `lines`, `points`, @ref{linespoints}, @ref{dots}, and @ref{impulses};  the
error-bar capabilities of `plot` are not available for `splot`.

The @ref{datafile} options have more differences.

See also `show plot`.

@menu
* data-file::                   
* grid_data::                   
* splot_overview::              
@end menu

@node data-file, grid_data, splot, splot
@subsection data-file

@c ?commands splot datafile
@c ?splot datafile
@c ?splot data-file
As for `plot`, discrete data contained in a file can be displayed by
specifying the name of the data file, enclosed in quotes,  on the `splot`
command line.

Syntax:
@example
      splot '<file_name>' @{binary <binary list>@}
                          @{matrix@}
                          @{index <index list>@}
                          @{every <every list>@}
                          @{using <using list>@}

@end example

The special filenames `""` and `"-"` are permitted, as in `plot`.

In brief, `binary` and `matrix` indicate that the data are in a special
form, @ref{index} selects which data sets in a multi-data-set file are to be
plotted, @ref{every} specifies which datalines (subsets) within a single data
set are to be plotted, and @ref{using} determines how the columns within a single
record are to be interpreted.

The options @ref{index} and @ref{every} behave the same way as with `plot`;  @ref{using}
does so also, except that the @ref{using} list must provide three entries
instead of two.

The `plot` options @ref{thru} and @ref{smooth} are not available for `splot`, but
@ref{cntrparam} and @ref{dgrid3d} provide limited smoothing capabilities.

Data file organization is essentially the same as for `plot`, except that
each point is an (x,y,z) triple.  If only a single value is provided, it
will be used for z, the datablock number will be used for y, and the index
of the data point in the datablock will be used for x.  If two or four values
are provided, `gnuplot` uses the last value for calculating the color in
pm3d plots.  Three values are interpreted as an (x,y,z) triple.  Additional
values are generally used as errors, which can be used by @ref{fit}.

Single blank records separate datablocks in a `splot` datafile; `splot`
treats datablocks as the equivalent of function y-isolines.  No line will
join points separated by a blank record.  If all datablocks contain the same
number of points, `gnuplot` will draw cross-isolines between datablocks,
connecting corresponding points.  This is termed "grid data", and is required
for drawing a surface, for contouring (@ref{contour}) and hidden-line removal
(@ref{hidden3d}). See also `splot grid_data`.

It is no longer necessary to specify `parametric` mode for three-column
`splot`s.

@menu
* binary_matrix::               
* example_datafile_::           
* matrix_ascii::                
* matrix::                      
@end menu

@node binary_matrix, example_datafile_, data-file, data-file
@subsubsection binary matrix

@c ?commands plot datafile binary matrix
@c ?commands splot datafile binary matrix
@c ?plot datafile matrix binary
@c ?splot datafile matrix binary
@c ?plot binary matrix
@c ?splot binary matrix
@c ?plot matrix binary
@c ?splot matrix binary
@c ?matrix binary
@c ?binary matrix
@cindex gpbin

Gnuplot can read matrix binary files by use of the option `binary` appearing
without keyword qualifications unique to general binary, i.e., `array`,
`record`, `format`, or `filetype`.  Other general binary keywords for
translation should also apply to matrix binary.  (See `binary general` for
more details.)

In previous versions, `gnuplot` dynamically detected binary data files.  It
is now necessary to specify the keyword `binary` directly after the filename.

Single precision floats are stored in a binary file as follows:

@example
      <N+1>  <y0>   <y1>   <y2>  ...  <yN>
       <x0> <z0,0> <z0,1> <z0,2> ... <z0,N>
       <x1> <z1,0> <z1,1> <z1,2> ... <z1,N>
        :      :      :      :   ...    :

@end example

which are converted into triplets:
@example
      <x0> <y0> <z0,0>
      <x0> <y1> <z0,1>
      <x0> <y2> <z0,2>
       :    :     :
      <x0> <yN> <z0,N>

@end example

@example
      <x1> <y0> <z1,0>
      <x1> <y1> <z1,1>
       :    :     :

@end example

These triplets are then converted into `gnuplot` iso-curves and then
`gnuplot` proceeds in the usual manner to do the rest of the plotting.

A collection of matrix and vector manipulation routines (in C) is provided
in `binary.c`.  The routine to write binary data is

@example
      int fwrite_matrix(file,m,nrl,nrl,ncl,nch,row_title,column_title)

@end example

An example of using these routines is provided in the file `bf_test.c`, which
generates binary files for the demo file `demo/binary.dem`.

The @ref{index} keyword is not supported, since the file format allows only one
surface per file.  The @ref{every} and @ref{using} filters are supported.  @ref{using}
operates as if the data were read in the above triplet form.

See also `binary general` and

@uref{http://www.gnuplot.info/demo/binary.html,Binary File Splot Demo.
}

@node example_datafile_, matrix_ascii, binary_matrix, data-file
@subsubsection example datafile

@c ?commands splot datafile example
@c ?splot datafile example
@c ?splot example
A simple example of plotting a 3D data file is

@example
      splot 'datafile.dat'

@end example

where the file "datafile.dat" might contain:

@example
      # The valley of the Gnu.
         0 0 10
         0 1 10
         0 2 10

@end example

@example
         1 0 10
         1 1 5
         1 2 10

@end example

@example
         2 0 10
         2 1 1
         2 2 10

@end example

@example
         3 0 10
         3 1 0
         3 2 10

@end example

Note that "datafile.dat" defines a 4 by 3 grid ( 4 rows of 3 points each ).
Rows (datablocks) are separated by blank records.

@c ^ <img align=bottom src="http://www.gnuplot.info/doc/splot.gif" alt="[splot.gif]" width=640 height=480>
Note also that the x value is held constant within each dataline.  If you
instead keep y constant, and plot with hidden-line removal enabled, you will
find that the surface is drawn 'inside-out'.

Actually for grid data it is not necessary to keep the x values constant
within a datablock, nor is it necessary to keep the same sequence of y
values.  `gnuplot` requires only that the number of points be the same for
each datablock.  However since the surface mesh, from which contours are
derived, connects sequentially corresponding points, the effect of an
irregular grid on a surface plot is unpredictable and should be examined
on a case-by-case basis.

@node matrix_ascii, matrix, example_datafile_, data-file
@subsubsection matrix_ascii

@c ?commands plot datafile matrix ascii
@c ?commands splot datafile matrix ascii
@c ?plot datafile matrix ascii
@c ?splot datafile matrix ascii
@c ?plot matrix ascii
@c ?splot matrix ascii
@c ?data-file matrix ascii
@c ?datafile matrix ascii
@c ?matrix ascii
The `matrix` keyword (without a sequent `binary` keyword) in
@example
    @{s@}plot 'a.dat' matrix
@end example

indicates that data are stored in an ascii numbers matrix format.

The z-values are read in a row at a time, i. e.,
@example
    z11 z12 z13 z14 ...
    z21 z22 z23 z24 ...
    z31 z32 z33 z34 ...
@end example

and so forth.

In 3D, the x- and y-indices of the matrix surface plot correspond to column
and row indices of the matrix, respectively, being enumerated from 0. You can
rescale or transform the axes as usual for a data file with three columns
by means of x=$1, y=$2, z=$3. For example
@example
    splot 'a.dat' matrix using (1+$1/100):(1+$2*10):3

@end example

A blank line or comment line ends the matrix, and starts a new surface mesh.
You can select among the meshes inside a file by the @ref{index} option to the
`splot` command, as usual.

See `matrix` for examples of plotting rows and columns of the matrix in
a 2D plot.

@node matrix,  , matrix_ascii, data-file
@subsubsection matrix

@c ?commands plot datafile matrix
@c ?commands splot datafile matrix
@c ?plot datafile matrix
@c ?splot datafile matrix
@c ?plot matrix
@c ?splot matrix
@c ?data-file matrix
@c ?datafile matrix
@cindex matrix

Datafile can be in an ascii or binary matrix format. The `matrix` flag
indicates that the file is ascii, the `binary` or `matrix binary` stands for
a binary format. For details, see `matrix ascii` and `matrix binary`.

Basic usage in `splot`:
@example
    splot 'a.dat' matrix
    splot 'a.gpbin' @{matrix@} binary
@end example

Advanced usage in `splot`:
@example
    splot 'a.dat' matrix using 1:2:3
    splot 'a.gpbin' @{matrix@} binary using 1:2:3
@end example

allows to transform the axes coordinates and the z-data independently.

Usage in `plot`:
@example
    plot `a.dat` matrix
    plot `a.dat` matrix using 1:3
    plot 'a.gpbin' @{matrix@} binary using 1:3
@end example

will plot rows of the matrix, while using 2:3 will plot matrix columns, and
using 1:2 the point coordinates (rather useless). Applying the @ref{every} option
you can specify explicit rows and columns.

Example -- rescale axes of a matrix in an ascii file:
@example
    splot `a.dat` matrix using (1+$1):(1+$2*10):3

@end example

Example -- plot the 3rd row of a matrix in an ascii file:
@example
    plot 'a.dat' matrix using 1:3 every 1:999:1:2
@end example

(rows are enumerated from 0, thus 2 instead of 3).

@node grid_data, splot_overview, data-file, splot
@subsection grid data

@c ?commands splot grid_data
@c ?splot grid_data
@cindex grid_data

The 3D routines are designed for points in a grid format, with one sample,
datapoint, at each mesh intersection; the datapoints may originate from
either evaluating a function, see @ref{isosamples}, or reading a datafile,
see @ref{datafile}.  The term "isoline" is applied to the mesh lines for
both functions and data.  Note that the mesh need not be rectangular in x
and y, as it may be parameterized in u and v, see @ref{isosamples}.

However, `gnuplot` does not require that format.  In the case of functions,
'samples' need not be equal to 'isosamples', i.e., not every x-isoline
sample need intersect a y-isoline. In the case of data files, if there
are an equal number of scattered data points in each datablock, then
"isolines" will connect the points in a datablock, and "cross-isolines"
will connect the corresponding points in each datablock to generate a
"surface".  In either case, contour and hidden3d modes may give different
plots than if the points were in the intended format.  Scattered data can be
converted to a @{different@} grid format with @ref{dgrid3d}.

The contour code tests for z intensity along a line between a point on a
y-isoline and the corresponding point in the next y-isoline.  Thus a `splot`
contour of a surface with samples on the x-isolines that do not coincide with
a y-isoline intersection will ignore such samples. Try:
@example
       set xrange [-pi/2:pi/2]; set yrange [-pi/2:pi/2]
       set style function lp
       set contour
       set isosamples 10,10; set samples 10,10;
       splot cos(x)*cos(y)
       set samples 4,10; replot
       set samples 10,4; replot

@end example


@node splot_overview,  , grid_data, splot
@subsection splot overview

@c ?commands splot overview
@c ?splot overview
`splot` can display a surface as a collection of points, or by connecting
those points.  As with `plot`, the points may be read from a data file or
result from evaluation of a function at specified intervals, see
@ref{isosamples}.  The surface may be approximated by connecting the points
with straight line segments, see @ref{surface}, in which case the surface
can be made opaque with `set hidden3d.`  The orientation from which the 3d
surface is viewed can be changed with @ref{view}.

Additionally, for points in a grid format, `splot` can interpolate points
having a common amplitude (see @ref{contour}) and can then connect those
new points to display contour lines, either directly with straight-line
segments or smoothed lines (see @ref{cntrparam}).  Functions are already
evaluated in a grid format, determined by @ref{isosamples} and @ref{samples},
while file data must either be in a grid format, as described in @ref{data-file},
or be used to generate a grid (see @ref{dgrid3d}).

Contour lines may be displayed either on the surface or projected onto the
base.  The base projections of the contour lines may be written to a
file, and then read with `plot`, to take advantage of `plot`'s additional
formatting capabilities.

@node system_, test, splot, Commands
@section system

@c ?commands system
@cindex system
@cmindex system


`system "command"` executes "command" using the standard shell. See @ref{shell}.
If called as a function, `system("command")` returns the resulting character
stream from stdout as a string.  One optional trailing newline is ignored.

This can be used to import external functions into gnuplot scripts:

@example
      f(x) = real(system(sprintf("somecommand %f", x)))

@end example

@node test, undefine, system_, Commands
@section test

@c ?commands test
@c ?test palette
@cindex test
@cmindex test


This command graphically tests or presents terminal and palette capabilities.

Syntax:
@example
      test @{terminal | palette [rgb|rbg|grb|gbr|brg|bgr]@}

@end example

@ref{test} or @ref{terminal} creates a display of line and point styles and other
useful things appropriate for and supported by the @ref{terminal} you are just
using.

@ref{palette} draws graphically profiles R(z),G(z),B(z), where 0<=z<=1, as
calculated by the current color @ref{palette}. In other words, it is a beautiful
plot you would have to construct from the result of `show palette palette 256 float`.
The optional parameter, a permutation of letters rgb, determines the sequence of
r,g,b profiles drawn one after the other --- try this yourself for `set palette
gray`. The default sequence is rgb.

@node undefine, unset, test, Commands
@section undefine

@c ?commands undefine
@cindex undefine
@cmindex undefine


Clear one or more previously defined user variables.  This is useful in order
to reset the state of a script containing an initialization test.

Example:

@example
      undefine foo foo1 foo2
      if (!exists("foo")) load "initialize.gp"

@end example


@node unset, update, undefine, Commands
@section unset

@c ?commands unset
@cindex unset
@cmindex unset


@cindex iteration
@cmindex iteration


Options set using the `set` command may be returned to their default state by
the corresponding @ref{unset} command.  The @ref{unset} command may contain an optional
iteration clause. See @ref{iteration}.

Examples:
@example
      set xtics mirror rotate by -45 0,10,100
      ...
      unset xtics

@end example

@example
      # Unset labels numbered between 100 and 200
      unset for [i=100:200] label i

@end example


@node update,  , unset, Commands
@section update

@c ?commands update
@cindex update
@cmindex update


This command writes the current values of the fit parameters into the given
file, formatted as an initial-value file (as described in the @ref{fit}section).
This is useful for saving the current values for later use or for restarting
a converged or stopped fit.

Syntax:
@example
      update <filename> @{<filename>@}

@end example

If a second filename is supplied, the updated values are written to this
file, and the original parameter file is left unmodified.

Otherwise, if the file already exists, `gnuplot` first renames it by
appending `.old` and then opens a new file.  That is, "`update 'fred'`"
behaves the same as "`!rename fred fred.old; update 'fred.old' 'fred'`".
[On DOS and other systems that use the twelve-character "filename.ext"
naming convention, "ext" will be "`old`" and "filename" will be related
(hopefully recognizably) to the initial name.  Renaming is not done at all
on VMS systems, since they use file-versioning.]

Please see @ref{fit} for more information.

@node Terminal_types, Graphical_User_Interfaces, Commands, Top
@chapter Terminal types

@c ^ <h2> Terminal Types </h2>

@menu
* complete_list_of_terminals::  
@end menu

@node complete_list_of_terminals,  , Terminal_types, Terminal_types
@section complete list of terminals

@c ?complete list of terminals
@cindex terminal
@opindex terminal


@cindex term

Gnuplot supports a large number of output formats. These are selected by
choosing an appropriate terminal type, possibly with additional modifying
options. See @ref{terminal}.

This document may describe terminal types that are not available to you
because they were not configured or installed on your system. To see a list of
terminals available on a particular gnuplot installation, type 'set terminal'
with no modifiers.
@@c <3 -- all terminal stuff is pulled from the .trm files

@menu
* aed767::                      
* aifm::                        
* amiga::                       
* apollo::                      
* aqua::                        
* be::                          
* pdfcairo::                    
* canvas::                      
* cgi::                         
* cgm::                         
* corel::                       
* debug::                       
* svga::                        
* dumb::                        
* dxf::                         
* dxy800a::                     
* eepic::                       
* emf::                         
* emxvga::                      
* epson_180dpi::                
* excl::                        
* hercules::                    
* fig::                         
* png_::                        
* ggi::                         
* Gnugraph(GNU_plotutils)::     
* gpic::                        
* gpic_::                       
* gpr::                         
* grass::                       
* hp2623a::                     
* hp2648::                      
* hp500c::                      
* hpgl::                        
* hpljii::                      
* hppj::                        
* imagen::                      
* kyo::                         
* latex::                       
* linux::                       
* linux_::                      
* lua::                         
* macintosh::                   
* mf::                          
* mp::                          
* mgr::                         
* mif::                         
* next::                        
* Openstep_(next)::             
* pbm::                         
* dospc::                       
* pdf::                         
* pstricks::                    
* qms::                         
* regis::                       
* regis_::                      
* rgip::                        
* sun::                         
* svg::                         
* tek410x::                     
* tek410x_::                    
* tek40::                       
* texdraw::                     
* tgif::                        
* tgif_::                       
* tkcanvas::                    
* tpic::                        
* unixpc::                      
* unixplot::                    
* vx384::                       
* vgagl::                       
* VWS::                         
* windows::                     
* wxt::                         
* x11::                         
* x11_::                        
* xlib::                        
* xlib_::                       
@end menu

@node aed767, aifm, complete_list_of_terminals, complete_list_of_terminals
@subsubsection aed767

@c ?commands set terminal aed767
@c ?set terminal aed767
@c ?set term aed767
@c ?terminal aed767
@c ?term aed767
@cindex aed767
@tmindex aed767


@c ?commands set terminal aed512
@c ?set terminal aed512
@c ?set term aed512
@c ?terminal aed512
@c ?term aed512
@cindex aed512
@tmindex aed512


The `aed512` and `aed767` terminal drivers support AED graphics terminals.
The two drivers differ only in their horizontal ranges, which are 512 and
768 pixels, respectively.  Their vertical range is 575 pixels.  There are
no options for these drivers."

@node aifm, amiga, aed767, complete_list_of_terminals
@subsubsection aifm

@c ?commands set terminal aifm
@c ?set terminal aifm
@c ?set term aifm
@c ?terminal aifm
@c ?term aifm
@cindex aifm


NOTE: this terminal driver is outdated. Since Adobe Illustrator understands
PostScript level 1 directly, you should use `set terminal post level1`
instead.

Several options may be set in `aifm`---the Adobe Illustrator 3.0+ driver.

Syntax:
@example
      set terminal aifm @{<color>@} @{"<fontname>"@} @{<fontsize>@}

@end example

<color> is either `color` or `monochrome`; "<fontname>" is the name of a
valid PostScript font; <fontsize> is the size of the font in PostScript
points, before scaling by the @ref{size} command.  Selecting `default` sets
all options to their default values: `monochrome`, "Times-Roman", and 14pt.

Since AI does not really support multiple pages, multiple graphs will be
drawn directly on top of one another.  However, each graph will be grouped
individually, making it easy to separate them inside AI (just pick them up
and move them).

Examples:
@example
      set term aifm
      set term aifm 22
      set size 0.7,1.4; set term aifm color "Times-Roman" 14"

@end example

@node amiga, apollo, aifm, complete_list_of_terminals
@subsubsection amiga

@c ?commands set terminal amiga
@c ?set terminal amiga
@c ?set term amiga
@c ?terminal amiga
@c ?term amiga
@cindex amiga
@tmindex amiga


The `amiga` terminal, for Commodore Amiga computers, allows the user to
plot either to a screen (default), or, if Kickstart 3.0 or higher is
installed, to a window on the current public screen. The font and its size
can also be selected.

Syntax:
@example
      set terminal amiga @{screen | window@} @{"<fontname>"@} @{<fontsize>@}

@end example

The default font is 8-point "topaz".

The screen option uses a virtual screen, so it is possible that the graph
will be larger than the screen."

@node apollo, aqua, amiga, complete_list_of_terminals
@subsubsection apollo

@c ?commands set terminal apollo
@c ?set terminal apollo
@c ?set term apollo
@c ?terminal apollo
@c ?term apollo
@cindex apollo
@tmindex apollo


The `apollo` terminal driver supports the Apollo Graphics Primitive Resource
with rescaling after window resizing.  It has no options.

If a fixed-size window is desired, the `gpr` terminal may be used instead."

@node aqua, be, apollo, complete_list_of_terminals
@subsubsection aqua

@c ?commands set terminal aqua
@c ?set terminal aqua
@c ?set term aqua
@c ?terminal aqua
@c ?term aqua
@cindex aqua

@cindex Aqua

This terminal relies on AquaTerm.app for display on Mac OS X.

Syntax:
@example
      set terminal aqua @{<n>@} @{title "<wintitle>"@} @{size <x> <y>@}
                        @{font "<fontname>@{,<fontsize>@}"@}
                        @{@{no@}enhanced@} @{solid|dashed@} @{dl <dashlength>@}@}

@end example

where <n> is the number of the window to draw in (default is 0),
<wintitle> is the name shown in the title bar (default "Figure <n>"),
<x> <y> is the size of the plot (default is 846x594 pt = 11.75x8.25 in).

Use <fontname> to specify the font to use (default is "Times-Roman"),
and <fontsize> to specify the font size (default is 14.0 pt). The old syntax
@{fname "<fontname>"@} @{fsize <fontsize>@} is still supported.

The aqua terminal supports enhanced text mode (see `enhanced`), except for
overprint. Font support is limited to the fonts available on the system.
Character encoding can be selected by @ref{encoding} and currently supports
iso_latin_1, iso_latin_2, cp1250, and default which equals UTF8.

Lines can be drawn either solid or dashed, (default is solid) and the dash
spacing can be modified by <dashlength> which is a multiplier > 0.


@node be, pdfcairo, aqua, complete_list_of_terminals
@subsubsection be

@c ?commands set terminal be
@c ?set terminal be
@c ?set term be
@c ?terminal be
@c ?term be
@cindex be

@cindex BE

`gnuplot` provides the `be` terminal type for use with X servers.  This
terminal type is set automatically at startup if the `DISPLAY` environment
variable is set, if the `TERM` environment variable is set to `xterm`, or
if the `-display` command line option is used.

Syntax:
@example
          set terminal be @{reset@} @{<n>@}

@end example

Multiple plot windows are supported: `set terminal be <n>` directs the
output to plot window number n.  If n>0, the terminal number will be
appended to the window title and the icon will be labeled `gplt <n>`.
The active window may distinguished by a change in cursor (from default
to crosshair.)

Plot windows remain open even when the `gnuplot` driver is changed to a
different device.  A plot window can be closed by pressing the letter q
while that window has input focus, or by choosing `close` from a window
manager menu.  All plot windows can be closed by specifying @ref{reset}, which
actually terminates the subprocess which maintains the windows (unless
`-persist` was specified).

Plot windows will automatically be closed at the end of the session
unless the `-persist` option was given.

The size or aspect ratio of a plot may be changed by resizing the `gnuplot`
window.

Linewidths and pointsizes may be changed from within `gnuplot` with
`set linestyle`.

For terminal type `be`, `gnuplot` accepts (when initialized) the standard
X Toolkit options and resources such as geometry, font, and name from the
command line arguments or a configuration file.  See the X(1) man page
(or its equivalent) for a description of such options.

A number of other `gnuplot` options are available for the `be` terminal.
These may be specified either as command-line options when `gnuplot` is
invoked or as resources in the configuration file ".Xdefaults".  They are
set upon initialization and cannot be altered during a `gnuplot` session.


@noindent --- COMMAND-LINE_OPTIONS ---

@c ?commands set terminal be command-line-options
@c ?set terminal be command-line-options
@c ?set term be command-line-options
@c ?be command-line-options
In addition to the X Toolkit options, the following options may be specified
on the command line when starting `gnuplot` or as resources in your
".Xdefaults" file:

@example
 `-mono`        forces monochrome rendering on color displays.
 `-gray`        requests grayscale rendering on grayscale or color displays.
                        (Grayscale displays receive monochrome rendering by default.)
 `-clear`   requests that the window be cleared momentarily before a
                        new plot is displayed.
 `-raise`   raises plot window after each plot
 `-noraise` does not raise plot window after each plot
 `-persist` plots windows survive after main gnuplot program exits

@end example

The options are shown above in their command-line syntax.  When entered as
resources in ".Xdefaults", they require a different syntax.

Example:
@example
          gnuplot*gray: on

@end example

`gnuplot` also provides a command line option (`-pointsize <v>`) and a
resource, `gnuplot*pointsize: <v>`, to control the size of points plotted
with the `points` plotting style.  The value `v` is a real number (greater
than 0 and less than or equal to ten) used as a scaling factor for point
sizes.  For example, `-pointsize 2` uses points twice the default size, and
`-pointsize 0.5` uses points half the normal size.


@noindent --- MONOCHROME_OPTIONS ---

@c ?commands set terminal be monochrome_options
@c ?set terminal be monochrome_options
@c ?set term be monochrome_options
@c ?be monochrome_options
For monochrome displays, `gnuplot` does not honor foreground or background
colors.  The default is black-on-white.  `-rv` or `gnuplot*reverseVideo: on`
requests white-on-black.



@noindent --- COLOR_RESOURCES ---

@c ?commands set terminal be color_resources
@c ?set terminal be color_resources
@c ?set term be color_resources
@c ?be color_resources
For color displays, `gnuplot` honors the following resources (shown here
with their default values) or the greyscale resources.  The values may be
color names as listed in the BE rgb.txt file on your system, hexadecimal
RGB color specifications (see BE documentation), or a color name followed
by a comma and an `intensity` value from 0 to 1.  For example, `blue, 0.5`
means a half intensity blue.

@example
 gnuplot*background:  white
 gnuplot*textColor:   black
 gnuplot*borderColor: black
 gnuplot*axisColor:   black
 gnuplot*line1Color:  red
 gnuplot*line2Color:  green
 gnuplot*line3Color:  blue
 gnuplot*line4Color:  magenta
 gnuplot*line5Color:  cyan
 gnuplot*line6Color:  sienna
 gnuplot*line7Color:  orange
 gnuplot*line8Color:  coral

@end example


The command-line syntax for these is, for example,

Example:
@example
          gnuplot -background coral

@end example



@noindent --- GRAYSCALE_RESOURCES ---

@c ?commands set terminal be grayscale_resources
@c ?set terminal be grayscale_resources
@c ?set term be grayscale_resources
@c ?be grayscale_resources
When `-gray` is selected, `gnuplot` honors the following resources for
grayscale or color displays (shown here with their default values).  Note
that the default background is black.

@example
 gnuplot*background: black
 gnuplot*textGray:   white
 gnuplot*borderGray: gray50
 gnuplot*axisGray:   gray50
 gnuplot*line1Gray:  gray100
 gnuplot*line2Gray:  gray60
 gnuplot*line3Gray:  gray80
 gnuplot*line4Gray:  gray40
 gnuplot*line5Gray:  gray90
 gnuplot*line6Gray:  gray50
 gnuplot*line7Gray:  gray70
 gnuplot*line8Gray:  gray30

@end example




@noindent --- LINE_RESOURCES ---

@c ?commands set terminal be line_resources
@c ?set terminal be line_resources
@c ?set term be line_resources
@c ?be line_resources
`gnuplot` honors the following resources for setting the width (in pixels) of
plot lines (shown here with their default values.)  0 or 1 means a minimal
width line of 1 pixel width.  A value of 2 or 3 may improve the appearance of
some plots.

@example
 gnuplot*borderWidth: 2
 gnuplot*axisWidth:   0
 gnuplot*line1Width:  0
 gnuplot*line2Width:  0
 gnuplot*line3Width:  0
 gnuplot*line4Width:  0
 gnuplot*line5Width:  0
 gnuplot*line6Width:  0
 gnuplot*line7Width:  0
 gnuplot*line8Width:  0

@end example


`gnuplot` honors the following resources for setting the dash style used for
plotting lines.  0 means a solid line.  A two-digit number `jk` (`j` and `k`
are >= 1  and <= 9) means a dashed line with a repeated pattern of `j` pixels
on followed by `k` pixels off.  For example, '16' is a "dotted" line with one
pixel on followed by six pixels off.  More elaborate on/off patterns can be
specified with a four-digit value.  For example, '4441' is four on, four off,
four on, one off.  The default values shown below are for monochrome displays
or monochrome rendering on color or grayscale displays.  For color displays,
the default for each is 0 (solid line) except for `axisDashes` which defaults
to a '16' dotted line.

@example
 gnuplot*borderDashes:   0
 gnuplot*axisDashes:        16
 gnuplot*line1Dashes:        0
 gnuplot*line2Dashes:   42
 gnuplot*line3Dashes:   13
 gnuplot*line4Dashes:   44
 gnuplot*line5Dashes:   15
 gnuplot*line6Dashes: 4441
 gnuplot*line7Dashes:   42
 gnuplot*line8Dashes:   13

@end example


@node pdfcairo, canvas, be, complete_list_of_terminals
@subsubsection pdfcairo

@c ?set terminal pdfcairo
@c ?terminal pdfcairo
@c ?set term pdfcairo
@c ?term pdfcairo
@cindex pdfcairo
@tmindex pdfcairo


The `pdfcairo` terminal device generates output in pdf. The actual
drawing is done via cairo, a 2D graphics library, and pango, a library for
laying out and rendering text.

Syntax:
@example
        set term pdfcairo
                     @{@{no@}enhanced@} @{mono|color@} @{solid|dashed@}
                     @{font <font>@}
                     @{linewidth <lw>@} @{rounded|butt@} @{dashlength <dl>@}
                     @{size <XX>@{unit@},<YY>@{unit@}@}

@end example

This terminal supports an enhanced text mode, which allows font and other
formatting commands (subscripts, superscripts, etc.) to be embedded in labels
and other text strings. The enhanced text mode syntax is shared with other
gnuplot terminal types. See `enhanced` for more details.

The width of all lines in the plot can be modified by the factor <lw>
specified in `linewidth`. The default linewidth is 0.25 points.
(1 "PostScript" point = 1/72 inch = 0.353 mm)

`rounded` sets line caps and line joins to be rounded; `butt` is the
default, butt caps and mitered joins.

The default size for the output is 5 inches x 3 inches. The @ref{size} option
changes this to whatever the user requests. By default the X and Y sizes are
taken to be in inches, but other units are possibly (currently only cm).
Screen coordinates always run from 0.0 to 1.0 along the full length of the
plot edges as specified by the @ref{size} option.

<font> is in the format "FontFace,FontSize", i.e. the face and the size
comma-separated in a single string. FontFace is a usual font face name, such
as \'Arial\'. If you do not provide FontFace, the pdfcairo terminal will use
\'Sans\'. FontSize is the font size, in points. If you do not provide it,
the pdfcairo terminal will use a size of 6 points.
@example
   For example :
      set term pdfcairo font "Arial,12"
      set term pdfcairo font "Arial" # to change the font face only
      set term pdfcairo font ",12" # to change the font size only
      set term pdfcairo font "" # to reset the font name and size

@end example

The fonts are retrieved from the usual fonts subsystems. Under Windows,
those fonts are to be found and configured in the entry "Fonts" of the
control panel. Under UNIX, they are handled by "fontconfig".

Pango, the library used to layout the text, is based on utf-8. Thus, the pdfcairo
terminal has to convert from your encoding to utf-8. The default input
encoding is based on your \'locale\'. If you want to use another encoding,
make sure gnuplot knows which one you are using. See @ref{encoding} for more
details.

Pango may give unexpected results with fonts that do not respect the unicode
mapping. With the Symbol font, for example, the pdfcairo terminal will use the map
provided by http://www.unicode.org/ to translate character codes to unicode.
Note that "the Symbol font" is to be understood as the Adobe
Symbol font, distributed with Acrobat Reader as "SY______.PFB".
Alternatively, the OpenSymbol font, distributed with OpenOffice.org as
"opens___.ttf", offers the same characters. Microsoft has distributed a
Symbol font ("symbol.ttf"), but it has a different character set with
several missing or moved mathematic characters. If you experience problems
with your default setup (if the demo enhancedtext.dem is not displayed
properly for example), you probably have to install one of the Adobe or
OpenOffice Symbol fonts, and remove the Microsoft one.
Other non-conform fonts, such as "wingdings" have been observed working.

The rendering of the plot cannot be altered yet. To obtain the best output
possible, the rendering involves two mechanisms : antialiasing and
oversampling.
Antialiasing allows to display non-horizontal and non-vertical lines
smoother.
Oversampling combined with antialiasing provides subpixel accuracy,
so that gnuplot can draw a line from non-integer coordinates. This avoids
wobbling effects on diagonal lines ('plot x' for example).


@node canvas, cgi, pdfcairo, complete_list_of_terminals
@subsubsection canvas

@c ?commands set terminal canvas
@c ?set terminal canvas
@c ?set term canvas
@c ?terminal canvas
@c ?term canvas

Syntax:
@example
      set terminal canvas @{size <xsize>, <ysize>@} @{fsize <fontsize>@}
                          @{@{no@}enhanced@} @{linewidth <lw>@}
                          @{standalone @{mousing@} | name '<funcname>'@}
                          @{jsdir 'URL/for/javascripts'@}
                          @{title '<some string>'@}

@end example

where <xsize> and <ysize> set the size of the plot area in pixels.
The default size in standalone mode is 600 by 400 pixels.
The default font size is 10.  NB: Only one font is available, the ascii
portion of Hershey simplex Roman provided in the file canvastext.js.
You can replace this with the file canvasmath.js, which contains also
UTF-8 encoded Hershey simplex Greek and math symbols.

The default `standalone` mode creates an html page containing javascript
code that renders the plot using the HTML 5 canvas element.  The html page
links to two required javascript files 'canvastext.js' and 'gnuplot_common.js'.
By default these point to local files, on unix-like systems usually in
directory /usr/local/share/gnuplot/<version>/js.  See installation notes for
other platforms. You can change this by using the `jsdir` option to specify
either a different local directory or a general URL.  The latter is usually
appropriate if the plot is exported for viewing on remote client machines.

All plots produced by the canvas terminal are mouseable.  The additional
keyword `mousing` causes the `standalone` mode to add a mouse-tracking box
underneath the plot. It also adds a link to a javascript file
'gnuplot_mouse.js' and to a stylesheet for the mouse box 'gnuplot_mouse.css'
in the same local or URL directory as 'canvastext.js'.

The `name` option creates a file containing only javascript. Both the
javascript function it contains and the id of the canvas element that it
draws onto are taken from the following string parameter.  The commands
@example
      set term canvas name 'fishplot'
      set output 'fishplot.js'
@end example

will create a file containing a javascript function fishplot() that will
draw onto a canvas with id=fishplot.  An html page that invokes this
javascript function must also load the canvastext.js function as described
above.  A minimal html file to wrap the fishplot created above might be:

@example
      <html>
      <head>
          <script src="canvastext.js"></script>
          <script src="gnuplot_common.js"></script>
      </head>
      <body onload="fishplot();">
          <script src="fishplot.js"></script>
          <canvas id="fishplot" width=600 height=400>
              <div id="err_msg">No support for HTML 5 canvas element</div>
          </canvas>
      </body>
      </html>

@end example


@node cgi, cgm, canvas, complete_list_of_terminals
@subsubsection cgi

@c ?commands set terminal cgi
@c ?set terminal cgi
@c ?set term cgi
@c ?terminal cgi
@c ?term cgi
@cindex cgi
@tmindex cgi


@c ?commands set terminal hcgi
@c ?set terminal hcgi
@c ?set term hcgi
@c ?terminal hcgi
@c ?term hcgi
@cindex hcgi
@tmindex hcgi


The `cgi` and `hcgi` terminal drivers support SCO CGI drivers.  `hcgi` is for
printers; the environment variable CGIPRNT must be set.  `cgi` may be used
for either a display or hardcopy; if the environment variable CGIDISP is set,
then that display is used.  Otherwise CGIPRNT is used.

These terminals have no options."

@node cgm, corel, cgi, complete_list_of_terminals
@subsubsection cgm

@c ?commands set terminal cgm
@c ?set terminal cgm
@c ?set term cgm
@c ?terminal cgm
@c ?term cgm
@cindex cgm
@tmindex cgm


The `cgm` terminal generates a Computer Graphics Metafile, Version 1. 
This file format is a subset of the ANSI X3.122-1986 standard entitled
"Computer Graphics - Metafile for the Storage and Transfer of Picture
Description Information".

Syntax:
@example
      set terminal cgm @{color | monochrome@} @{solid | dashed@} @{@{no@}rotate@}
                       @{<mode>@} @{width <plot_width>@} @{linewidth <line_width>@}
                       @{font "<fontname>,<fontsize>"@}
                       @{<color0> <color1> <color2> ...@}

@end example

`solid` draws all curves with solid lines, overriding any dashed patterns;
<mode> is `landscape`, `portrait`, or `default`;
<plot_width> is the assumed width of the plot in points; 
<line_width> is the line width in points (default 1); 
<fontname> is the name of a font (see list of fonts below)
<fontsize> is the size of the font in points (default 12).

The first six options can be in any order.  Selecting `default` sets all
options to their default values.

Each color must be of the form 'xrrggbb', where x is the literal
character 'x' and 'rrggbb' are the red, green and blue components in
hex.  For example, 'x00ff00' is green.  The background color is set
first, then the plotting colors.

Examples:
@example
      set terminal cgm landscape color rotate dashed width 432 \\
                     linewidth 1  'Helvetica Bold' 12       # defaults
      set terminal cgm linewidth 2  14  # wider lines & larger font
      set terminal cgm portrait "Times Italic" 12
      set terminal cgm color solid      # no pesky dashes!

@end example



@noindent --- CGM FONT ---

@c ?commands set terminal cgm font
@c ?set terminal cgm font
@c ?set term cgm font
@c ?cgm font
The first part of a Computer Graphics Metafile, the metafile description,
includes a font table.  In the picture body, a font is designated by an
index into this table.  By default, this terminal generates a table with
the following 35 fonts, plus six more with `italic` replaced by
`oblique`, or vice-versa (since at least the Microsoft Office and Corel
Draw CGM import filters treat `italic` and `oblique` as equivalent):

@example
      Helvetica
      Helvetica Bold
      Helvetica Oblique
      Helvetica Bold Oblique
      Times Roman
      Times Bold
      Times Italic
      Times Bold Italic
      Courier
      Courier Bold
      Courier Oblique
      Courier Bold Oblique
      Symbol
      Hershey/Cartographic_Roman
      Hershey/Cartographic_Greek
      Hershey/Simplex_Roman
      Hershey/Simplex_Greek
      Hershey/Simplex_Script
      Hershey/Complex_Roman
      Hershey/Complex_Greek
      Hershey/Complex_Script
      Hershey/Complex_Italic
      Hershey/Complex_Cyrillic
      Hershey/Duplex_Roman
      Hershey/Triplex_Roman
      Hershey/Triplex_Italic
      Hershey/Gothic_German
      Hershey/Gothic_English
      Hershey/Gothic_Italian
      Hershey/Symbol_Set_1
      Hershey/Symbol_Set_2
      Hershey/Symbol_Math
      ZapfDingbats
      Script
      15

@end example


The first thirteen of these fonts are required for WebCGM.  The
Microsoft Office CGM import filter implements the 13 standard fonts
listed above, and also 'ZapfDingbats' and 'Script'.  However, the
script font may only be accessed under the name '15'.  For more on
Microsoft import filter font substitutions, check its help file which
you may find here:
@example
  C:\\Program Files\\Microsoft Office\\Office\\Cgmimp32.hlp
@end example

and/or its configuration file, which you may find here:
@example
  C:\\Program Files\\Common Files\\Microsoft Shared\\Grphflt\\Cgmimp32.cfg

@end example

In the `set term` command, you may specify a font name which does not
appear in the default font table.  In that case, a new font table is
constructed with the specified font as its first entry. You must ensure
that the spelling, capitalization, and spacing of the name are
appropriate for the application that will read the CGM file.  (Gnuplot
and any MIL-D-28003A compliant application ignore case in font names.)
If you need to add several new fonts, use several `set term` commands.

Example:
@example
      set terminal cgm 'Old English'
      set terminal cgm 'Tengwar'
      set terminal cgm 'Arabic'
      set output 'myfile.cgm'
      plot ...
      set output

@end example

You cannot introduce a new font in a `set label` command.



@noindent --- CGM FONTSIZE ---

@c ?commands set terminal cgm fontsize
@c ?set terminal cgm fontsize
@c ?set term cgm fontsize
@c ?cgm fontsize
Fonts are scaled assuming the page is 6 inches wide.  If the @ref{size}
command is used to change the aspect ratio of the page or the CGM file
is converted to a different width, the resulting font sizes will be
scaled up or down accordingly.  To change the assumed width, use the
`width` option.



@noindent --- CGM LINEWIDTH ---

@c ?commands set terminal cgm linewidth
@c ?set terminal cgm linewidth
@c ?set term cgm linewidth
@c ?cgm linewidth
The `linewidth` option sets the width of lines in pt.  The default width
is 1 pt.  Scaling is affected by the actual width of the page, as
discussed under the `fontsize` and `width` options.



@noindent --- CGM ROTATE ---

@c ?commands set terminal cgm rotate
@c ?set terminal cgm rotate
@c ?set term cgm rotate
@c ?cgm rotate
The `norotate` option may be used to disable text rotation.  For
example, the CGM input filter for Word for Windows 6.0c can accept
rotated text, but the DRAW editor within Word cannot.  If you edit a
graph (for example, to label a curve), all rotated text is restored to
horizontal.  The Y axis label will then extend beyond the clip boundary.
With `norotate`, the Y axis label starts in a less attractive location,
but the page can be edited without damage.  The `rotate` option confirms
the default behavior.



@noindent --- CGM SOLID ---

@c ?set terminal cgm solid
@c ?set term cgm solid
@c ?cgm solid
The `solid` option may be used to disable dashed line styles in the
plots.  This is useful when color is enabled and the dashing of the
lines detracts from the appearance of the plot. The `dashed` option
confirms the default behavior, which gives a different dash pattern to
each line type.



@noindent --- CGM SIZE ---

@c ?commands set terminal cgm size
@c ?set terminal cgm size
@c ?set term cgm size
@c ?cgm size
Default size of a CGM plot is 32599 units wide and 23457 units high for
landscape, or 23457 units wide by 32599 units high for portrait.



@noindent --- CGM WIDTH ---

@c ?commands set terminal cgm width
@c ?set terminal cgm width
@c ?set term cgm width
@c ?cgm width
All distances in the CGM file are in abstract units.  The application
that reads the file determines the size of the final plot.  By default,
the width of the final plot is assumed to be 6 inches (15.24 cm).  This
distance is used to calculate the correct font size, and may be changed
with the `width` option.  The keyword should be followed by the width in
points.  (Here, a point is 1/72 inch, as in PostScript.  This unit is
known as a "big point" in TeX.)  Gnuplot `expressions` can be used to
convert from other units.

Example:
@example
      set terminal cgm width 432            # default
      set terminal cgm width 6*72           # same as above
      set terminal cgm width 10/2.54*72     # 10 cm wide

@end example



@noindent --- CGM NOFONTLIST ---

@c ?commands set terminal cgm nofontlist
@c ?set terminal cgm nofontlist
@c ?set term cgm nofontlist
@c ?cgm nofontlist
@c ?set terminal cgm winword6
@c ?set term cgm winword6
@c ?cgm winword6
The default font table includes the fonts recommended for WebCGM, which
are compatible with the Computer Graphics Metafile input filter for
Microsoft Office and Corel Draw.  Another application might use
different fonts and/or different font names, which may not be
documented.  The `nofontlist` (synonym `winword6`) option deletes the font
table from the CGM file.  In this case, the reading application should
use a default table.  Gnuplot will still use its own default font table
to select font indices.  Thus, 'Helvetica' will give you an index of 1,
which should get you the first entry in your application's default font
table. 'Helvetica Bold' will give you its second entry, etc.



@node corel, debug, cgm, complete_list_of_terminals
@subsubsection corel

@c ?commands set terminal corel
@c ?set terminal corel
@c ?set term corel
@c ?terminal corel
@c ?term corel
@cindex corel
@tmindex corel


The `corel` terminal driver supports CorelDraw.

Syntax:
@example
      set terminal corel @{  default
                          | @{monochrome | color
                               @{"<font>" @{<fontsize> 
                                  @{<xsize> <ysize> @{<linewidth> @}@}@}@}@}

@end example

where the fontsize and linewidth are specified in points and the sizes in
inches.  The defaults are monochrome, "SwitzerlandLight", 22, 8.2, 10 and 1.2."

@node debug, svga, corel, complete_list_of_terminals
@subsubsection debug

@c ?commands set terminal debug
@c ?set terminal debug
@c ?set term debug
@c ?terminal debug
@c ?term debug
@cindex debug
@tmindex debug


This terminal is provided to allow for the debugging of `gnuplot`.  It is
likely to be of use only for users who are modifying the source code."

@node svga, dumb, debug, complete_list_of_terminals
@subsubsection svga

@c ?commands set terminal svga
@c ?set terminal svga
@c ?set term svga
@c ?terminal svga
@c ?term svga
@cindex svga
@tmindex svga


The `svga` terminal driver supports PCs with SVGA graphics.  It can only be
used if it is compiled with DJGPP.  Its only option is the font.

Syntax:
@example
      set terminal svga @{"<fontname>"@}"

@end example

@node dumb, dxf, svga, complete_list_of_terminals
@subsubsection dumb

@c ?commands set terminal dumb
@c ?set terminal dumb
@c ?set term dumb
@c ?terminal dumb
@c ?term dumb
@cindex dumb
@tmindex dumb


The `dumb` terminal driver has an optional size specification and trailing
linefeed control.

Syntax:
@example
      set terminal dumb @{[no]feed@} @{<xsize> <ysize>@}
                        @{[no]enhanced@}

@end example

where <xsize> and <ysize> set the size of the dumb terminals. Default is
79 by 24. The last newline is printed only if `feed` is enabled.

Examples:
@example
      set term dumb nofeed
      set term dumb 79 49 # VGA screen---why would anyone do that?"

@end example

@node dxf, dxy800a, dumb, complete_list_of_terminals
@subsubsection dxf

@c ?commands set terminal dxf
@c ?set terminal dxf
@c ?set term dxf
@c ?terminal dxf
@c ?term dxf
@cindex dxf
@tmindex dxf


The `dxf` terminal driver creates pictures that can be imported into AutoCad
(Release 10.x).  It has no options of its own, but some features of its plots
may be modified by other means.  The default size is 120x80 AutoCad units,
which can be changed by @ref{size}.  `dxf` uses seven colors (white, red,
yellow, green, cyan, blue and magenta), which can be changed only by
modifying the source file.  If a black-and-white plotting device is used, the
colors are mapped to differing line thicknesses.  See the description of the
AutoCad print/plot command."

@node dxy800a, eepic, dxf, complete_list_of_terminals
@subsubsection dxy800a

@c ?commands set terminal dxy800a
@c ?set terminal dxy800a
@c ?set term dxy800a
@c ?terminal dxy800a
@c ?term dxy800a
@cindex dxy800a
@tmindex dxy800a


This terminal driver supports the Roland DXY800A plotter.  It has no options."

@node eepic, emf, dxy800a, complete_list_of_terminals
@subsubsection eepic

@c ?commands set terminal eepic
@c ?set terminal eepic
@c ?set term eepic
@c ?terminal eepic
@c ?term eepic
@cindex eepic
@tmindex eepic


The `eepic` terminal driver supports the extended LaTeX picture environment.
It is an alternative to the `latex` driver.

The output of this terminal is intended for use with the "eepic.sty" macro
package for LaTeX.  To use it, you need "eepic.sty", "epic.sty" and a
printer driver that supports the "tpic" \\specials.  If your printer driver
doesn't support those \\specials, "eepicemu.sty" will enable you to use some
of them.
dvips and dvipdfm do support the "tpic" \\specials.

Syntax:
@example
   set terminal eepic @{color, dashed, rotate, small, tiny, default, <fontsize>@}

@end example

Options:
You can give options in any order you wish.
'color' causes gnuplot to produce \\color@{...@} commands so that the graphs are
colored. Using this option, you must include \\usepackage@{color@} in the preambel
of your latex document.
'dashed' will allow dashed line types; without this option, only solid lines
with varying thickness will be used.
'dashed' and 'color' are mutually exclusive; if 'color' is specified, then 'dashed'
will be ignored.
'rotate' will enable true rotated text (by 90 degrees). Otherwise, rotated text
will be typeset with letters stacked above each other. If you use this option
you must include \\usepackage@{graphicx@} in the preamble.
'small' will use \\scriptsize symbols as point markers (Probably does not work
with TeX, only LaTeX2e). Default is to use the default math size.
'tiny' uses \\scriptscriptstyle symbols.
'default' resets all options to their defaults = no color, no dashed lines,
pseudo-rotated (stacked) text, large point symbols.
<fontsize> is a number which specifies the font size inside the picture
environment; the unit is pt (points), i.e., 10 pt equals approx. 3.5 mm.
If fontsize is not specified, then all text inside the picture will be set
in \\footnotesize.

Notes:
Remember to escape the # character (or other chars meaningful to (La-)TeX)
by \\\\ (2 backslashes).
It seems that dashed lines become solid lines when the vertices of a plot
are too close. (I do not know if that is a general problem with the tpic specials,
or if it is caused by a bug in eepic.sty or dvips/dvipdfm.)
The default size of an eepic plot is 5x3 inches, which can be scaled 
by 'set size a,b'.
Points, among other things, are drawn using the LaTeX commands "\\Diamond",
"\\Box", etc.  These commands no longer belong to the LaTeX2e core; they are
included in the latexsym package, which is part of the base distribution and
thus part of any LaTeX implementation. Please do not forget to use this package.
Instead of latexsym, you can also include the amssymb package.
All drivers for LaTeX offer a special way of controlling text positioning:
If any text string begins with '@{', you also need to include a '@}' at the
end of the text, and the whole text will be centered both horizontally and
vertically.  If the text string begins with '[', you need to follow this with
a position specification (up to two out of t,b,l,r), ']@{', the text itself,
and finally '@}'.  The text itself may be anything LaTeX can typeset as an
LR-box.  '\\rule@{@}@{@}'s may help for best positioning.

Examples:
set term eepic
@example
  output graphs as eepic macros inside a picture environment;
  \\input the resulting file in your LaTeX document.
@end example

set term eepic color tiny rotate 8
@example
  eepic macros with \\color macros, \\scripscriptsize point markers,
  true rotated text, and all text set with 8pt.

@end example

About label positioning:
Use gnuplot defaults (mostly sensible, but sometimes not really best):
@example
       set title '\\LaTeX\\ -- $ \\gamma $'
@end example

Force centering both horizontally and vertically:
@example
       set label '@{\\LaTeX\\ -- $ \\gamma $@}' at 0,0
@end example

Specify own positioning (top here):
@example
       set xlabel '[t]@{\\LaTeX\\ -- $ \\gamma $@}'
@end example

The other label -- account for long ticlabels:
@example
       set ylabel '[r]@{\\LaTeX\\ -- $ \\gamma $\\rule@{7mm@}@{0pt@}@}'"

@end example

@node emf, emxvga, eepic, complete_list_of_terminals
@subsubsection emf

@c ?commands set terminal emf
@c ?set terminal emf
@c ?set term emf
@c ?terminal emf
@c ?term emf
@cindex emf
@tmindex emf


The `emf` terminal generates an Enhanced Metafile Format file.
This file format is recognized by many Windows applications.

Syntax:
@example
      set terminal emf @{color | monochrome@} @{solid | dashed@}
                       @{enhanced @{noproportional@}@}
                       @{linewidth <LW>@} @{dashlength <DL>@} @{size XX,YY@}
                       @{"<fontname>"@} @{<fontsize>@}    #old syntax
                       @{font "<fontname>,<fontsize>"@} #new syntax

@end example

In `monochrome` mode successive line types cycle through dash patterns.
In `color` mode successive line types use successive colors, and only after
all 8 default colors are exhausted is the dash pattern incremented.
`solid` draws all curves with solid lines, overriding any dashed patterns;
`linewidth <factor>` multiplies all line widths by this factor.
`dashlength <factor>` is useful for thick lines.
<fontname> is the name of a font; and 
`<fontsize>` is the size of the font in points.

The nominal size of the output image defaults to 1024x768 in arbitrary
units. You may specify a different nominal size using the @ref{size} option.

Enhanced text mode tries to approximate proportional character spacing.
If you are using a monospaced font, or don't like the approximation, you
can turn off this correction using the `noproportional` option.

The default settings are `color dashed font "Arial,12" size 1024,768`
Selecting `default` sets all options to their default values.

Examples:
@example
      set terminal emf 'Times Roman Italic' 12
      set terminal emf color solid    # no pesky dashes!"

@end example

@node emxvga, epson_180dpi, emf, complete_list_of_terminals
@subsubsection emxvga

@c ?commands set terminal emxvga
@c ?set terminal emxvga
@c ?set term emxvga
@c ?terminal emxvga
@c ?term emxvga
@cindex emxvga
@tmindex emxvga


@c ?commands set terminal emxvesa
@c ?set terminal emxvesa
@c ?set term emxvesa
@c ?terminal emxvesa
@c ?term emxvesa
@cindex emxvesa
@tmindex emxvesa


@c ?commands set terminal vgal
@c ?set terminal vgal
@c ?set term vgal
@c ?terminal vgal
@c ?term vgal
@cindex vgal
@tmindex vgal


The `emxvga`, `emxvesa` and `vgal` terminal drivers support PCs with SVGA,
vesa SVGA and VGA graphics boards, respectively.  They are intended to be
compiled with "emx-gcc" under either DOS or OS/2.  They also need VESA and
SVGAKIT maintained by Johannes Martin (JMARTIN@@GOOFY.ZDV.UNI-MAINZ.DE) with
additions by David J. Liu (liu@@phri.nyu.edu).

Syntax:
@example
      set terminal emxvga
      set terminal emxvesa @{vesa-mode@}
      set terminal vgal

@end example

The only option is the vesa mode for `emxvesa`, which defaults to G640x480x256."

@node epson_180dpi, excl, emxvga, complete_list_of_terminals
@subsubsection epson_180dpi

@c ?commands set terminal epson_180dpi
@c ?set terminal epson_180dpi
@c ?set term epson_180dpi
@c ?terminal epson_180dpi
@c ?term epson_180dpi
@cindex epson_180dpi

@c ?commands set terminal epson_60dpi
@c ?set terminal epson_60dpi
@c ?set term epson_60dpi
@c ?terminal epson_60dpi
@c ?term epson_60dpi
@cindex epson_60dpi

@c ?commands set terminal epson_lx800
@c ?set terminal epson_lx800
@c ?set term epson_lx800
@c ?terminal epson_lx800
@c ?term epson_lx800
@cindex epson_lx800

@c ?commands set terminal nec_cp6
@c ?set terminal nec_cp6
@c ?set term nec_cp6
@c ?terminal nec_cp6
@c ?term nec_cp6
@cindex nec_cp6

@c ?commands set terminal okidata
@c ?set terminal okidata
@c ?set term okidata
@c ?terminal okidata
@c ?term okidata
@cindex okidata
@tmindex okidata


@c ?commands set terminal starc
@c ?set terminal starc
@c ?set term starc
@c ?terminal starc
@c ?term starc
@cindex starc
@tmindex starc


@c ?commands set terminal tandy_60dpi
@c ?set terminal tandy_60dpi
@c ?set term tandy_60dpi
@c ?terminal tandy_60dpi
@c ?term tandy_60dpi
@cindex tandy_60dpi

@c ?commands set terminal dpu414
@c ?set terminal dpu414
@c ?set term dpu414
@c ?terminal dpu414
@c ?term dpu414
@cindex dpu414
@tmindex dpu414


This driver supports a family of Epson printers and derivatives.

`epson_180dpi` and `epson_60dpi` are drivers for Epson LQ-style 24-pin
printers with resolutions of 180 and 60 dots per inch, respectively.

`epson_lx800` is a generic 9-pin driver appropriate for printers like the
Epson LX-800, the Star NL-10 and NX-1000, the PROPRINTER, and so forth.

`nec_cp6` is generic 24-pin driver that can be used for printers like the
NEC CP6 and the Epson LQ-800.

The `okidata` driver supports the 9-pin OKIDATA 320/321 Standard printers.

The `starc` driver is for the Star Color Printer.

The `tandy_60dpi` driver is for the Tandy DMP-130 series of 9-pin, 60-dpi
printers.

The `dpu414` driver is for the Seiko DPU-414 thermal printer.

`nec_cp6` has the options:

Syntax:
@example
      set terminal nec_cp6 @{monochrome | colour | draft@}

@end example

which defaults to monochrome.

`dpu414` has the options:

Syntax:
@example
      set terminal dpu414 @{small | medium | large@} @{normal | draft@}

@end example

which defaults to medium (=font size) and normal.
Preferred combinations are `medium normal` and `small draft`.

With each of these drivers, a binary copy is required on a PC to print.
Do not use @ref{print}---use instead `copy file /b lpt1:`.


@node excl, hercules, epson_180dpi, complete_list_of_terminals
@subsubsection excl

@c ?commands set terminal excl
@c ?set terminal excl
@c ?set term excl
@c ?terminal excl
@c ?term excl
@cindex excl
@tmindex excl


The `excl` terminal driver supports Talaris printers such as the EXCL Laser
printer and the 1590.  It has no options."

@node hercules, fig, excl, complete_list_of_terminals
@subsubsection hercules

@c ?commands set terminal hercules
@c ?set terminal hercules
@c ?set term hercules
@c ?terminal hercules
@c ?term hercules
@cindex hercules
@tmindex hercules


@c ?commands set terminal egalib
@c ?set terminal egalib
@c ?set term egalib
@c ?terminal egalib
@c ?term egalib
@cindex egalib
@tmindex egalib


@c ?commands set terminal egamono
@c ?set terminal egamono
@c ?set term egamono
@c ?terminal egamono
@c ?term egamono
@cindex egamono
@tmindex egamono


@c ?commands set terminal vgalib
@c ?set terminal vgalib
@c ?set term vgalib
@c ?terminal vgalib
@c ?term vgalib
@cindex vgalib
@tmindex vgalib


@c ?commands set terminal vgamono
@c ?set terminal vgamono
@c ?set term vgamono
@c ?terminal vgamono
@c ?term vgamono
@cindex vgamono
@tmindex vgamono


@c ?commands set terminal svgalib
@c ?set terminal svgalib
@c ?set term svgalib
@c ?terminal svgalib
@c ?term svgalib
@cindex svgalib
@tmindex svgalib


@c ?commands set terminal ssvgalib
@c ?set terminal ssvgalib
@c ?set term ssvgalib
@c ?terminal ssvgalib
@c ?term ssvgalib
@cindex ssvgalib
@tmindex ssvgalib


These drivers supports PC monitors with autodetected graphics boards.  They
can be used only when compiled with Zortech C/C++.  None have options."

@node fig, png_, hercules, complete_list_of_terminals
@subsubsection fig

@c ?commands set terminal fig
@c ?set terminal fig
@c ?set term fig
@c ?terminal fig
@c ?term fig
@cindex fig

@cindex xfig

The `fig` terminal device generates output in the Fig graphics language.

Syntax:
@example
      set terminal fig @{monochrome | color@}
                       @{landscape | portrait@}
                       @{small | big | size <xsize> <ysize>@}
                       @{metric | inches@}
                       @{pointsmax <max_points>@}
                       @{solid | dashed@}
                       @{font <fontname>@} @{fontsize <fsize>@}
                       @{textnormal | @{textspecial texthidden textrigid@}@}
                       @{@{thickness|linewidth@} <units>@}
                       @{depth <layer>@}
                       @{version <number>@}

@end example

`monochrome` and `color` determine whether the picture is black-and-white or
`color`.  `small` and `big` produce a 5x3 or 8x5 inch graph in the default
`landscape` mode and 3x5 or 5x8 inches in `portrait` mode.
@ref{size} sets (overrides) the size of the drawing
area to <xsize>*<ysize> in units of inches or centimeters depending on the
`inches` or `metric` setting in effect.
The latter settings is also used as default units for editing with "xfig".

`pointsmax <max_points>` sets the maximum number of points per polyline.

`solid` inhibits automatic usage of `dash`ed lines when solid linestyles are
used up, which otherwise occurs.

`fontsize` sets the size of the text font to <fsize> points.  `textnormal`
resets the text flags and selects postscript fonts, `textspecial` sets the
text flags for LaTeX specials, `texthidden` sets the hidden flag and
`textrigid` the rigid flag. 

`depth` sets the default depth layer for all lines and text.  The default
depth is 10 to leave room for adding material with "xfig" on top of the
plot.

@ref{version} sets the format version of the generated fig output. Currently
only versions 3.1 and 3.2 are supported.

`thickness` sets the default line thickness, which is 1 if not specified.
Overriding the thickness can be achieved by adding a multiple of 100 to the
`linetype` value for a `plot` command.  In a similar way the `depth`
of plot elements (with respect to the default depth) can be controlled by
adding a multiple of 1000 to <linetype>.  The depth is then <layer> +
<linetype>/1000 and the thickness is (<linetype>%1000)/100 or, if that is
zero, the default line thickness. `linewidth` is a synonym for `thickness`.

Additional point-plot symbols are also available with the `fig` driver. The
symbols can be used through `pointtype` values % 100 above 50, with different
fill intensities controlled by <pointtype> % 5 and outlines in black (for
<pointtype> % 10 < 5) or in the current color.  Available symbols are
@example
        50 - 59:  circles
        60 - 69:  squares
        70 - 79:  diamonds
        80 - 89:  upwards triangles
        90 - 99:  downwards triangles
@end example

The size of these symbols is linked to the font size.  The depth of symbols
is by default one less than the depth for lines to achieve nice error bars.
If <pointtype> is above 1000, the depth is <layer> + <pointtype>/1000-1.  If
<pointtype>%1000 is above 100, the fill color is (<pointtype>%1000)/100-1.

Available fill colors are (from 1 to 9): black, blue, green, cyan, red,
magenta, yellow, white and dark blue (in monochrome mode: black for 1 to 6
and white for 7 to 9).

See @ref{with} for details of <linetype> and <pointtype>.

The `big` option is a substitute for the `bfig` terminal in earlier versions,
which is no longer supported.

Examples:
@example
      set terminal fig monochrome small pointsmax 1000  # defaults

@end example

@example
      plot 'file.dat' with points linetype 102 pointtype 759
@end example

would produce circles with a blue outline of width 1 and yellow fill color.

@example
      plot 'file.dat' using 1:2:3 with err linetype 1 pointtype 554
@end example

would produce errorbars with black lines and circles filled red.  These
circles are one layer above the lines (at depth 9 by default).

To plot the error bars on top of the circles use
@example
      plot 'file.dat' using 1:2:3 with err linetype 1 pointtype 2554"

@end example

@node png_, ggi, fig, complete_list_of_terminals
@subsubsection png

@c ?commands set terminal png
@c ?set terminal png
@c ?set term png
@c ?terminal png
@c ?term png
@cindex png
@tmindex png


Syntax:
@example
      set terminal png 
             @{@{no@}transparent@} @{@{no@}interlace@}
             @{@{no@}truecolor@} @{rounded|butt@}
             @{linewidth <lw>@} @{dashlength <dl>@}
             @{tiny | small | medium | large | giant@}
             @{font "<face> @{,<pointsize>@}"@} @{@{no@}enhanced@}
             @{size <x>,<y>@} @{@{no@}crop@}
             @{<background_color>@}

@end example

PNG, JPEG and GIF images are created using the external library libgd.
PNG plots may be viewed interactively by piping the output to the
'display' program from the ImageMagick package as follows:
@example
               set term png
               set output '| display png:-'
@end example

You can view the output from successive plot commands interactively by typing
<space> in the display window.  To save the current plot to a file,
left click in the display window and choose @ref{save}.

`transparent` instructs the driver to make the background color transparent.
Default is `notransparent`.

`interlace` instructs the driver to generate interlaced PNGs.
Default is `nointerlace`.

The `linewidth` and `dashlength` options are scaling factors that affect all
lines drawn, i.e. they are multiplied by values requested in various drawing
commands.

By default output png images use 256 indexed colors. The `truecolor` option
instead creates TrueColor images with 24 bits of color information per pixel.
Transparent fill styles require the `truecolor` option. See `fillstyle`.
A transparent background is possible in either indexed or TrueColor images.

`butt` instructs the driver to use a line drawing method that does
not overshoot the desired end point of a line.  This setting is only
applicable for line widths greater than 1.  This setting is most useful when
drawing horizontal or vertical lines.  Default is `rounded`.

The details of font selection are complicated.
Two equivalent simple examples are given below:
@example
     set term png font arial 11
     set term png font "arial,11"
@end example

For more information please see the separate section under `fonts`.

The output plot size <x,y> is given in pixels---it defaults to 640x480.
Please see additional information under `canvas` and @ref{size}.
Blank space at the edges of the finished plot may be trimmed using the `crop`
option, resulting in a smaller final image size. Default is `nocrop`.

The background color must be given in the form 'xrrggbb', where x is the
literal character 'x' and 'rrggbb' are the red, green and blue components
in hexadecimal.  For example, 'x00ff00' is green.  The specification of
additional colors other than the background is deprecated.



@noindent --- EXAMPLES ---

@c ?set term png examples
@example
      set terminal png medium size 640,480 xffffff

@end example

Use the medium size built-in non-scaleable, non-rotatable font.
Use white (xffffff) for the non-transparent background.

@example
      set terminal png font arial 14 size 800,600

@end example

Searches for a scalable font with face name 'arial' and sets the font
size to 14pt.  Please see `fonts` for details of how the font search
is done.

@example
      set terminal png transparent truecolor enhanced

@end example

Use 24 bits of color information per pixel, with a transparent background.
Use the `enhanced text` mode to control the layout of strings to be printed.


@node ggi, Gnugraph(GNU_plotutils), png_, complete_list_of_terminals
@subsubsection ggi

@c ?commands set terminal ggi
@c ?set terminal ggi
@c ?set term ggi
@c ?terminal ggi
@c ?term ggi
@cindex ggi
@tmindex ggi


The `ggi` driver can run on different targets as X or svgalib.

Syntax:
@example
   set terminal ggi [acceleration <integer>] [[mode] @{mode@}]

@end example

In X the window cannot be resized using window manager handles, but the
mode can be given with the mode option, e.g.:
@example
 - V1024x768
 - V800x600
 - V640x480
 - V320x200
@end example

Please refer to the ggi documentation for other modes. The 'mode' keyword
is optional. It is recommended to select the target by environment variables
as explained in the libggi manual page. To get DGA on X, you should for
example
@example
   bash> export GGI_DISPLAY=DGA
   csh>  setenv GGI_DISPLAY DGA

@end example

'acceleration' is only used for targets which report relative pointer
motion events (e.g. DGA) and is a strictly positive integer multiplication
factor for the relative distances.  The default for acceleration is 7.

Examples:
@example
   set term ggi acc 10
   set term ggi acc 1 mode V1024x768
   set term ggi V1024x768"

@end example

@node Gnugraph(GNU_plotutils), gpic, ggi, complete_list_of_terminals
@subsubsection Gnugraph(GNU plotutils)

@c ?commands set terminal gnugraph
@c ?set terminal gnugraph
@c ?set term gnugraph
@c ?terminal gnugraph
@c ?term gnugraph
@cindex gnugraph
@tmindex gnugraph


The `gnugraph` driver produces device-independent output in the GNU plot
graphics language.  The default size of the PostScript results generated by
"plot2ps" is 5 x 3 inches; this can be increased up to about 8.25 x 8.25 by
@ref{size}.

Syntax:
@example
      set terminal gnugraph @{"<fontname>"@} @{<fontsize>@}
                            @{type <pt>@} @{size "<size>"@}

@end example

which defaults to 10-point "Courier".

For `type`, the following options are accepted: `X`, `pnm`, `gif`, `ai`,
`ps`, `cgm`, `fig`, `pcl5`, `hpgl`, `tek`, and `meta` (default). The
@ref{size} option (default is a4) is passed straight through to plotutils, it's
the user's responsibility to provide correct values. Details can be found
in the plotutils documentation.

Examples:
@example
      set terminal gnugraph type hpgl size "a4"
      set terminal gnugraph size "a4,xoffset=-5mm,yoffset=2.0cm" type pnm

@end example

There is a non-GNU version of the `gnugraph` driver which cannot be compiled
unless this version is left out."

@node gpic, gpic_, Gnugraph(GNU_plotutils), complete_list_of_terminals
@subsubsection gpic

@c ?commands set terminal gpic
@c ?set terminal gpic
@c ?set term gpic
@c ?terminal gpic
@c ?term gpic
@cindex gpic
@tmindex gpic


The `gpic` terminal driver generates GPIC graphs in the Free Software
Foundations's "groff" package.  The default size is 5 x 3 inches.  The only
option is the origin, which defaults to (0,0).

Syntax:
@example
      set terminal gpic @{<x> <y>@}

@end example

where `x` and `y` are in inches.

A simple graph can be formatted using

@example
      groff -p -mpic -Tps file.pic > file.ps.

@end example

The output from pic can be pipe-lined into eqn, so it is possible to put
complex functions in a graph with the `set label` and `set @{x/y@}label`
commands.  For instance,

@example
      set ylab '@@space 0 int from 0 to x alpha ( t ) roman d t@@'

@end example

will label the y axis with a nice integral if formatted with the command:

@example
      gpic filename.pic | geqn -d@@@@ -Tps | groff -m[macro-package] -Tps
          > filename.ps

@end example

Figures made this way can be scaled to fit into a document.  The pic language
is easy to understand, so the graphs can be edited by hand if need be.  All
co-ordinates in the pic-file produced by `gnuplot` are given as x+gnuplotx
and y+gnuploty.  By default x and y are given the value 0.  If this line is
removed with an editor in a number of files, one can put several graphs in
one figure like this (default size is 5.0x3.0 inches):

@example
      .PS 8.0
      x=0;y=3
      copy "figa.pic"
      x=5;y=3
      copy "figb.pic"
      x=0;y=0
      copy "figc.pic"
      x=5;y=0
      copy "figd.pic"
      .PE

@end example

This will produce an 8-inch-wide figure with four graphs in two rows on top
of each other.

One can also achieve the same thing by the command

@example
      set terminal gpic x y

@end example

for example, using

@example
      .PS 6.0
      copy "trig.pic"
      .PE"

@end example

@node gpic_, gpr, gpic, complete_list_of_terminals
@subsubsection gpic

@c ?commands set terminal gpic
@c ?set terminal gpic
@c ?set term gpic
@c ?terminal gpic
@c ?term gpic
@cindex gpic
@tmindex gpic


The `gpic` terminal driver generates GPIC graphs in the Free Software
Foundations's "groff" package.  The default size is 5 x 3 inches.  The only
option is the origin, which defaults to (0,0).

Syntax:
@example
      set terminal gpic @{<x> <y>@}

@end example

where `x` and `y` are in inches.

A simple graph can be formatted using

@example
      groff -p -mpic -Tps file.pic > file.ps.

@end example

The output from pic can be pipe-lined into eqn, so it is possible to put
complex functions in a graph with the `set label` and `set @{x/y@}label`
commands.  For instance,

@example
      set ylab '@@space 0 int from 0 to x alpha ( t ) roman d t@@'

@end example

will label the y axis with a nice integral if formatted with the command:

@example
      gpic filename.pic | geqn -d@@@@ -Tps | groff -m[macro-package] -Tps
          > filename.ps

@end example

Figures made this way can be scaled to fit into a document.  The pic language
is easy to understand, so the graphs can be edited by hand if need be.  All
co-ordinates in the pic-file produced by `gnuplot` are given as x+gnuplotx
and y+gnuploty.  By default x and y are given the value 0.  If this line is
removed with an editor in a number of files, one can put several graphs in
one figure like this (default size is 5.0x3.0 inches):

@example
      .PS 8.0
      x=0;y=3
      copy "figa.pic"
      x=5;y=3
      copy "figb.pic"
      x=0;y=0
      copy "figc.pic"
      x=5;y=0
      copy "figd.pic"
      .PE

@end example

This will produce an 8-inch-wide figure with four graphs in two rows on top
of each other.

One can also achieve the same thing by the command

@example
      set terminal gpic x y

@end example

for example, using

@example
      .PS 6.0
      copy "trig.pic"
      .PE"

@end example

@node gpr, grass, gpic_, complete_list_of_terminals
@subsubsection gpr

@c ?commands set terminal gpr
@c ?set terminal gpr
@c ?set term gpr
@c ?terminal gpr
@c ?term gpr
@cindex gpr
@tmindex gpr


The `gpr` terminal driver supports the Apollo Graphics Primitive Resource
for a fixed-size window.  It has no options.

If a variable window size is desired, use the `apollo` terminal instead."

@node grass, hp2623a, gpr, complete_list_of_terminals
@subsubsection grass

@c ?commands set terminal grass
@c ?set terminal grass
@c ?set term grass
@c ?terminal grass
@c ?term grass
@cindex grass
@tmindex grass


The `grass` terminal driver gives `gnuplot` capabilities to users of the 
GRASS geographic information system.  Contact grassp-list@@moon.cecer.army.mil
for more information.  Pages are written to the current frame of the GRASS
Graphics Window.  There are no options."

@node hp2623a, hp2648, grass, complete_list_of_terminals
@subsubsection hp2623a

@c ?commands set terminal hp2623a
@c ?set terminal hp2623a
@c ?set term hp2623a
@c ?terminal hp2623a
@c ?term hp2623a
@cindex hp2623a
@tmindex hp2623a


The `hp2623a` terminal driver supports the Hewlett Packard HP2623A.  It has
no options."

@node hp2648, hp500c, hp2623a, complete_list_of_terminals
@subsubsection hp2648

@c ?commands set terminal hp2648
@c ?set terminal hp2648
@c ?set term hp2648
@c ?terminal hp2648
@c ?term hp2648
@cindex hp2648
@tmindex hp2648


The `hp2648` terminal driver supports the Hewlett Packard HP2647 and HP2648.
It has no options."

@node hp500c, hpgl, hp2648, complete_list_of_terminals
@subsubsection hp500c

@c ?commands set terminal hp500c
@c ?set terminal hp500c
@c ?set term hp500c
@c ?terminal hp500c
@c ?term hp500c
@cindex hp500c
@tmindex hp500c


The `hp500c` terminal driver supports the Hewlett Packard HP DeskJet 500c.
It has options for resolution and compression.

Syntax:
@example
      set terminal hp500c @{<res>@} @{<comp>@}

@end example

where `res` can be 75, 100, 150 or 300 dots per inch and `comp` can be "rle",
or "tiff".  Any other inputs are replaced by the defaults, which are 75 dpi
and no compression.  Rasterization at the higher resolutions may require a
large amount of memory."

@node hpgl, hpljii, hp500c, complete_list_of_terminals
@subsubsection hpgl

@c ?commands set terminal hpgl
@c ?set terminal hpgl
@c ?set term hpgl
@c ?terminal hpgl
@c ?term hpgl
@cindex hpgl
@tmindex hpgl


@c ?commands set terminal pcl5
@c ?set terminal pcl5
@c ?set term pcl5
@c ?terminal pcl5
@c ?term pcl5
@cindex pcl5
@tmindex pcl5


The `hpgl` driver produces HPGL output for devices like the HP7475A plotter.
There are two options which can be set: the number of pens and `eject`,
which tells the plotter to eject a page when done.  The default is to use 6
pens and not to eject the page when done.

The international character sets ISO-8859-1 and CP850 are recognized via
`set encoding iso_8859_1` or `set encoding cp850` (see @ref{encoding} for
details).

Syntax:
@example
      set terminal hpgl @{<number_of_pens>@} @{eject@}

@end example

The selection

@example
      set terminal hpgl 8 eject

@end example

is equivalent to the previous `hp7550` terminal, and the selection

@example
      set terminal hpgl 4

@end example

is equivalent to the previous `hp7580b` terminal.

The `pcl5` driver supports plotters such as the Hewlett-Packard Designjet
750C, the Hewlett-Packard Laserjet III, and the Hewlett-Packard Laserjet IV.
It actually uses HPGL-2, but there is a name conflict among the terminal
devices.  It has several options which must be specified in the order
indicated below:

Syntax:
@example
      set terminal pcl5 @{mode <mode>@} @{<plotsize>@}
          @{@{color @{<number_of_pens>@}@} | monochrome@} @{solid | dashed@}
          @{font <font>@} @{size <fontsize>@} @{pspoints | nopspoints@}

@end example

<mode> is `landscape` or `portrait`. <plotsize> is the physical
plotting size of the plot, which is one of the following: `letter` for
standard (8 1/2" X 11") displays, `legal` for (8 1/2" X 14") displays,
`noextended` for (36" X 48") displays (a letter size ratio) or,
`extended` for (36" X 55") displays (almost a legal size ratio).
`color` is for multi-pen (i.e. color) plots, and <number_of_pens> is
the number of pens (i.e. colors) used in color plots. `monochrome` is for
one (e.g. black) pen plots. `solid` draws all lines as solid lines, or
`dashed` will draw lines with different dashed and dotted line patterns.
<font> is `stick`, `univers`, `cg_times`, `zapf_dingbats`, `antique_olive`,
`arial`, `courier`, `garamond_antigua`, `letter_gothic`, `cg_omega`,
`albertus`, `times_new_roman`, `clarendon`, `coronet`, `marigold`,
`truetype_symbols`, or `wingdings`. <fontsize> is the font size in points.
The point type selection can be the standard default set by specifying
`nopspoints`, or the same set of point types found in the postscript terminal
by specifying `pspoints`.

Note that built-in support of some of these options is printer device
dependent. For instance, all the fonts are supposedly supported by the HP
Laserjet IV, but only a few (e.g. univers, stick) may be supported by the HP
Laserjet III and the Designjet 750C. Also, color obviously won't work on the
the laserjets since they are monochrome devices.

Defaults: landscape, noextended, color (6 pens), solid, univers, 12 point,
@example
          and nopspoints.

@end example

With `pcl5` international characters are handled by the printer; you just put
the appropriate 8-bit character codes into the text strings.  You don't need
to bother with @ref{encoding}.

HPGL graphics can be imported by many software packages."

@node hpljii, hppj, hpgl, complete_list_of_terminals
@subsubsection hpljii

@c ?commands set terminal hpljii
@c ?set terminal hpljii
@c ?set term hpljii
@c ?terminal hpljii
@c ?term hpljii
@cindex hpljii
@tmindex hpljii


@c ?commands set terminal hpdj
@c ?set terminal hpdj
@c ?set term hpdj
@c ?terminal hpdj
@c ?term hpdj
@cindex hpdj
@tmindex hpdj


The `hpljii` terminal driver supports the HP Laserjet Series II printer.  The
`hpdj` driver supports the HP DeskJet 500 printer.  These drivers allow a
choice of resolutions.

Syntax:
@example
      set terminal hpljii | hpdj @{<res>@}

@end example

where `res` may be 75, 100, 150 or 300 dots per inch; the default is 75.
Rasterization at the higher resolutions may require a large amount of memory.

The `hp500c` terminal is similar to `hpdj`; `hp500c` additionally supports
color and compression."

@node hppj, imagen, hpljii, complete_list_of_terminals
@subsubsection hppj

@c ?commands set terminal hppj
@c ?set terminal hppj
@c ?set term hppj
@c ?terminal hppj
@c ?term hppj
@cindex hppj
@tmindex hppj


The `hppj` terminal driver supports the HP PaintJet and HP3630 printers.  The
only option is the choice of font.

Syntax:
@example
      set terminal hppj @{FNT5X9 | FNT9X17 | FNT13X25@}

@end example

with the middle-sized font (FNT9X17) being the default."

@node imagen, kyo, hppj, complete_list_of_terminals
@subsubsection imagen

@c ?commands set terminal imagen
@c ?set terminal imagen
@c ?set term imagen
@c ?terminal imagen
@c ?term imagen
@cindex imagen
@tmindex imagen


The `imagen` terminal driver supports Imagen laser printers.  It is capable
of placing multiple graphs on a single page.

Syntax:
@example
      set terminal imagen @{<fontsize>@} @{portrait | landscape@}
                          @{[<horiz>,<vert>]@}

@end example

where `fontsize` defaults to 12 points and the layout defaults to `landscape`.
`<horiz>` and `<vert>` are the number of graphs in the horizontal and
vertical directions; these default to unity.

Example:
@example
      set terminal imagen portrait [2,3]

@end example

puts six graphs on the page in three rows of two in portrait orientation."

@node kyo, latex, imagen, complete_list_of_terminals
@subsubsection kyo

@c ?commands set terminal kyo
@c ?set terminal kyo
@c ?set term kyo
@c ?terminal kyo
@c ?term kyo
@cindex kyo
@tmindex kyo


@c ?commands set terminal prescribe
@c ?set terminal prescribe
@c ?set term prescribe
@c ?terminal prescribe
@c ?term prescribe
@cindex prescribe
@tmindex prescribe


The `kyo` and `prescribe` terminal drivers support the Kyocera laser printer.
The only difference between the two is that `kyo` uses "Helvetica" whereas
`prescribe` uses "Courier".  There are no options."

@node latex, linux, kyo, complete_list_of_terminals
@subsubsection latex

@c ?commands set terminal emtex
@c ?set terminal emtex
@c ?set term emtex
@c ?terminal emtex
@c ?term emtex
@cindex emtex
@tmindex emtex


@c ?commands set terminal latex
@c ?set terminal latex
@c ?set term latex
@c ?terminal latex
@c ?term latex
@cindex latex
@tmindex latex


Syntax:
@example
      set terminal @{latex | emtex@} @{default | @{courier|roman@} @{<fontsize>@}@}
                   @{size <XX>@{unit@}, <YY>@{unit@}@} @{rotate | norotate@}

@end example

By default the plot will inherit font settings from the embedding document.
You have the option of forcing either Courier (cmtt) or Roman (cmr) fonts
instead. In this case you may also specify a fontsize.
Unless your driver is capable of building fonts at any size (e.g. dvips),
stick to the standard 10, 11 and 12 point sizes.

METAFONT users beware: METAFONT does not like odd sizes.

All drivers for LaTeX offer a special way of controlling text positioning:
If any text string begins with '@{', you also need to include a '@}' at the
end of the text, and the whole text will be centered both horizontally and
vertically.  If the text string begins with '[', you need to follow this with
a position specification (up to two out of t,b,l,r), ']@{', the text itself,
and finally '@}'.  The text itself may be anything LaTeX can typeset as an
LR-box.  '\\rule@{@}@{@}'s may help for best positioning.

Points, among other things, are drawn using the LaTeX commands "\\Diamond" and
"\\Box".  These commands no longer belong to the LaTeX2e core; they are included
in the latexsym package, which is part of the base distribution and thus part
of any LaTeX implementation.  Please do not forget to use this package.
Other point types use symbols from the amssymb package.

The default size for the plot is 5 inches by 3 inches. The @ref{size} option
changes this to whatever the user requests. By default the X and Y sizes
are taken to be in inches, but other units are possible (currently only cm).

If 'rotate' is specified, rotated text, especially a rotated y-axis label,
is possible (the packages graphics or graphicx are needed). The 'stacked'
y-axis label mechanism is then deactivated.

Examples:
About label positioning:
Use gnuplot defaults (mostly sensible, but sometimes not really best):
@example
       set title '\\LaTeX\\ -- $ \\gamma $'
@end example

Force centering both horizontally and vertically:
@example
       set label '@{\\LaTeX\\ -- $ \\gamma $@}' at 0,0
@end example

Specify own positioning (top here):
@example
       set xlabel '[t]@{\\LaTeX\\ -- $ \\gamma $@}'
@end example

The other label -- account for long ticlabels:
@example
       set ylabel '[r]@{\\LaTeX\\ -- $ \\gamma $\\rule@{7mm@}@{0pt@}@}'"

@end example

@node linux, linux_, latex, complete_list_of_terminals
@subsubsection linux

@c ?commands set terminal linux
@c ?set terminal linux
@c ?set term linux
@c ?terminal linux
@c ?term linux
@cindex linux
@tmindex linux


The `linux` driver has no additional options to specify.  It looks at the
environment variable GSVGAMODE for the default mode; if not set, it uses
1024x768x256 as default mode or, if that is not possible, 640x480x16
(standard VGA)."

@node linux_, lua, linux, complete_list_of_terminals
@subsubsection linux

@c ?commands set terminal linux
@c ?set terminal linux
@c ?set term linux
@c ?terminal linux
@c ?term linux
@cindex linux
@tmindex linux


The `linux` driver has no additional options to specify.  It looks at the
environment variable GSVGAMODE for the default mode; if not set, it uses
1024x768x256 as default mode or, if that is not possible, 640x480x16
(standard VGA)."

@node lua, macintosh, linux_, complete_list_of_terminals
@subsubsection lua

@c ?commands set terminal lua
@c ?set terminal lua
@c ?set term lua
@c ?terminal lua
@c ?term lua
@cindex lua
@tmindex lua


The `lua` generic terminal driver works in conjunction with an
external Lua script to create a target-specific plot file.
Currently the only supported target is TikZ -> pdflatex.

Information about Lua is available at http://www.lua.org .

Syntax:
@example
   set terminal lua <target name> | "<file name>"
                       @{<script_args> ...@}
                       @{help@}

@end example

A 'target name' or 'file name' (in quotes) for a script is mandatory.
If a 'target name' for the script is given, the terminal will look for
"gnuplot-<target name>.lua" in the local directory and on failure in
the environmental variable GNUPLOT_LUA_DIR.

All arguments will be provided to the selected script for further
evaluation. E.g. 'set term lua tikz help' will cause the script itself
to print additional help on options and choices for the script.


@node macintosh, mf, lua, complete_list_of_terminals
@subsubsection macintosh

@c ?set terminal macintosh
@c ?set term macintosh
@c ?terminal macintosh
@c ?term macintosh
@cindex macintosh
@tmindex macintosh


Syntax:
@example
     set terminal macintosh @{singlewin | multiwin@} @{vertical | novertical@}
                            @{size <width>, <height> | default@}

@end example

'singlewin' limits the output to a single window and is useful for animations.
'multiwin' allows multiple windows.
'vertical' is only valid under the gx option. With this option, rotated text
will be drawn vertically. novertical turns this option off.
size <width>, <height> overrides the graph size set in the preferences
dialog until it is cleared with either 'set term mac size default'
or 'set term mac default'.

'set term mac size default' sets the window size settings to those set in
the preferences dialog.

'set term mac default' sets all options to their default values.
Default values: nogx, multiwin, novertical.

If you generate graphs under the multiwin option and then switch to singlewin,
the next plot command will cause one more window to be created. This new
window will be reused as long as singlewin is in effect. If you switch back
to multiwin, generate some graphs, and then switch to singlewin again, the
orginal 'singlewin' window will be resused if it is still open. Otherwise
a new 'singlewin' window will be created. The 'singlewin' window is not numbered."

@node mf, mp, macintosh, complete_list_of_terminals
@subsubsection mf

@c ?commands set terminal mf
@c ?set terminal mf
@c ?set term mf
@c ?terminal mf
@c ?term mf
@cindex mf

@cindex metafont

The `mf` terminal driver creates an input file to the METAFONT program.  Thus a
figure may be used in the TeX document in the same way as is a character.

To use a picture in a document, the METAFONT program must be run with the
output file from `gnuplot` as input.  Thus, the user needs a basic knowledge
of the font creating process and the procedure for including a new font in a
document.  However, if the METAFONT program is set up properly at the local
site, an unexperienced user could perform the operation without much trouble.

The text support is based on a METAFONT character set.  Currently the
Computer Modern Roman font set is input, but the user is in principal free to
choose whatever fonts he or she needs.  The METAFONT source files for the
chosen font must be available.  Each character is stored in a separate
picture variable in METAFONT.  These variables may be manipulated (rotated,
scaled etc.) when characters are needed.  The drawback is the interpretation
time in the METAFONT program.  On some machines (i.e. PC) the limited amount
of memory available may also cause problems if too many pictures are stored.

The `mf` terminal has no options.


@noindent --- METAFONT INSTRUCTIONS ---

@c ?commands set terminal mf detailed
@c ?set terminal mf detailed
@c ?set term mf detailed
@c ?mf detailed
@c ?metafont detailed

- Set your terminal to METAFONT:
@example
  set terminal mf
@end example

- Select an output-file, e.g.:
@example
  set output "myfigures.mf"
@end example

- Create your pictures. Each picture will generate a separate character. Its
default size will be 5*3 inches. You can change the size by saying `set size
0.5,0.5` or whatever fraction of the default size you want to have.

- Quit `gnuplot`.

- Generate a TFM and GF file by running METAFONT on the output of `gnuplot`.
Since the picture is quite large (5*3 in), you will have to use a version of
METAFONT that has a value of at least 150000 for memmax.  On Unix systems
these are conventionally installed under the name bigmf.  For the following
assume that the command virmf stands for a big version of METAFONT.  For
example:

- Invoke METAFONT:
@example
    virmf '&plain'
@end example

- Select the output device: At the METAFONT prompt ('*') type:
@example
    \\mode:=CanonCX;     % or whatever printer you use
@end example

- Optionally select a magnification:
@example
    mag:=1;             % or whatever you wish
@end example

- Input the `gnuplot`-file:
@example
    input myfigures.mf
@end example

On a typical Unix machine there will usually be a script called "mf" that
executes virmf '&plain', so you probably can substitute mf for virmf &plain.
This will generate two files: mfput.tfm and mfput.$$$gf (where $$$ indicates
the resolution of your device).  The above can be conveniently achieved by
typing everything on the command line, e.g.:
virmf '&plain' '\\mode:=CanonCX; mag:=1; input myfigures.mf'
In this case the output files will be named myfigures.tfm and
myfigures.300gf.

- Generate a PK file from the GF file using gftopk:
@example
  gftopk myfigures.300gf myfigures.300pk
@end example

The name of the output file for gftopk depends on the DVI driver you use.
Ask your local TeX administrator about the naming conventions.  Next, either
install the TFM and PK files in the appropriate directories, or set your
environment variables properly.  Usually this involves setting TEXFONTS to
include the current directory and doing the same thing for the environment
variable that your DVI driver uses (no standard name here...).  This step is
necessary so that TeX will find the font metric file and your DVI driver will
find the PK file.

- To include your pictures in your document you have to tell TeX the font:
@example
  \\font\\gnufigs=myfigures
@end example

Each picture you made is stored in a single character.  The first picture is
character 0, the second is character 1, and so on...  After doing the above
step, you can use the pictures just like any other characters.  Therefore, to
place pictures 1 and 2 centered in your document, all you have to do is:
@example
  \\centerline@{\\gnufigs\\char0@}
  \\centerline@{\\gnufigs\\char1@}
@end example

in plain TeX.  For LaTeX you can, of course, use the picture environment and
place the picture wherever you wish by using the \\makebox and \\put macros.

This conversion saves you a lot of time once you have generated the font;
TeX handles the pictures as characters and uses minimal time to place them,
and the documents you make change more often than the pictures do.  It also
saves a lot of TeX memory.  One last advantage of using the METAFONT driver
is that the DVI file really remains device independent, because no \\special
commands are used as in the eepic and tpic drivers."

@node mp, mgr, mf, complete_list_of_terminals
@subsubsection mp

@c ?commands set terminal mpost
@c ?set terminal mp
@c ?set term mp
@c ?terminal mp
@c ?term mp
@cindex mp

@cindex metapost


The `mp` driver produces output intended to be input to the Metapost program.
Running Metapost on the file creates EPS files containing the plots. By
default, Metapost passes all text through TeX.  This has the advantage of
allowing essentially  any TeX symbols in titles and labels.

Syntax:
@example
   set term mp @{color | colour | monochrome@}
               @{solid | dashed@}
               @{notex | tex | latex@}
               @{magnification <magsize>@}
               @{psnfss | psnfss-version7 | nopsnfss@}
               @{prologues <value>@}
               @{a4paper@}
               @{amstex@}
               @{"<fontname>"@} @{<fontsize>@}

@end example

The option `color` causes lines to be drawn in color (on a printer or display
that supports it), `monochrome` (or nothing) selects black lines.  The option
`solid` draws solid lines, while `dashed` (or nothing) selects lines with
different patterns of dashes.  If `solid` is selected but `color` is not,
nearly all lines will be identical.  This may occasionally be useful, so it is
allowed.

The option `notex` bypasses TeX entirely, therefore no TeX code can be used in
labels under this option.  This is intended for use on old plot files or files
that make frequent use of common characters like `$` and `%` that require
special handling in TeX.

The option `tex` sets the terminal to output its text for TeX to process.

The option `latex` sets the terminal to output its text for processing by
LaTeX. This allows things like \\frac for fractions which LaTeX knows about
but TeX does not.  Note that you must set the environment variable TEX to the
name of your LaTeX executable (normally latex) if you use this option or use
`mpost --tex=<name of LaTeX executable> ...`. Otherwise metapost will try and
use TeX to process the text and it won't work.

Changing font sizes in TeX has no effect on the size of mathematics, and there
is no foolproof way to make such a change, except by globally  setting a
magnification factor. This is the purpose of the `magnification` option. It
must be followed by a scaling factor. All text (NOT the graphs) will be scaled
by this factor. Use this if you have math that you want at some size other
than the default 10pt. Unfortunately, all math will be the same size, but see
the discussion below on editing the MP output. `mag` will also work under
`notex` but there seems no point in using it as the font size option (below)
works as well.

The option `psnfss` uses postscript fonts in combination with LaTeX. Since
this option only makes sense, if LaTeX is being used, the `latex` option is selected
automatically. This option includes the following packages for LaTeX:
inputenc(latin1), fontenc(T1), mathptmx, helvet(scaled=09.2), courier, latexsym 
and textcomp.

The option `psnfss-version7` uses also postscript fonts in LaTeX (option `latex`
is also automatically selected), but uses the following packages with LaTeX:
inputenc(latin1), fontenc(T1), times, mathptmx, helvet and courier.

The option `nopsnfss` is the default and uses the standard font (cmr10 if not
otherwise specified).

The option `prologues` takes a value as an additional argument and adds the line
`prologues:=<value>` to the metapost file. If a value of `2` is specified metapost
uses postscript fonts to generate the eps-file, so that the result can be viewed
using e.g. ghostscript. Normally the output of metapost uses TeX fonts and therefore
has to be included in a (La)TeX file before you can look at it.

The option `noprologues` is the default. No additional line specifying the prologue
will be added.

The option `a4paper` adds a `[a4paper]` to the documentclass. Normally letter paper
is used (default). Since this option is only used in case of LaTeX, the `latex` option
is selected automatically.

The option `amstex` automatically selects the `latex` option and includes the following
LaTeX packages: amsfonts, amsmath(intlimits). By default these packages are not
included.

A name in quotes selects the font that will be used when no explicit font is
given in a `set label` or @ref{title}.  A name recognized by TeX (a TFM file
exists) must be used.  The default is "cmr10" unless `notex` is selected,
then it is "pcrr8r" (Courier).  Even under `notex`, a TFM file is needed by
Metapost. The file `pcrr8r.tfm` is the name given to Courier in LaTeX's psnfss
package.  If you change the font from the `notex` default, choose a font that
matches the ASCII encoding at least in the range 32-126.  `cmtt10` almost
works, but it has a nonblank character in position 32 (space).

The size can be any number between 5.0 and 99.99.  If it is omitted, 10.0 is
used.  It is advisable to use `magstep` sizes: 10 times an integer or
half-integer power of 1.2, rounded to two decimals, because those are the most
available sizes of fonts in TeX systems.

All the options are optional.  If font information is given, it must be at the
end, with size (if present) last.  The size is needed to select a size for the
font, even if the font name includes size information.  For example,
`set term mp "cmtt12"` selects cmtt12 shrunk to the default size 10.  This
is probably not what you want or you would have used cmtt10.

The following common ascii characters need special treatment in TeX:
@example
   $, &, #, %, _;  |, <, >;  ^, ~,  \\, @{, and @}
@end example

The five characters $, #, &, _, and % can simply be escaped, e.g., `\\$`.
The three characters <, >, and | can be wrapped in math mode, e.g., `$<$`.
The remainder require some TeX work-arounds.  Any good book on TeX will give
some guidance.

If you type your labels inside double quotes, backslashes in TeX code need to
be escaped (doubled). Using single quotes will avoid having to do this, but
then you cannot use `\\n` for line breaks.  As of this writing, version 3.7 of
gnuplot processes titles given in a `plot` command differently than in other
places, and backslashes in TeX commands need to be doubled regardless of the
style of quotes.

Metapost pictures are typically used in TeX documents.  Metapost deals with
fonts pretty much the same way TeX does, which is different from most other
document preparation programs.  If the picture is included in a LaTeX document
using the graphics package, or in a plainTeX document via epsf.tex, and then
converted to PostScript with dvips (or other dvi-to-ps converter), the text in
the plot will usually be handled correctly.  However, the text may not appear
if you send the Metapost output as-is to a PostScript interpreter.



@noindent --- METAPOST INSTRUCTIONS ---

@c ?commands set terminal mp detailed
@c ?set terminal mp detailed
@c ?set term mp detailed
@c ?mp detailed
@c ?metapost detailed

- Set your terminal to Metapost, e.g.:
@example
   set terminal mp mono "cmtt12" 12

@end example

- Select an output-file, e.g.:
@example
   set output "figure.mp"

@end example

- Create your pictures.  Each plot (or multiplot group) will generate a
separate Metapost beginfig...endfig group.  Its default size will be 5 by 3
inches.  You can change the size by saying `set size 0.5,0.5` or whatever
fraction of the default size you want to have.

- Quit gnuplot.

- Generate EPS files by running Metapost on the output of gnuplot:
@example
   mpost figure.mp  OR  mp figure.mp
@end example

The name of the Metapost program depends on the system, typically `mpost` for
a Unix machine and `mp` on many others.  Metapost will generate one EPS file
for each picture.

- To include your pictures in your document you can use the graphics package
in LaTeX or epsf.tex in plainTeX:
@example
   \\usepackage@{graphics@} % LaTeX
   \\input epsf.tex       % plainTeX
@end example

If you use a driver other than dvips for converting TeX DVI output to PS, you
may need to add the following line in your LaTeX document:
@example
   \\DeclareGraphicsRule@{*@}@{eps@}@{*@}@{@}
@end example

Each picture you made is in a separate file.  The first picture is in, e.g.,
figure.0, the second in figure.1, and so on....  To place the third picture in
your document, for example, all you have to do is:
@example
   \\includegraphics@{figure.2@} % LaTeX
   \\epsfbox@{figure.2@}         % plainTeX

@end example

The advantage, if any, of the mp terminal over a postscript terminal is
editable output.  Considerable effort went into making this output as clean as
possible.  For those knowledgeable in the Metapost language, the default line
types and colors can be changed by editing the arrays `lt[]` and `col[]`.
The choice of solid vs dashed lines, and color vs black lines can be change by
changing the values assigned to the booleans `dashedlines` and `colorlines`.
If the default `tex` option was in effect, global changes to the text of
labels can be achieved by editing the `vebatimtex...etex` block.  In
particular, a LaTeX preamble can be added if desired, and then LaTeX's
built-in size changing commands can be used for maximum flexibility. Be sure
to set the appropriate MP configuration variable to force Metapost to run
LaTeX instead of plainTeX."

@node mgr, mif, mp, complete_list_of_terminals
@subsubsection mgr

@c ?commands set terminal mgr
@c ?set terminal mgr
@c ?set term mgr
@c ?terminal mgr
@c ?term mgr
@cindex mgr
@tmindex mgr


The `mgr` terminal driver supports the Mgr Window system.  It has no options."

@node mif, next, mgr, complete_list_of_terminals
@subsubsection mif

@c ?commands set terminal mif
@c ?set terminal mif
@c ?set term mif
@c ?terminal mif
@c ?term mif
@cindex mif
@tmindex mif


The `mif` terminal driver produces Frame Maker MIF format version 3.00.  It
plots in MIF Frames with the size 15*10 cm, and plot primitives with the same
pen will be grouped in the same MIF group.  Plot primitives in a `gnuplot`
page will be plotted in a MIF Frame, and several MIF Frames are collected in
one large MIF Frame.  The MIF font used for text is "Times".

Several options may be set in the MIF 3.00 driver.

Syntax:
@example
      set terminal mif @{color | colour | monochrome@} @{polyline | vectors@}
                       @{help | ?@}

@end example

`colour` plots lines with line types >= 0 in colour (MIF sep. 2--7) and
`monochrome` plots all line types in black (MIF sep. 0).
`polyline` plots curves as continuous curves and @ref{vectors} plots curves as
collections of vectors.
@ref{help} and `?` print online help on standard error output---both print a
short description of the usage; @ref{help} also lists the options.

Examples:
@example
      set term mif colour polylines    # defaults
      set term mif                     # defaults
      set term mif vectors
      set term mif help"

@end example

@node next, Openstep_(next), mif, complete_list_of_terminals
@subsubsection next

@c ?commands set terminal next
@c ?set terminal next
@c ?set term next
@c ?terminal next
@c ?term next
@cindex next

@cindex NeXT

Several options may be set in the next driver.

Syntax:
@example
      set terminal next @{<mode>@} @{<type> @} @{<color>@} @{<dashed>@}
                 @{"<fontname>"@} @{<fontsize>@} title @{"<newtitle>"@}

@end example

where <mode> is  `default`, which sets all options to their defaults;
<type> is either `new` or `old`, where `old` invokes the old single window;
<color> is either `color` or `monochrome`;
<dashed> is either `solid` or `dashed`;
"<fontname>" is the name of a valid PostScript font;
<fontsize> is the size of the font in PostScript points; and
<title> is the title for the GnuTerm window.
Defaults are  `new`, `monochrome`, `dashed`, "Helvetica", 14pt.

Examples:
@example
      set term next default
      set term next 22
      set term next color "Times-Roman" 14
      set term next color "Helvetica" 12 title "MyPlot"
      set term next old

@end example

Pointsizes may be changed with `set linestyle`."

@node Openstep_(next), pbm, next, complete_list_of_terminals
@subsubsection Openstep (next)

@c ?commands set terminal openstep
@c ?set terminal openstep
@c ?set term openstep
@c ?terminal openstep
@c ?term openstep
@cindex openstep

@cindex OpenStep

@cindex Openstep

/*
@cindex next

@cindex NeXT

*/
Several options may be set in the openstep (next) driver.

Syntax:
@example
      set terminal openstep @{<mode>@} @{<type> @} @{<color>@} @{<dashed>@}
                 @{"<fontname>"@} @{<fontsize>@} title @{"<newtitle>"@}

@end example

where <mode> is  `default`, which sets all options to their defaults;
<type> is either `new` or `old`, where `old` invokes the old single window;
<color> is either `color` or `monochrome`;
<dashed> is either `solid` or `dashed`;
"<fontname>" is the name of a valid PostScript font;
<fontsize> is the size of the font in PostScript points; and
<title> is the title for the GnuTerm window.
Defaults are  `new`, `monochrome`, `dashed`, "Helvetica", 14pt.

Examples:
@example
      set term openstep default
      set term openstep 22
      set term openstep color "Times-Roman" 14
      set term openstep color "Helvetica" 12 title "MyPlot"
      set term openstep old

@end example

Pointsizes may be changed with `set linestyle`."

@node pbm, dospc, Openstep_(next), complete_list_of_terminals
@subsubsection pbm

@c ?commands set terminal pbm
@c ?set terminal pbm
@c ?set term pbm
@c ?terminal pbm
@c ?term pbm
@cindex pbm
@tmindex pbm


Syntax:
@example
      set terminal pbm @{<fontsize>@} @{<mode>@} @{size <x>,<y>@}

@end example

where <fontsize> is `small`, `medium`, or `large` and <mode> is `monochrome`,
`gray` or `color`.  The default plot size is 640 pixels wide and 480 pixels
high. The output size is white-space padded to the nearest multiple of
8 pixels on both x and y. This empty space may be cropped later if needed.

The output of the `pbm` driver depends upon <mode>: `monochrome` produces a
portable bitmap (one bit per pixel), `gray` a portable graymap (three bits
per pixel) and `color` a portable pixmap (color, four bits per pixel).

The output of this driver can be used with various image conversion and
manipulation utilities provided by NETPBM.  Based on Jef Poskanzer's
PBMPLUS package, NETPBM provides programs to convert the above PBM formats
to GIF, TIFF, MacPaint, Macintosh PICT, PCX, X11 bitmap and many others.
Complete information is available at http://netpbm.sourceforge.net/.

Examples:
@example
      set terminal pbm small monochrome                # defaults
      set terminal pbm color medium size 800,600
      set output '| pnmrotate 45 | pnmtopng > tilted.png'  # uses NETPBM"

@end example

@node dospc, pdf, pbm, complete_list_of_terminals
@subsubsection dospc

@c ?commands set terminal dospc
@c ?set terminal dospc
@c ?set term dospc
@c ?terminal dospc
@c ?term dospc
@cindex dospc
@tmindex dospc


The `dospc` terminal driver supports PCs with arbitrary graphics boards,
which will be automatically detected.  It should be used only if you are
not using the gcc or Zortec C/C++ compilers."

@node pdf, pstricks, dospc, complete_list_of_terminals
@subsubsection pdf

@c ?commands set terminal pdf
@c ?set terminal pdf
@c ?set term pdf
@c ?terminal pdf
@c ?term pdf
@cindex pdf
@tmindex pdf


This terminal produces files in the Adobe Portable Document Format
(PDF), useable for printing or display with tools like Acrobat Reader

Syntax:
@example
      set terminal pdf @{monochrome|color|colour@}
                       @{@{no@}enhanced@}
                       @{fname "<font>"@} @{fsize <fontsize>@}
                       @{font "<fontname>@{,<fontsize>@}"@}
                       @{linewidth <lw>@} @{rounded|butt@}
                       @{solid|dashed@} @{dl <dashlength>@}@}
                       @{size <XX>@{unit@},<YY>@{unit@}@}

@end example

The default is to use a different color for each line type. Selecting
`monochome` will use black for all linetypes, in which case you probably
want to select `dashed` to distinguish line types. Even in in mono mode
you can still use explicit colors for filled areas or linestyles.

where <font> is the name of the default font to use (default Helvetica)
and <fontsize> is the font size (in points, default 12).
For help on which fonts are available or how to install new ones, please
see the documentation for your local installation of pdflib.

The `enhanced` option enables enhanced text processing features
(subscripts, superscripts and mixed fonts). See `enhanced`.

The width of all lines in the plot can be increased by the factor <n>
specified in `linewidth`. Similarly `dashlength` is a multiplier for the
default dash spacing.

`rounded` sets line caps and line joins to be rounded; `butt` is the
default, butt caps and mitered joins.

The default size for PDF output is 5 inches by 3 inches. The @ref{size} option
changes this to whatever the user requests. By default the X and Y sizes
are taken to be in inches, but other units are possible (currently only cm).

* does not work.

@node pstricks, qms, pdf, complete_list_of_terminals
@subsubsection pstricks

@c ?commands set terminal pstricks
@c ?set terminal pstricks
@c ?set term pstricks
@c ?terminal pstricks
@c ?term pstricks
@cindex pstricks
@tmindex pstricks


The `pstricks` driver is intended for use with the "pstricks.sty" macro
package for LaTeX.  It is an alternative to the `eepic` and `latex` drivers.
You need "pstricks.sty", and, of course, a printer that understands
PostScript, or a converter such as Ghostscript.

PSTricks is available via anonymous ftp from the /pub directory at
Princeton.edu.  This driver definitely does not come close to using the full
capability of the PSTricks package.

Syntax:
@example
      set terminal pstricks @{hacktext | nohacktext@} @{unit | nounit@}

@end example

The first option invokes an ugly hack that gives nicer numbers; the second
has to do with plot scaling.  The defaults are `hacktext` and `nounit`."

@node qms, regis, pstricks, complete_list_of_terminals
@subsubsection qms

@c ?commands set terminal qms
@c ?set terminal qms
@c ?set term qms
@c ?terminal qms
@c ?term qms
@cindex qms
@tmindex qms


The `qms` terminal driver supports the QMS/QUIC Laser printer, the Talaris
1200 and others.  It has no options."

@node regis, regis_, qms, complete_list_of_terminals
@subsubsection regis

@c ?commands set terminal regis
@c ?set terminal regis
@c ?set term regis
@c ?terminal regis
@c ?term regis
@cindex regis
@tmindex regis


The `regis` terminal device generates output in the REGIS graphics language.
It has the option of using 4 (the default) or 16 colors.

Syntax:
@example
      set terminal regis @{4 | 16@}"

@end example

@node regis_, rgip, regis, complete_list_of_terminals
@subsubsection regis

@c ?commands set terminal regis
@c ?set terminal regis
@c ?set term regis
@c ?terminal regis
@c ?term regis
@cindex regis
@tmindex regis


The `regis` terminal device generates output in the REGIS graphics language.
It has the option of using 4 (the default) or 16 colors.

Syntax:
@example
      set terminal regis @{4 | 16@}"

@end example

@node rgip, sun, regis_, complete_list_of_terminals
@subsubsection rgip

@c ?commands set terminal rgip
@c ?set terminal rgip
@c ?set term rgip
@c ?terminal rgip
@c ?term rgip
@cindex rgip
@tmindex rgip


@c ?commands set terminal uniplex
@c ?set terminal uniplex
@c ?set term uniplex
@c ?terminal uniplex
@c ?term uniplex
@cindex uniplex
@tmindex uniplex


The `rgip` and `uniplex` terminal drivers support RGIP metafiles.  They can
combine several graphs on a single page, but only one page is allowed in a
given output file.

Syntax:
@example
      set terminal rgip | uniplex @{portrait | landscape@}
                                  @{[<horiz>,<vert>]@} @{<fontsize>@}

@end example

permissible values for the font size are in the range 1--8, with the default
being 1.  The default layout is landscape.  Graphs are placed on the page in
a `horiz`x`vert` grid, which defaults to [1,1].

Example:
@example
      set terminal uniplex portrait [2,3]

@end example

puts six graphs on a page in three rows of two in portrait orientation."

@node sun, svg, rgip, complete_list_of_terminals
@subsubsection sun

@c ?commands set terminal sun
@c ?set terminal sun
@c ?set term sun
@c ?terminal sun
@c ?term sun
@cindex sun
@tmindex sun


The `sun` terminal driver supports the SunView window system.  It has no
options."

@node svg, tek410x, sun, complete_list_of_terminals
@subsubsection svg

@c ?commands set terminal svg
@c ?set terminal svg
@c ?set term svg
@c ?terminal svg
@c ?term svg
@cindex svg
@tmindex svg


This terminal produces files in the W3C Scalable Vector Graphics format.

Syntax:
@example
      set terminal svg @{size <x>,<y> @{|fixed|dynamic@}@}
                       @{@{no@}enhanced@}
                       @{fname "<font>"@} @{fsize <fontsize>@}
                       @{font "<fontname>@{,<fontsize>@}"@}
                       @{fontfile <filename>@}
                       @{rounded|butt@} @{solid|dashed@} @{linewidth <lw>@}

@end example

where <x> and <y> are the size of the SVG plot to generate,
`dynamic` allows a svg-viewer to resize plot, whereas the default
setting, `fixed`, will request an absolute size.

`linewidth <w>` increases the width of all lines used in the figure
by a factor of <w>.

<font> is the name of the default font to use (default Arial) and
<fontsize> is the font size (in points, default 12). SVG viewing
programs may substitute other fonts when the file is displayed.

The svg terminal supports an enhanced text mode, which allows font
and other formatting commands to be embedded in labels and other text
strings. The enhanced text mode syntax is shared with other gnuplot
terminal types. See `enhanced` for more details.

SVG allows you to embed fonts directly into an SVG document, or to
provide a hypertext link to the desired font. The `fontfile` option
specifies a local file which is copied into the <defs> section of the
resulting SVG output file.  This file may either itself contain a font,
or may contain the records necessary to create a hypertext reference to
the desired font. Gnuplot will look for the requested file using the
directory list in the GNUPLOT_FONTPATH environmental variable.
NB: You must embed an svg font, not a TrueType or PostScript font."

@node tek410x, tek410x_, svg, complete_list_of_terminals
@subsubsection tek410x

@c ?commands set terminal tek410x
@c ?set terminal tek410x
@c ?set term tek410x
@c ?terminal tek410x
@c ?term tek410x
@cindex tek410x
@tmindex tek410x


The `tek410x` terminal driver supports the 410x and 420x family of Tektronix
terminals.  It has no options."

@node tek410x_, tek40, tek410x, complete_list_of_terminals
@subsubsection tek410x

@c ?commands set terminal tek410x
@c ?set terminal tek410x
@c ?set term tek410x
@c ?terminal tek410x
@c ?term tek410x
@cindex tek410x
@tmindex tek410x


The `tek410x` terminal driver supports the 410x and 420x family of Tektronix
terminals.  It has no options."

@node tek40, texdraw, tek410x_, complete_list_of_terminals
@subsubsection tek40

@c ?commands set terminal tek40xx
@c ?set terminal tek40xx
@c ?set term tek40xx
@c ?terminal tek40xx
@c ?term tek40xx
@cindex tek40
@tmindex tek40


@c ?commands set terminal vttek
@c ?set terminal vttek
@c ?set term vttek
@c ?terminal vttek
@c ?term vttek
@cindex vttek
@tmindex vttek


@c ?commands set terminal xterm
@c ?set terminal xterm
@c ?set term xterm
@c ?terminal xterm
@c ?term xterm
@cindex xterm
@tmindex xterm


@c ?commands set terminal kc-tek40xx
@c ?set terminal kc-tek40xx
@c ?set term kc-tek40xx
@c ?terminal kc-tek40xx
@c ?term kc-tek40xx
@cindex kc-tek40xx
@tmindex kc-tek40xx


@c ?commands set terminal km-tek40xx
@c ?set terminal km-tek40xx
@c ?set term km-tek40xx
@c ?terminal km-tek40xx
@c ?term km-tek40xx
@cindex km-tek40xx

@c ?commands set terminal selanar
@c ?set terminal selanar
@c ?set term selanar
@c ?terminal selanar
@c ?term selanar
@cindex selanar

@c ?commands set terminal bitgraph
@c ?set terminal bitgraph
@c ?set term bitgraph
@c ?terminal bitgraph
@c ?term bitgraph
@cindex bitgraph

This family of terminal drivers supports a variety of VT-like terminals.
`tek40xx` supports Tektronix 4010 and others as well as most TEK emulators.
`vttek` supports VT-like tek40xx terminal emulators.
The following are present only if selected when gnuplot is built:
`kc-tek40xx` supports MS-DOS Kermit Tek4010 terminal emulators in color;
`km-tek40xx` supports them in monochrome. `selanar` supports Selanar graphics.
`bitgraph` supports BBN Bitgraph terminals.
None have any options."

@node texdraw, tgif, tek40, complete_list_of_terminals
@subsubsection texdraw

@c ?commands set terminal texdraw
@c ?set terminal texdraw
@c ?set term texdraw
@c ?terminal texdraw
@c ?term texdraw
@cindex texdraw
@tmindex texdraw


The `texdraw` terminal driver supports the LaTeX texdraw environment.  It is
intended for use with "texdraw.sty" and "texdraw.tex" in the texdraw package.

Points, among other things, are drawn using the LaTeX commands "\\Diamond" and
"\\Box".  These commands no longer belong to the LaTeX2e core; they are included
in the latexsym package, which is part of the base distribution and thus part
of any LaTeX implementation.  Please do not forget to use this package.

It has no options."

@node tgif, tgif_, texdraw, complete_list_of_terminals
@subsubsection tgif

@c ?commands set terminal tgif
@c ?set terminal tgif
@c ?set term tgif
@c ?terminal tgif
@c ?term tgif
@cindex tgif
@tmindex tgif


Tgif is an X11-based drawing tool---it has nothing to do with GIF.

The `tgif` driver supports different pointsizes (with @ref{pointsize}),
different label fonts and font sizes (e.g. `set label "Hallo" at x,y font
"Helvetica,34"`) and multiple graphs on the page.  The proportions of the
axes are not changed.

Syntax:
@example
      set terminal tgif @{portrait | landscape | default@} @{<[x,y]>@}
                        @{monochrome | color@}
                        @{@{linewidth | lw@} <LW>@}
                        @{solid | dashed@}
                        @{font "<fontname>"@} @{<fontsize>@}

@end example

where <[x,y]> specifies the number of graphs in the x and y directions on the
page, `color` enables color, `linewidth` scales all linewidths by <LW>,
"<fontname>" is the name of a valid PostScript font, and <fontsize>
specifies the size of the PostScript font.
`defaults` sets all options to their defaults: `portrait`, `[1,1]`, `color`,
`linwidth 1.0`, `dashed`, `"Helvetica"`, and `18`.

The `solid` option is usually prefered if lines are colored, as they often
are in the editor.  Hardcopy will be black-and-white, so `dashed` should be
chosen for that.

Multiplot is implemented in two different ways.

The first multiplot implementation is the standard gnuplot multiplot feature:

@example
      set terminal tgif
      set output "file.obj"
      set multiplot
      set origin x01,y01
      set size  xs,ys
      plot ...
           ...
      set origin x02,y02
      plot ...
      unset multiplot

@end example

See @ref{multiplot} for further information.

The second version is the [x,y] option for the driver itself.  The advantage
of this implementation is that everything is scaled and placed automatically
without the need for setting origins and sizes; the graphs keep their natural
x/y proportions of 3/2 (or whatever is fixed by @ref{size}).

If both multiplot methods are selected, the standard method is chosen and a
warning message is given.

Examples of single plots (or standard multiplot):
@example
      set terminal tgif                  # defaults
      set terminal tgif "Times-Roman" 24
      set terminal tgif landscape
      set terminal tgif landscape solid

@end example

Examples using the built-in multiplot mechanism:
@example
      set terminal tgif portrait [2,4]  # portrait; 2 plots in the x-
                                        # and 4 in the y-direction
      set terminal tgif [1,2]           # portrait; 1 plot in the x-
                                        # and 2 in the y-direction
      set terminal tgif landscape [3,3] # landscape; 3 plots in both
                                        # directions"

@end example

@node tgif_, tkcanvas, tgif, complete_list_of_terminals
@subsubsection tgif

@c ?commands set terminal tgif
@c ?set terminal tgif
@c ?set term tgif
@c ?terminal tgif
@c ?term tgif
@cindex tgif
@tmindex tgif


Tgif is an X11-based drawing tool---it has nothing to do with GIF.

The `tgif` driver supports different pointsizes (with @ref{pointsize}),
different label fonts and font sizes (e.g. `set label "Hallo" at x,y font
"Helvetica,34"`) and multiple graphs on the page.  The proportions of the
axes are not changed.

Syntax:
@example
      set terminal tgif @{portrait | landscape | default@} @{<[x,y]>@}
                        @{monochrome | color@}
                        @{@{linewidth | lw@} <LW>@}
                        @{solid | dashed@}
                        @{font "<fontname>"@} @{<fontsize>@}

@end example

where <[x,y]> specifies the number of graphs in the x and y directions on the
page, `color` enables color, `linewidth` scales all linewidths by <LW>,
"<fontname>" is the name of a valid PostScript font, and <fontsize>
specifies the size of the PostScript font.
`defaults` sets all options to their defaults: `portrait`, `[1,1]`, `color`,
`linwidth 1.0`, `dashed`, `"Helvetica"`, and `18`.

The `solid` option is usually prefered if lines are colored, as they often
are in the editor.  Hardcopy will be black-and-white, so `dashed` should be
chosen for that.

Multiplot is implemented in two different ways.

The first multiplot implementation is the standard gnuplot multiplot feature:

@example
      set terminal tgif
      set output "file.obj"
      set multiplot
      set origin x01,y01
      set size  xs,ys
      plot ...
           ...
      set origin x02,y02
      plot ...
      unset multiplot

@end example

See @ref{multiplot} for further information.

The second version is the [x,y] option for the driver itself.  The advantage
of this implementation is that everything is scaled and placed automatically
without the need for setting origins and sizes; the graphs keep their natural
x/y proportions of 3/2 (or whatever is fixed by @ref{size}).

If both multiplot methods are selected, the standard method is chosen and a
warning message is given.

Examples of single plots (or standard multiplot):
@example
      set terminal tgif                  # defaults
      set terminal tgif "Times-Roman" 24
      set terminal tgif landscape
      set terminal tgif landscape solid

@end example

Examples using the built-in multiplot mechanism:
@example
      set terminal tgif portrait [2,4]  # portrait; 2 plots in the x-
                                        # and 4 in the y-direction
      set terminal tgif [1,2]           # portrait; 1 plot in the x-
                                        # and 2 in the y-direction
      set terminal tgif landscape [3,3] # landscape; 3 plots in both
                                        # directions"

@end example

@node tkcanvas, tpic, tgif_, complete_list_of_terminals
@subsubsection tkcanvas

@c ?commands set terminal tkcanvas
@c ?set terminal tkcanvas
@c ?set term tkcanvas
@c ?terminal tkcanvas
@c ?term tkcanvas
@cindex tkcanvas
@tmindex tkcanvas


This terminal driver generates Tk canvas widget commands based on Tcl/Tk
(default) or Perl.  To use it, rebuild `gnuplot` (after uncommenting or
inserting the appropriate line in "term.h"), then

@example
 gnuplot> set term tkcanvas @{perltk@} @{interactive@}
 gnuplot> set output 'plot.file'

@end example

After invoking "wish", execute the following sequence of Tcl/Tk commands:

@example
 % source plot.file
 % canvas .c
 % pack .c
 % gnuplot .c

@end example

Or, for Perl/Tk use a program like this:

@example
 use Tk;
 my $top = MainWindow->new;
 my $c = $top->Canvas->pack;
 my $gnuplot = do "plot.pl";
 $gnuplot->($c);
 MainLoop;

@end example

The code generated by `gnuplot` creates a procedure called "gnuplot"
that takes the name of a canvas as its argument.  When the procedure is
called, it clears the canvas, finds the size of the canvas and draws the plot
in it, scaled to fit.

For 2-dimensional plotting (`plot`) two additional procedures are defined:
"gnuplot_plotarea" will return a list containing the borders of the plotting
area "xleft, xright, ytop, ybot" in canvas screen coordinates, while the ranges
of the two axes "x1min, x1max, y1min, y1max, x2min, x2max, y2min, y2max" in plot
coordinates can be obtained calling "gnuplot_axisranges".
If the "interactive" option is specified, mouse clicking on a line segment
will print the coordinates of its midpoint to stdout. Advanced actions
can happen instead if the user supplies a procedure named
"user_gnuplot_coordinates", which takes the following arguments:
"win id x1s y1s x2s y2s x1e y1e x2e y2e x1m y1m x2m y2m",
the name of the canvas and the id of the line segment followed by the
coordinates of its start and end point in the two possible axis ranges; the
coordinates of the midpoint are only filled for logarithmic axes.

The current version of `tkcanvas` supports neither @ref{multiplot} nor @ref{replot}."

@node tpic, unixpc, tkcanvas, complete_list_of_terminals
@subsubsection tpic

@c ?commands set terminal tpic
@c ?set terminal tpic
@c ?set term tpic
@c ?terminal tpic
@c ?term tpic
@cindex tpic
@tmindex tpic


The `tpic` terminal driver supports the LaTeX picture environment with tpic
\\specials.  It is an alternative to the `latex` and `eepic` terminal drivers.
Options are the point size, line width, and dot-dash interval.

Syntax:
@example
      set terminal tpic <pointsize> <linewidth> <interval>

@end example

where @ref{pointsize} and `linewidth` are integers in milli-inches and `interval`
is a float in inches.  If a non-positive value is specified, the default is
chosen: pointsize = 40, linewidth = 6, interval = 0.1.

All drivers for LaTeX offer a special way of controlling text positioning:
If any text string begins with '@{', you also need to include a '@}' at the
end of the text, and the whole text will be centered both horizontally
and vertically by LaTeX. --- If the text string begins with '[', you need
to continue it with: a position specification (up to two out of t,b,l,r),
']@{', the text itself, and finally, '@}'. The text itself may be anything
LaTeX can typeset as an LR-box. \\rule@{@}@{@}'s may help for best positioning.

Examples:
About label positioning:
Use gnuplot defaults (mostly sensible, but sometimes not really best):
@example
       set title '\\LaTeX\\ -- $ \\gamma $'
@end example

Force centering both horizontally and vertically:
@example
       set label '@{\\LaTeX\\ -- $ \\gamma $@}' at 0,0
@end example

Specify own positioning (top here):
@example
       set xlabel '[t]@{\\LaTeX\\ -- $ \\gamma $@}'
@end example

The other label -- account for long ticlabels:
@example
       set ylabel '[r]@{\\LaTeX\\ -- $ \\gamma $\\rule@{7mm@}@{0pt@}@}'"

@end example

@node unixpc, unixplot, tpic, complete_list_of_terminals
@subsubsection unixpc

@c ?commands set terminal unixpc
@c ?set terminal unixpc
@c ?set term unixpc
@c ?terminal unixpc
@c ?term unixpc
@cindex unixpc
@tmindex unixpc


The `unixpc` terminal driver supports AT&T 3b1 and AT&T 7300 Unix PC.  It has
no options."

@node unixplot, vx384, unixpc, complete_list_of_terminals
@subsubsection unixplot

@c ?commands set terminal unixplot
@c ?set terminal unixplot
@c ?set term unixplot
@c ?terminal unixplot
@c ?term unixplot
@cindex unixplot
@tmindex unixplot


The `unixplot` terminal driver generates output in the Unix "plot" graphics
language.  It has no options.

This terminal cannot be compiled if the GNU version of plot is to be used;
in that case, use the `gnugraph` terminal instead."

@node vx384, vgagl, unixplot, complete_list_of_terminals
@subsubsection vx384

@c ?commands set terminal vx384
@c ?set terminal vx384
@c ?set term vx384
@c ?terminal vx384
@c ?term vx384
@cindex vx384
@tmindex vx384


The `vx384` terminal driver supports the Vectrix 384 and Tandy color
printers.  It has no options."

@node vgagl, VWS, vx384, complete_list_of_terminals
@subsubsection vgagl

@c ?commands set terminal vgagl
@c ?set terminal vgagl
@c ?set term vgagl
@c ?terminal vgagl
@c ?term vgagl
@cindex vgagl
@tmindex vgagl


The `vgagl` driver is a fast linux console driver with full mouse and pm3d
support.  It looks at the environment variable SVGALIB_DEFAULT_MODE for the
default mode; if not set, it uses a 256 color mode with the highest
available resolution.

Syntax:
@example
   set terminal vgagl \\
                background [red] [[green] [blue]] \\
                [uniform | interpolate] \\
                [dump "file"] \\
                [mode]

@end example

The color mode can also be given with the mode option. Both Symbolic
names as G1024x768x256 and integers are allowed. The `background` option
takes either one or three integers in the range [0, 255]. If only one
integers is supplied, it is taken as gray value for the background.
If three integers are present, the background gets the corresponding
color.
The (mutually exclusive) options `interpolate` and `uniform` control
if color interpolation is done while drawing triangles (on by default).

A @ref{file} can be specified with the `dump "file"` option.
If this option is present, (i.e the dump file name is not empty) pressing
the key KP_Delete will write the file.  This action cannot and cannot be
rebound. The file is written in raw ppm (P6) format. Note that this option
is reset each time the `set term` command is issued.

To get high resolution modes, you will probably have to modify the
configuration file of libvga, usually /etc/vga/libvga.conf.  Using
the VESA fb is a good choice, but this needs to be compiled in the
kernel.

The vgagl driver uses the first *available* vga mode from the following list:
@example
 - the driver which was supplied when setting vgagl, e.g. `set term vgagl
   G1024x768x256` would first check, if the G1024x768x256 mode is available.
 - the environment variable SVGALIB_DEFAULT_MODE
 - G1024x768x256
 - G800x600x256
 - G640x480x256
 - G320x200x256
 - G1280x1024x256
 - G1152x864x256
 - G1360x768x256
 - G1600x1200x256

@end example


@node VWS, windows, vgagl, complete_list_of_terminals
@subsubsection VWS

@c ?commands set terminal VWS
@c ?set terminal VWS
@c ?set term VWS
@c ?terminal VWS
@c ?term VWS
@cindex VWS
@tmindex VWS


The `VWS` terminal driver supports the VAX Windowing System.  It has
no options.  It will sense the display type (monochrome, gray scale,
or color.)  All line styles are plotted as solid lines."

@node windows, wxt, VWS, complete_list_of_terminals
@subsubsection windows

@c ?commands set terminal windows
@c ?set terminal windows
@c ?set term windows
@c ?terminal windows
@c ?term windows
@cindex windows
@tmindex windows


Three options may be set in the `windows` terminal driver.

Syntax:
@example
      set terminal windows @{color | monochrome@}
                           @{enhanced | noenhanced@}
                           @{@{font@} "fontname@{,fontsize@}" @{<fontsize>@}@}
                           @{title "Plot Window Title"@}
                           @{size <width>,<height>@}
                           @{position <x>,<y>@}
                           @{close@}

@end example

where `color` and `monochrome` select colored or mono output,
`enhanced` enables enhanced text mode features (subscripts,
superscripts and mixed fonts). See `enhanced` for more information.
`"<fontname>"` is the name of a valid Windows font, and `<fontsize>`
is the size of the font in points.
@ref{size} defines the width and height of the window in pixel and `position`
the origin of the window i.e. the position of the top left corner on the
screen (again in pixel). Both these options override the default settings
from the WGNUPLOT.INI file (see below).

Other options may be set with the graph-menu or the initialization file.

The Windows version normally terminates immediately as soon as the end of
any files given as command line arguments is reached (i.e. in non-interactive
mode), unless you specify `-` as the last command line option.
It will also not show the text-window at all, in this mode, only the plot.
By giving the optional argument `-persist` (same as for gnuplot under x11;
former Windows-only options `/noend` or `-noend` are still accepted as well),
will not close gnuplot. Contrary to gnuplot on other operating systems,
gnuplot's interactive command line is accessible after the -persist option.

The plot window remains open even when the gnuplot driver is changed to a
different device. The plot window can be close with `set term windows close`


@noindent --- GRAPH-MENU ---

@c ?commands set terminal windows graph-menu
@c ?set terminal windows graph-menu
@c ?set term windows graph-menu
@c ?windows graph-menu
@cindex graph-menu
@tmindex graph-menu


The `gnuplot graph` window has the following options on a pop-up menu
accessed by pressing the right mouse button or selecting `Options` from the
system menu:

`Bring to Top` when checked brings the graph window to the top after every
plot.

`Color` when checked enables color linestyles.  When unchecked it forces
monochrome linestyles.

`Copy to Clipboard` copies a bitmap and an enhanced Metafile picture.

`Save as EMF...` allows the user to save the current graph window as enhanced metafile

`Background...` sets the window background color.

`Choose Font...` selects the font used in the graphics window.

`Line Styles...` allows customization of the line colors and styles.

`Print...` prints the graphics windows using a Windows printer driver and
allows selection of the printer and scaling of the output.  The output
produced by `Print` is not as good as that from `gnuplot`'s own printer
drivers.

`Update wgnuplot.ini` saves the current window locations, window sizes, text
window font, text window font size, graph window font, graph window font
size, background color and linestyles to the initialization file
`WGNUPLOT.INI`.


@noindent --- PRINTING ---

@c ?commands set terminal windows printing
@c ?set terminal windows printing
@c ?set term windows printing
@c ?windows printing
@cindex printing
@tmindex printing


In order of preference, graphs may be be printed in the following ways.

`1.` Use the `gnuplot` command @ref{terminal} to select a printer and @ref{output} to redirect output to a file.

`2.` Select the `Print...` command from the `gnuplot graph` window.  An extra
command `screendump` does this from the text window.

`3.` If `set output "PRN"` is used, output will go to a temporary file.  When
you exit from `gnuplot` or when you change the output with another @ref{output} command, a dialog box will appear for you to select a printer port.
If you choose OK, the output will be printed on the selected port, passing
unmodified through the print manager.  It is possible to accidentally (or
deliberately) send printer output meant for one printer to an incompatible
printer.


@noindent --- TEXT-MENU ---

@c ?commands set terminal windows text-menu
@c ?set terminal windows text-menu
@c ?set term windows text-menu
@c ?windows text-menu
@cindex text-menu
@tmindex text-menu


The `gnuplot text` window has the following options on a pop-up menu accessed
by pressing the right mouse button or selecting `Options` from the system
menu:

`Copy to Clipboard` copies marked text to the clipboard.

`Paste` copies text from the clipboard as if typed by the user.

`Choose Font...` selects the font used in the text window.

`System Colors` when selected makes the text window honor the System Colors
set using the Control Panel.  When unselected, text is black or blue on a
white background.

`Update wgnuplot.ini` saves the current text window location, text window
size, text window font and text window font size to the initialisation file
`WGNUPLOT.INI`.

`MENU BAR`

If the menu file `WGNUPLOT.MNU` is found in the same directory as
WGNUPLOT.EXE, then the menu specified in `WGNUPLOT.MNU` will be loaded.
Menu commands:

[Menu] starts a new menu with the name on the following line.

[EndMenu] ends the current menu.

[--] inserts a horizontal menu separator.

[|] inserts a vertical menu separator.

[Button] puts the next macro on a push button instead of a menu.

Macros take two lines with the macro name (menu entry) on the first line and
the macro on the second line.  Leading spaces are ignored.  Macro commands:

[INPUT] --- Input string with prompt terminated by [EOS] or @{ENTER@}

[EOS] --- End Of String terminator.  Generates no output.

[OPEN] --- Get name of file to open from list box, with title of list box
terminated by [EOS], followed by default filename terminated by [EOS] or
@{ENTER@}.

[SAVE] --- Get name of file to save.  Similar to [OPEN]

Macro character substitutions:

@{ENTER@} --- Carriage Return '\\r'

@{TAB@} --- Tab '\\011'

@{ESC@} --- Escape '\\033'

@{^A@} --- '\\001'

...

@{^_@} --- '\\031'

Macros are limited to 256 characters after expansion.


@noindent --- WGNUPLOT.INI ---

@c ?commands set terminal windows wgnuplot.ini
@c ?set terminal windows wgnuplot.ini
@c ?set term windows wgnuplot.ini
@c ?windows wgnuplot.ini
@cindex wgnuplot.ini
@tmindex wgnuplot.ini


Windows `gnuplot` will read some of its options from the `[WGNUPLOT]` section
of `WGNUPLOT.INI` in user's %APPDATA% directory.  A sample `WGNUPLOT.INI` file:

@example
      [WGNUPLOT]
      TextOrigin=0 0
      TextSize=640 150
      TextFont=Terminal,9
      GraphOrigin=0 150
      GraphSize=640 330
      GraphFont=Arial,10
      GraphColor=1
      GraphToTop=1
      GraphBackground=255 255 255
      Border=0 0 0 0 0
      Axis=192 192 192 2 2
      Line1=0 0 255 0 0
      Line2=0 255 0 0 1
      Line3=255 0 0 0 2
      Line4=255 0 255 0 3
      Line5=0 0 128 0 4

@end example

The `GraphFont` entry specifies the font name and size in points.  The five
numbers given in the `Border`, `Axis` and `Line` entries are the `Red`
intensity (0--255), `Green` intensity, `Blue` intensity, `Color Linestyle`
and `Mono Linestyle`.  `Linestyles` are 0=SOLID, 1=DASH, 2=DOT, 3=DASHDOT,
4=DASHDOTDOT.  In the sample `WGNUPLOT.INI` file above, Line 2 is a green
solid line in color mode, or a dashed line in monochrome mode.  The default
line width is 1 pixel.  If `Linestyle` is negative, it specifies the width of
a SOLID line in pixels.  Line1 and any linestyle used with the `points` style
must be SOLID with unit width."

@node wxt, x11, windows, complete_list_of_terminals
@subsubsection wxt

@c ?set terminal wxt
@c ?terminal wxt
@c ?set term wxt
@c ?term wxt
@cindex wxt
@tmindex wxt


The `wxt` terminal device generates output in a separate window. The window
is created by the wxWidgets library, where the 'wxt' comes from. The actual
drawing is done via cairo, a 2D graphics library, and pango, a library for
laying out and rendering text.

Syntax:
@example
        set term wxt @{<n>@}
                     @{size <width>,<height>@}
                     @{@{no@}enhanced@}
                     @{font <font>@}
                     @{title "title"@}
                     @{@{no@}persist@}
                     @{@{no@}raise@}
                     @{@{no@}ctrl@}
                     @{close@}

@end example

Multiple plot windows are supported: `set terminal wxt <n>` directs the
output to plot window number n.

The default window title is based on the window number. This title can also
be specified with the keyword "title".

Plot windows remain open even when the `gnuplot` driver is changed to a
different device.  A plot window can be closed by pressing the letter 'q'
while that window has input focus, by choosing `close` from a window
manager menu, or with `set term wxt <n> close`.

The size of the plot area is given in pixels, it defaults to 640x384.
In addition to that, the actual size of the window also includes the space
reserved for the toolbar and the status bar.
When you resize a window, the plot is immediately scaled to fit in the
new size of the window. Unlike other interactive terminals, the `wxt`
terminal scales the whole plot, including fonts and linewidths, and keeps
its global aspect ratio constant, leaving an empty space painted in gray.
If you type @ref{replot}, click the @ref{replot} icon in the terminal toolbar or
type a new `plot` command, the new plot will completely fit in the window
and the font size and the linewidths will be reset to their defaults.

The active plot window (the one selected by `set term wxt <n>`) is
interactive. Its behaviour is shared with other terminal types. See `mouse`
for details. It also has some extra icons, which are supposed to be
self-explanatory.

This terminal supports an enhanced text mode, which allows font and other
formatting commands (subscripts, superscripts, etc.) to be embedded in labels
and other text strings. The enhanced text mode syntax is shared with other
gnuplot terminal types. See `enhanced` for more details.

<font> is in the format "FontFace,FontSize", i.e. the face and the size
comma-separated in a single string. FontFace is a usual font face name, such
as \'Arial\'. If you do not provide FontFace, the wxt terminal will use
\'Sans\'. FontSize is the font size, in points. If you do not provide it,
the wxt terminal will use a size of 10 points.
@example
   For example :
      set term wxt font "Arial,12"
      set term wxt font "Arial" # to change the font face only
      set term wxt font ",12" # to change the font size only
      set term wxt font "" # to reset the font name and size

@end example

The fonts are retrieved from the usual fonts subsystems. Under Windows,
those fonts are to be found and configured in the entry "Fonts" of the
control panel. Under UNIX, they are handled by "fontconfig".

Pango, the library used to layout the text, is based on utf-8. Thus, the wxt
terminal has to convert from your encoding to utf-8. The default input
encoding is based on your \'locale\'. If you want to use another encoding,
make sure gnuplot knows which one you are using. See @ref{encoding} for more
details.

Pango may give unexpected results with fonts that do not respect the unicode
mapping. With the Symbol font, for example, the wxt terminal will use the map
provided by http://www.unicode.org/ to translate character codes to unicode.
Pango will do its best to find a font containing this character, looking for
your Symbol font, or other fonts with a broad unicode coverage, like the
DejaVu fonts. Note that "the Symbol font" is to be understood as the Adobe
Symbol font, distributed with Acrobat Reader as "SY______.PFB".
Alternatively, the OpenSymbol font, distributed with OpenOffice.org as
"opens___.ttf", offers the same characters. Microsoft has distributed a
Symbol font ("symbol.ttf"), but it has a different character set with
several missing or moved mathematic characters. If you experience problems
with your default setup (if the demo enhancedtext.dem is not displayed
properly for example), you probably have to install one of the Adobe or
OpenOffice Symbol fonts, and remove the Microsoft one.
Other non-conform fonts, such as "wingdings" have been observed working.

The rendering of the plot can be altered with a dialog available from the
toolbar. To obtain the best output possible, the rendering involves three
mechanisms : antialiasing, oversampling and hinting.
Antialiasing allows to display non-horizontal and non-vertical lines
smoother.
Oversampling combined with antialiasing provides subpixel accuracy,
so that gnuplot can draw a line from non-integer coordinates. This avoids
wobbling effects on diagonal lines ('plot x' for example).
Hinting avoids the blur on horizontal and vertical lines caused by
oversampling. The terminal will snap these lines to integer coordinates so
that a one-pixel-wide line will actually be drawn on one and only one pixel.

By default, the window is raised to the top of your desktop when a plot is
drawn. This can be controlled with the keyword "raise".
The keyword "persist" will prevent gnuplot from exiting before you
explicitely close all the plot windows.
Finally, by default the key <space> raises the gnuplot console window, and
'q' closes the plot window. The keyword "ctrl" allows you to replace those
bindings by <ctrl>+<space> and <ctrl>+'q', respectively.
These three keywords (raise, persist and ctrl) can also be set and remembered
between sessions through the configuration dialog."

@node x11, x11_, wxt, complete_list_of_terminals
@subsubsection x11

@c ?commands set terminal x11
@c ?set terminal x11
@c ?set term x11
@c ?terminal x11
@c ?term x11
@cindex x11

@cindex X11

`gnuplot` provides the `x11` terminal type for use with X servers.  This
terminal type is set automatically at startup if the `DISPLAY` environment
variable is set, if the `TERM` environment variable is set to `xterm`, or
if the `-display` command line option is used.

Syntax:
@example
   set terminal x11 @{<n> | window "<string>"@}
                    @{title "<string>"@}
                    @{@{no@}enhanced@} @{font <fontspec>@}
                    @{linewidth LW@} @{solid|dashed@}
                    @{@{no@}persist@} @{@{no@}raise@} @{@{no@}ctrlq@}
                    @{close@}
                    @{size XX,YY@} @{position XX,YY@}
   set terminal x11 @{reset@}

@end example

Multiple plot windows are supported: `set terminal x11 <n>` directs the
output to plot window number n.  If n is not 0, the terminal number will be
appended to the window title (unless a title has been supplied manually)
and the icon will be labeled `Gnuplot <n>`.  The active window may be
distinguished by a change in cursor (from default to crosshair).

The `x11` terminal can connect to X windows previously created by an outside
application via the option `window` followed by a string containing the
X ID for the window in hexadecimal format.  Gnuplot uses that external X
window as a container since X does not allow for multiple clients selecting
the ButtonPress event.  In this way, gnuplot's mouse features work within
the contained plot window.

@example
   set term x11 window "220001e"

@end example

The x11 terminal supports enhanced text mode (see `enhanced`), subject
to the available fonts. In order for font size commands embedded in text
to have any effect, the default x11 font must be scalable. Thus the first
example below will work as expected, but the second will not.

@example
   set term x11 enhanced font "arial,15" 
   set title '@{/=20 Big@} Medium @{/=5 Small@}' 

@end example

@example
   set term x11 enhanced font "terminal-14" 
   set title '@{/=20 Big@} Medium @{/=5 Small@}' 

@end example

Plot windows remain open even when the `gnuplot` driver is changed to a
different device.  A plot window can be closed by pressing the letter q
while that window has input focus, or by choosing `close` from a window
manager menu.  All plot windows can be closed by specifying @ref{reset}, which
actually terminates the subprocess which maintains the windows (unless
`-persist` was specified).  The `close` command can be used to close
individual plot windows by number.  However, after a @ref{reset}, those plot
windows left due to persist cannot be closed with the command `close`.
A `close` without a number closes the current active plot window.

The gnuplot outboard driver, gnuplot_x11, is searched in a default place
chosen when the program is compiled.  You can override that by defining
the environment variable GNUPLOT_DRIVER_DIR to point to a different
location.

Plot windows will automatically be closed at the end of the session
unless the `-persist` option was given.

The options `persist` and @ref{raise} are unset by default, which means that
the defaults (persist == no and raise == yes) or the command line options
-persist / -raise or the Xresources are taken.  If [no]persist or
[no]raise are specified, they will override command line options and
Xresources.  Setting one of these options takes place immediately, so
the behaviour of an already running driver can be modified.  If the window
does not get raised, see discussion in @ref{raise}.

The option `title "<title name>"` will supply the title name of the window
for the current plot window or plot window <n> if a number is given.
Where (or if) this title is shown depends on your X window manager.

The size option can be used to set the size of the plot window.  The
size option will only apply to newly created windows.

The position option can be used to set the position of the plot window.  The
position option will only apply to newly created windows.

The size or aspect ratio of a plot may be changed by resizing the `gnuplot`
window.

Linewidths and pointsizes may be changed from within `gnuplot` with
`set linestyle`.

For terminal type `x11`, `gnuplot` accepts (when initialized) the standard
X Toolkit options and resources such as geometry, font, and name from the
command line arguments or a configuration file.  See the X(1) man page
(or its equivalent) for a description of such options.

@cindex X resources

A number of other `gnuplot` options are available for the `x11` terminal.
These may be specified either as command-line options when `gnuplot` is
invoked or as resources in the configuration file ".Xdefaults".  They are
set upon initialization and cannot be altered during a `gnuplot` session.
(except `persist` and @ref{raise})


@noindent --- X11_FONTS ---

@c ?commands set terminal x11 x11_fonts
@c ?set terminal x11 x11_fonts
@c ?set term x11 x11_fonts
@c ?x11 x11_fonts
@cindex x11_fonts

@cindex fonts

Upon initial startup, the default font is taken from the X11 resources
as set in the system or user .Xdefaults file or on the command line.

Example:
@example
      gnuplot*font: lucidasans-bold-12
@end example

A new default font may be specified to the x11 driver from inside
gnuplot using
@example
     `set term x11 font "<fontspec>"`
@end example

The driver first queries the X-server for a font of the exact name given.
If this query fails, then it tries to interpret <fontspec> as
"<font>,<size>,<slant>,<weight>" and to construct a full X11 font name
of the form
@example
      -*-<font>-<weight>-<s>-*-*-<size>-*-*-*-*-*-<encoding>

@end example

@example
 <font> is the base name of the font (e.g. Times or Symbol)
 <size> is the point size (defaults to 12 if not specified)
 <s> is `i` if <slant>=="italic" `o` if <slant>=="oblique" `r` otherwise
 <weight> is `medium` or `bold` if explicitly requested, otherwise `*`
 <encoding> is set based on the current character set (see @ref{encoding}).
@end example

So `set term x11 font "arial,15,italic"` will be translated to
-*-arial-*-i-*-*-15-*-*-*-*-*-iso8859-1 (assuming default encoding).
The <size>, <slant>, and <weight> specifications are all optional.
If you do not specify <slant> or <weight> then you will get whatever font 
variant the font server offers first.
You may set a default enconding via the corresponding X11 resource. E.g.
@example
      gnuplot*encoding: iso8859-15
@end example

The driver also recognizes some common PostScript font names and
replaces them with possible X11 or TrueType equivalents.
This same sequence is used to process font requests from `set label`.

If your gnuplot was built with configuration option --enable-x11-mbfonts,
you can specify multi-byte fonts by using the prefix "mbfont:" on the font
name. An additional font may be given, separated by a semicolon.
Since multi-byte font encodings are interpreted according to the locale
setting, you must make sure that the environmental variable LC_CTYPE is set
to some appropriate locale value such as ja_JP.eucJP, ko_KR.EUC, or zh_CN.EUC.

Example:
@example
      set term x11 font 'mbfont:kana14;k14'
            # 'kana14' and 'k14' are Japanese X11 font aliases, and ';'
            # is the separator of font names.
      set term x11 font 'mbfont:fixed,16,r,medium'
            # <font>,<size>,<slant>,<weight> form is also usable.
      set title '(mb strings)' font 'mbfont:*-fixed-medium-r-normal--14-*'

@end example

The same syntax applies to the default font in Xresources settings,
for example,
@example
      gnuplot*font: \\
          mbfont:-misc-fixed-medium-r-normal--14-*-*-*-c-*-jisx0208.1983-0

@end example

If gnuplot is built with --enable-x11-mbfonts, you can use two special
PostScript font names 'Ryumin-Light-*' and 'GothicBBB-Medium-*' (standard
Japanese PS fonts) without the prefix "mbfont:".



@noindent --- COMMAND-LINE_OPTIONS ---

@c ?commands set terminal x11 command-line-options
@c ?set terminal x11 command-line-options
@c ?set term x11 command-line-options
@c ?x11 command-line-options
@cindex command-line-options

In addition to the X Toolkit options, the following options may be specified
on the command line when starting `gnuplot` or as resources in your
".Xdefaults" file (note that @ref{raise} and `persist` can be overridden
later by `set term x11 [no]raise [no]persist)`:

@example
 `-mono`     forces monochrome rendering on color displays.
 `-gray`     requests grayscale rendering on grayscale or color displays.
             (Grayscale displays receive monochrome rendering by default.)
 `-clear`    requests that the window be cleared momentarily before a
             new plot is displayed.
 `-tvtwm`    requests that geometry specifications for position of the
             window be made relative to the currently displayed portion
             of the virtual root.
 `-raise`    raises plot window after each plot
 `-noraise`  does not raise plot window after each plot
 `-noevents` does not process mouse and key events
 `-ctrlq   ` closes window on ctrl-q rather than q
 `-persist`  plot windows survive after main gnuplot program exits

@end example

@cindex X resources

The options are shown above in their command-line syntax.  When entered as
resources in ".Xdefaults", they require a different syntax.

Example:
@example
      gnuplot*gray:  on
      gnuplot*ctrlq: on

@end example

`gnuplot` also provides a command line option (`-pointsize <v>`) and a
resource, `gnuplot*pointsize: <v>`, to control the size of points plotted
with the `points` plotting style.  The value `v` is a real number (greater
than 0 and less than or equal to ten) used as a scaling factor for point
sizes.  For example, `-pointsize 2` uses points twice the default size, and
`-pointsize 0.5` uses points half the normal size.

The `-noevents` switch disables all mouse and key event processing (except
for `q` and `<space>` for closing the window). This is useful for programs
which use the x11 driver independent of the gnuplot main program.

The `-ctrlq` switch changes the hot-key that closes a plot window from `q`
to `<ctrl>q`. This is useful is you are using the keystroke-capture feature
`pause mouse keystroke`, since it allows the character `q` to be captured
just as all other alphanumeric characters. The `-ctrlq` switch similarly
replaces the <space> hot-key with <ctrl><space> for the same reason.



@noindent --- MONOCHROME_OPTIONS ---

@c ?commands set terminal x11 monochrome_options
@c ?set terminal x11 monochrome_options
@c ?set term x11 monochrome_options
@c ?x11 monochrome_options
@cindex monochrome_options

@cindex X resources

For monochrome displays, `gnuplot` does not honor foreground or background
colors.  The default is black-on-white.  `-rv` or `gnuplot*reverseVideo: on`
requests white-on-black.



@noindent --- COLOR_RESOURCES ---

@c ?commands set terminal x11 color_resources
@c ?set terminal x11 color_resources
@c ?set term x11 color_resources
@c ?x11 color_resources
@cindex color_resources

@cindex X resources

The X11 terminal honors the following resources (shown here with their
default values) or the greyscale resources.  The values may be color names
as listed in the X11 rgb.txt file on your system, hexadecimal RGB color
specifications (see X11 documentation), or a color name followed by a comma
and an `intensity` value from 0 to 1.  For example, `blue, 0.5` means a half
intensity blue.

@example
 gnuplot*background:  white
 gnuplot*textColor:   black
 gnuplot*borderColor: black
 gnuplot*axisColor:   black
 gnuplot*line1Color:  red
 gnuplot*line2Color:  green
 gnuplot*line3Color:  blue
 gnuplot*line4Color:  magenta
 gnuplot*line5Color:  cyan
 gnuplot*line6Color:  sienna
 gnuplot*line7Color:  orange
 gnuplot*line8Color:  coral

@end example


The command-line syntax for these is simple only for background,
which maps directly to the usual X11 toolkit option "-bg".  All
others can only be set on the command line by use of the generic
"-xrm" resource override option

Examples:

@example
      gnuplot -background coral
@end example

to change the background color.

@example
      gnuplot -xrm 'gnuplot*line1Color:blue'
@end example

to override the first linetype color.



@noindent --- GRAYSCALE_RESOURCES ---

@c ?commands set terminal x11 grayscale_resources
@c ?set terminal x11 grayscale_resources
@c ?set term x11 grayscale_resources
@c ?x11 grayscale_resources
@cindex grayscale_resources

@cindex X resources

When `-gray` is selected, `gnuplot` honors the following resources for
grayscale or color displays (shown here with their default values).  Note
that the default background is black.

@example
 gnuplot*background: black
 gnuplot*textGray:   white
 gnuplot*borderGray: gray50
 gnuplot*axisGray:   gray50
 gnuplot*line1Gray:  gray100
 gnuplot*line2Gray:  gray60
 gnuplot*line3Gray:  gray80
 gnuplot*line4Gray:  gray40
 gnuplot*line5Gray:  gray90
 gnuplot*line6Gray:  gray50
 gnuplot*line7Gray:  gray70
 gnuplot*line8Gray:  gray30

@end example




@noindent --- LINE_RESOURCES ---

@c ?commands set terminal x11 line_resources
@c ?set terminal x11 line_resources
@c ?set term x11 line_resources
@c ?x11 line_resources
@cindex line_resources

@cindex X resources

`gnuplot` honors the following resources for setting the width (in pixels) of
plot lines (shown here with their default values.)  0 or 1 means a minimal
width line of 1 pixel width.  A value of 2 or 3 may improve the appearance of
some plots.

@example
 gnuplot*borderWidth: 2
 gnuplot*axisWidth:   0
 gnuplot*line1Width:  0
 gnuplot*line2Width:  0
 gnuplot*line3Width:  0
 gnuplot*line4Width:  0
 gnuplot*line5Width:  0
 gnuplot*line6Width:  0
 gnuplot*line7Width:  0
 gnuplot*line8Width:  0

@end example


`gnuplot` honors the following resources for setting the dash style used for
plotting lines.  0 means a solid line.  A two-digit number `jk` (`j` and `k`
are >= 1 and <= 9) means a dashed line with a repeated pattern of `j` pixels
on followed by `k` pixels off.  For example, '16' is a dotted line with one
pixel on followed by six pixels off.  More elaborate on/off patterns can be
specified with a four-digit value.  For example, '4441' is four on, four off,
four on, one off.  The default values shown below are for monochrome displays
or monochrome rendering on color or grayscale displays.
Color displays default to dashed:off 

@example
 gnuplot*dashed:       off
 gnuplot*borderDashes:   0
 gnuplot*axisDashes:    16
 gnuplot*line1Dashes:    0
 gnuplot*line2Dashes:   42
 gnuplot*line3Dashes:   13
 gnuplot*line4Dashes:   44
 gnuplot*line5Dashes:   15
 gnuplot*line6Dashes: 4441
 gnuplot*line7Dashes:   42
 gnuplot*line8Dashes:   13

@end example

, "


@noindent --- X11 PM3D_RESOURCES ---

@c ?commands set terminal x11 pm3d_resources
@c ?set terminal x11 pm3d_resources
@c ?set term x11 pm3d_resources
@c ?x11 pm3d_resources
@cindex pm3d_resources

@c ?x11 pm3d
@cindex X resources

Choosing the appropriate visual class and number of colors is a crucial
point in X11 applications and a bit awkward, since X11 supports six visual
types in different depths.

By default `gnuplot` uses the default visual of the screen. The number of
colors which can be allocated depends on the visual class chosen. On a
visual class with a depth > 12bit, gnuplot starts with a maximal number
of 0x200 colors.  On a visual class with a depth > 8bit (but <= 12 bit)
the maximal number of colors is 0x100, on <= 8bit displays the maximum
number of colors is 240 (16 are left for line colors).

Gnuplot first starts to allocate the maximal number of colors as stated
above.  If this fails, the number of colors is reduced by the factor 2
until gnuplot gets all colors which are requested. If dividing `maxcolors`
by 2 repeatedly results in a number which is smaller than `mincolors`
`gnuplot` tries to install a private colormap. In this case the window
manager is responsible for swapping colormaps when the pointer is moved
in and out the x11 driver's window.

The default for `mincolors` is maxcolors / (num_colormaps > 1 ? 2 : 8),
where num_colormaps is the number of colormaps which are currently used
by gnuplot (usually 1, if only one x11 window is open).

Some systems support multiple (different) visual classes together on one
screen. On these systems it might be necessary to force gnuplot to use a
specific visual class, e.g. the default visual might be 8bit PseudoColor
but the screen would also support 24bit TrueColor which would be the
preferred choice.

The information about an Xserver's capabilities can be obtained with the
program `xdpyinfo`.  For the visual names below you can choose one of
StaticGray, GrayScale, StaticColor, PseudoColor, TrueColor, DirectColor.
If an Xserver supports a requested visual type at different depths,
`gnuplot` chooses the visual class with the highest depth (deepest).
If the requested visual class matches the default visual and multiple
classes of this type are supported, the default visual is preferred.

Example: on an 8bit PseudoColor visual you can force a private color map
by specifying `gnuplot*maxcolors: 240` and `gnuplot*mincolors: 240`.


@example
 gnuplot*maxcolors:  <integer>
 gnuplot*mincolors:  <integer>
 gnuplot*visual:     <visual name>

@end example

, "


@noindent --- X11 OTHER_RESOURCES ---

@c ?commands set terminal x11 other_resources
@c ?set terminal x11 other_resources
@c ?set term x11 other_resources
@c ?x11 other_resources
@cindex X resources

By default the contents of the current plot window are exported to the X11
clipboard in response to X events in the window. Setting the resource
'gnuplot*exportselection' to 'off' or 'false' will disable this.

By default text rotation is done using a method that is fast, but can
corrupt nearby colors depending on the background.  If this is a problem,
you can set the resource 'gnuplot.fastrotate' to 'off'


@example
 gnuplot*exportselection:  off
 gnuplot*fastrotate:  on
 gnuplot*ctrlq:  off

@end example



@node x11_, xlib, x11, complete_list_of_terminals
@subsubsection x11

@c ?commands set terminal x11
@c ?set terminal x11
@c ?set term x11
@c ?terminal x11
@c ?term x11
@cindex x11

@cindex X11

`gnuplot` provides the `x11` terminal type for use with X servers.  This
terminal type is set automatically at startup if the `DISPLAY` environment
variable is set, if the `TERM` environment variable is set to `xterm`, or
if the `-display` command line option is used.

Syntax:
@example
   set terminal x11 @{<n> | window "<string>"@}
                    @{title "<string>"@}
                    @{@{no@}enhanced@} @{font <fontspec>@}
                    @{linewidth LW@} @{solid|dashed@}
                    @{@{no@}persist@} @{@{no@}raise@} @{@{no@}ctrlq@}
                    @{close@}
                    @{size XX,YY@} @{position XX,YY@}
   set terminal x11 @{reset@}

@end example

Multiple plot windows are supported: `set terminal x11 <n>` directs the
output to plot window number n.  If n is not 0, the terminal number will be
appended to the window title (unless a title has been supplied manually)
and the icon will be labeled `Gnuplot <n>`.  The active window may be
distinguished by a change in cursor (from default to crosshair).

The `x11` terminal can connect to X windows previously created by an outside
application via the option `window` followed by a string containing the
X ID for the window in hexadecimal format.  Gnuplot uses that external X
window as a container since X does not allow for multiple clients selecting
the ButtonPress event.  In this way, gnuplot's mouse features work within
the contained plot window.

@example
   set term x11 window "220001e"

@end example

The x11 terminal supports enhanced text mode (see `enhanced`), subject
to the available fonts. In order for font size commands embedded in text
to have any effect, the default x11 font must be scalable. Thus the first
example below will work as expected, but the second will not.

@example
   set term x11 enhanced font "arial,15" 
   set title '@{/=20 Big@} Medium @{/=5 Small@}' 

@end example

@example
   set term x11 enhanced font "terminal-14" 
   set title '@{/=20 Big@} Medium @{/=5 Small@}' 

@end example

Plot windows remain open even when the `gnuplot` driver is changed to a
different device.  A plot window can be closed by pressing the letter q
while that window has input focus, or by choosing `close` from a window
manager menu.  All plot windows can be closed by specifying @ref{reset}, which
actually terminates the subprocess which maintains the windows (unless
`-persist` was specified).  The `close` command can be used to close
individual plot windows by number.  However, after a @ref{reset}, those plot
windows left due to persist cannot be closed with the command `close`.
A `close` without a number closes the current active plot window.

The gnuplot outboard driver, gnuplot_x11, is searched in a default place
chosen when the program is compiled.  You can override that by defining
the environment variable GNUPLOT_DRIVER_DIR to point to a different
location.

Plot windows will automatically be closed at the end of the session
unless the `-persist` option was given.

The options `persist` and @ref{raise} are unset by default, which means that
the defaults (persist == no and raise == yes) or the command line options
-persist / -raise or the Xresources are taken.  If [no]persist or
[no]raise are specified, they will override command line options and
Xresources.  Setting one of these options takes place immediately, so
the behaviour of an already running driver can be modified.  If the window
does not get raised, see discussion in @ref{raise}.

The option `title "<title name>"` will supply the title name of the window
for the current plot window or plot window <n> if a number is given.
Where (or if) this title is shown depends on your X window manager.

The size option can be used to set the size of the plot window.  The
size option will only apply to newly created windows.

The position option can be used to set the position of the plot window.  The
position option will only apply to newly created windows.

The size or aspect ratio of a plot may be changed by resizing the `gnuplot`
window.

Linewidths and pointsizes may be changed from within `gnuplot` with
`set linestyle`.

For terminal type `x11`, `gnuplot` accepts (when initialized) the standard
X Toolkit options and resources such as geometry, font, and name from the
command line arguments or a configuration file.  See the X(1) man page
(or its equivalent) for a description of such options.

@cindex X resources

A number of other `gnuplot` options are available for the `x11` terminal.
These may be specified either as command-line options when `gnuplot` is
invoked or as resources in the configuration file ".Xdefaults".  They are
set upon initialization and cannot be altered during a `gnuplot` session.
(except `persist` and @ref{raise})


@noindent --- X11_FONTS ---

@c ?commands set terminal x11 x11_fonts
@c ?set terminal x11 x11_fonts
@c ?set term x11 x11_fonts
@c ?x11 x11_fonts
@cindex x11_fonts

@cindex fonts

Upon initial startup, the default font is taken from the X11 resources
as set in the system or user .Xdefaults file or on the command line.

Example:
@example
      gnuplot*font: lucidasans-bold-12
@end example

A new default font may be specified to the x11 driver from inside
gnuplot using
@example
     `set term x11 font "<fontspec>"`
@end example

The driver first queries the X-server for a font of the exact name given.
If this query fails, then it tries to interpret <fontspec> as
"<font>,<size>,<slant>,<weight>" and to construct a full X11 font name
of the form
@example
      -*-<font>-<weight>-<s>-*-*-<size>-*-*-*-*-*-<encoding>

@end example

@example
 <font> is the base name of the font (e.g. Times or Symbol)
 <size> is the point size (defaults to 12 if not specified)
 <s> is `i` if <slant>=="italic" `o` if <slant>=="oblique" `r` otherwise
 <weight> is `medium` or `bold` if explicitly requested, otherwise `*`
 <encoding> is set based on the current character set (see @ref{encoding}).
@end example

So `set term x11 font "arial,15,italic"` will be translated to
-*-arial-*-i-*-*-15-*-*-*-*-*-iso8859-1 (assuming default encoding).
The <size>, <slant>, and <weight> specifications are all optional.
If you do not specify <slant> or <weight> then you will get whatever font 
variant the font server offers first.
You may set a default enconding via the corresponding X11 resource. E.g.
@example
      gnuplot*encoding: iso8859-15
@end example

The driver also recognizes some common PostScript font names and
replaces them with possible X11 or TrueType equivalents.
This same sequence is used to process font requests from `set label`.

If your gnuplot was built with configuration option --enable-x11-mbfonts,
you can specify multi-byte fonts by using the prefix "mbfont:" on the font
name. An additional font may be given, separated by a semicolon.
Since multi-byte font encodings are interpreted according to the locale
setting, you must make sure that the environmental variable LC_CTYPE is set
to some appropriate locale value such as ja_JP.eucJP, ko_KR.EUC, or zh_CN.EUC.

Example:
@example
      set term x11 font 'mbfont:kana14;k14'
            # 'kana14' and 'k14' are Japanese X11 font aliases, and ';'
            # is the separator of font names.
      set term x11 font 'mbfont:fixed,16,r,medium'
            # <font>,<size>,<slant>,<weight> form is also usable.
      set title '(mb strings)' font 'mbfont:*-fixed-medium-r-normal--14-*'

@end example

The same syntax applies to the default font in Xresources settings,
for example,
@example
      gnuplot*font: \\
          mbfont:-misc-fixed-medium-r-normal--14-*-*-*-c-*-jisx0208.1983-0

@end example

If gnuplot is built with --enable-x11-mbfonts, you can use two special
PostScript font names 'Ryumin-Light-*' and 'GothicBBB-Medium-*' (standard
Japanese PS fonts) without the prefix "mbfont:".



@noindent --- COMMAND-LINE_OPTIONS ---

@c ?commands set terminal x11 command-line-options
@c ?set terminal x11 command-line-options
@c ?set term x11 command-line-options
@c ?x11 command-line-options
@cindex command-line-options

In addition to the X Toolkit options, the following options may be specified
on the command line when starting `gnuplot` or as resources in your
".Xdefaults" file (note that @ref{raise} and `persist` can be overridden
later by `set term x11 [no]raise [no]persist)`:

@example
 `-mono`     forces monochrome rendering on color displays.
 `-gray`     requests grayscale rendering on grayscale or color displays.
             (Grayscale displays receive monochrome rendering by default.)
 `-clear`    requests that the window be cleared momentarily before a
             new plot is displayed.
 `-tvtwm`    requests that geometry specifications for position of the
             window be made relative to the currently displayed portion
             of the virtual root.
 `-raise`    raises plot window after each plot
 `-noraise`  does not raise plot window after each plot
 `-noevents` does not process mouse and key events
 `-ctrlq   ` closes window on ctrl-q rather than q
 `-persist`  plot windows survive after main gnuplot program exits

@end example

@cindex X resources

The options are shown above in their command-line syntax.  When entered as
resources in ".Xdefaults", they require a different syntax.

Example:
@example
      gnuplot*gray:  on
      gnuplot*ctrlq: on

@end example

`gnuplot` also provides a command line option (`-pointsize <v>`) and a
resource, `gnuplot*pointsize: <v>`, to control the size of points plotted
with the `points` plotting style.  The value `v` is a real number (greater
than 0 and less than or equal to ten) used as a scaling factor for point
sizes.  For example, `-pointsize 2` uses points twice the default size, and
`-pointsize 0.5` uses points half the normal size.

The `-noevents` switch disables all mouse and key event processing (except
for `q` and `<space>` for closing the window). This is useful for programs
which use the x11 driver independent of the gnuplot main program.

The `-ctrlq` switch changes the hot-key that closes a plot window from `q`
to `<ctrl>q`. This is useful is you are using the keystroke-capture feature
`pause mouse keystroke`, since it allows the character `q` to be captured
just as all other alphanumeric characters. The `-ctrlq` switch similarly
replaces the <space> hot-key with <ctrl><space> for the same reason.



@noindent --- MONOCHROME_OPTIONS ---

@c ?commands set terminal x11 monochrome_options
@c ?set terminal x11 monochrome_options
@c ?set term x11 monochrome_options
@c ?x11 monochrome_options
@cindex monochrome_options

@cindex X resources

For monochrome displays, `gnuplot` does not honor foreground or background
colors.  The default is black-on-white.  `-rv` or `gnuplot*reverseVideo: on`
requests white-on-black.



@noindent --- COLOR_RESOURCES ---

@c ?commands set terminal x11 color_resources
@c ?set terminal x11 color_resources
@c ?set term x11 color_resources
@c ?x11 color_resources
@cindex color_resources

@cindex X resources

The X11 terminal honors the following resources (shown here with their
default values) or the greyscale resources.  The values may be color names
as listed in the X11 rgb.txt file on your system, hexadecimal RGB color
specifications (see X11 documentation), or a color name followed by a comma
and an `intensity` value from 0 to 1.  For example, `blue, 0.5` means a half
intensity blue.

@example
 gnuplot*background:  white
 gnuplot*textColor:   black
 gnuplot*borderColor: black
 gnuplot*axisColor:   black
 gnuplot*line1Color:  red
 gnuplot*line2Color:  green
 gnuplot*line3Color:  blue
 gnuplot*line4Color:  magenta
 gnuplot*line5Color:  cyan
 gnuplot*line6Color:  sienna
 gnuplot*line7Color:  orange
 gnuplot*line8Color:  coral

@end example


The command-line syntax for these is simple only for background,
which maps directly to the usual X11 toolkit option "-bg".  All
others can only be set on the command line by use of the generic
"-xrm" resource override option

Examples:

@example
      gnuplot -background coral
@end example

to change the background color.

@example
      gnuplot -xrm 'gnuplot*line1Color:blue'
@end example

to override the first linetype color.



@noindent --- GRAYSCALE_RESOURCES ---

@c ?commands set terminal x11 grayscale_resources
@c ?set terminal x11 grayscale_resources
@c ?set term x11 grayscale_resources
@c ?x11 grayscale_resources
@cindex grayscale_resources

@cindex X resources

When `-gray` is selected, `gnuplot` honors the following resources for
grayscale or color displays (shown here with their default values).  Note
that the default background is black.

@example
 gnuplot*background: black
 gnuplot*textGray:   white
 gnuplot*borderGray: gray50
 gnuplot*axisGray:   gray50
 gnuplot*line1Gray:  gray100
 gnuplot*line2Gray:  gray60
 gnuplot*line3Gray:  gray80
 gnuplot*line4Gray:  gray40
 gnuplot*line5Gray:  gray90
 gnuplot*line6Gray:  gray50
 gnuplot*line7Gray:  gray70
 gnuplot*line8Gray:  gray30

@end example




@noindent --- LINE_RESOURCES ---

@c ?commands set terminal x11 line_resources
@c ?set terminal x11 line_resources
@c ?set term x11 line_resources
@c ?x11 line_resources
@cindex line_resources

@cindex X resources

`gnuplot` honors the following resources for setting the width (in pixels) of
plot lines (shown here with their default values.)  0 or 1 means a minimal
width line of 1 pixel width.  A value of 2 or 3 may improve the appearance of
some plots.

@example
 gnuplot*borderWidth: 2
 gnuplot*axisWidth:   0
 gnuplot*line1Width:  0
 gnuplot*line2Width:  0
 gnuplot*line3Width:  0
 gnuplot*line4Width:  0
 gnuplot*line5Width:  0
 gnuplot*line6Width:  0
 gnuplot*line7Width:  0
 gnuplot*line8Width:  0

@end example


`gnuplot` honors the following resources for setting the dash style used for
plotting lines.  0 means a solid line.  A two-digit number `jk` (`j` and `k`
are >= 1 and <= 9) means a dashed line with a repeated pattern of `j` pixels
on followed by `k` pixels off.  For example, '16' is a dotted line with one
pixel on followed by six pixels off.  More elaborate on/off patterns can be
specified with a four-digit value.  For example, '4441' is four on, four off,
four on, one off.  The default values shown below are for monochrome displays
or monochrome rendering on color or grayscale displays.
Color displays default to dashed:off 

@example
 gnuplot*dashed:       off
 gnuplot*borderDashes:   0
 gnuplot*axisDashes:    16
 gnuplot*line1Dashes:    0
 gnuplot*line2Dashes:   42
 gnuplot*line3Dashes:   13
 gnuplot*line4Dashes:   44
 gnuplot*line5Dashes:   15
 gnuplot*line6Dashes: 4441
 gnuplot*line7Dashes:   42
 gnuplot*line8Dashes:   13

@end example

, "


@noindent --- X11 PM3D_RESOURCES ---

@c ?commands set terminal x11 pm3d_resources
@c ?set terminal x11 pm3d_resources
@c ?set term x11 pm3d_resources
@c ?x11 pm3d_resources
@cindex pm3d_resources

@c ?x11 pm3d
@cindex X resources

Choosing the appropriate visual class and number of colors is a crucial
point in X11 applications and a bit awkward, since X11 supports six visual
types in different depths.

By default `gnuplot` uses the default visual of the screen. The number of
colors which can be allocated depends on the visual class chosen. On a
visual class with a depth > 12bit, gnuplot starts with a maximal number
of 0x200 colors.  On a visual class with a depth > 8bit (but <= 12 bit)
the maximal number of colors is 0x100, on <= 8bit displays the maximum
number of colors is 240 (16 are left for line colors).

Gnuplot first starts to allocate the maximal number of colors as stated
above.  If this fails, the number of colors is reduced by the factor 2
until gnuplot gets all colors which are requested. If dividing `maxcolors`
by 2 repeatedly results in a number which is smaller than `mincolors`
`gnuplot` tries to install a private colormap. In this case the window
manager is responsible for swapping colormaps when the pointer is moved
in and out the x11 driver's window.

The default for `mincolors` is maxcolors / (num_colormaps > 1 ? 2 : 8),
where num_colormaps is the number of colormaps which are currently used
by gnuplot (usually 1, if only one x11 window is open).

Some systems support multiple (different) visual classes together on one
screen. On these systems it might be necessary to force gnuplot to use a
specific visual class, e.g. the default visual might be 8bit PseudoColor
but the screen would also support 24bit TrueColor which would be the
preferred choice.

The information about an Xserver's capabilities can be obtained with the
program `xdpyinfo`.  For the visual names below you can choose one of
StaticGray, GrayScale, StaticColor, PseudoColor, TrueColor, DirectColor.
If an Xserver supports a requested visual type at different depths,
`gnuplot` chooses the visual class with the highest depth (deepest).
If the requested visual class matches the default visual and multiple
classes of this type are supported, the default visual is preferred.

Example: on an 8bit PseudoColor visual you can force a private color map
by specifying `gnuplot*maxcolors: 240` and `gnuplot*mincolors: 240`.


@example
 gnuplot*maxcolors:  <integer>
 gnuplot*mincolors:  <integer>
 gnuplot*visual:     <visual name>

@end example

, "


@noindent --- X11 OTHER_RESOURCES ---

@c ?commands set terminal x11 other_resources
@c ?set terminal x11 other_resources
@c ?set term x11 other_resources
@c ?x11 other_resources
@cindex X resources

By default the contents of the current plot window are exported to the X11
clipboard in response to X events in the window. Setting the resource
'gnuplot*exportselection' to 'off' or 'false' will disable this.

By default text rotation is done using a method that is fast, but can
corrupt nearby colors depending on the background.  If this is a problem,
you can set the resource 'gnuplot.fastrotate' to 'off'


@example
 gnuplot*exportselection:  off
 gnuplot*fastrotate:  on
 gnuplot*ctrlq:  off

@end example



@node xlib, xlib_, x11_, complete_list_of_terminals
@subsubsection xlib

@c ?commands set terminal xlib
@c ?set terminal xlib
@c ?set term xlib
@c ?terminal xlib
@c ?term xlib
@cindex xlib
@tmindex xlib


The `xlib` terminal driver supports the X11 Windows System.  It generates
gnuplot_x11 commands, but sends them to the output file specified by
`set output '<filename>'`. `set term x11` is equivalent to
`set output "|gnuplot_x11 -noevents"; set term xlib`.
`xlib` takes the same set of options as `x11`."

@node xlib_,  , xlib, complete_list_of_terminals
@subsubsection xlib

@c ?commands set terminal xlib
@c ?set terminal xlib
@c ?set term xlib
@c ?terminal xlib
@c ?term xlib
@cindex xlib
@tmindex xlib


The `xlib` terminal driver supports the X11 Windows System.  It generates
gnuplot_x11 commands, but sends them to the output file specified by
`set output '<filename>'`. `set term x11` is equivalent to
`set output "|gnuplot_x11 -noevents"; set term xlib`.
`xlib` takes the same set of options as `x11`."

@node Graphical_User_Interfaces, Bugs, Terminal_types, Top
@chapter Graphical User Interfaces

@c ?graphical user interfaces
@cindex gui's

Several graphical user interfaces have been written for `gnuplot` and one for
win32 is included in this distribution.

Bruce Ravel (ravel@@phys.washington.edu) has written a gnuplot-mode for
GNU emacs and XEmacs based on  the earlier gnuplot.el file by Gershon Elber.
While the gnuplot CVS repository has its own copy the most recent
version of this package is available from
@uref{http://feff.phys.washington.edu/~ravel/software/gnuplot-mode/,http://feff.phys.washington.edu/~ravel/software/gnuplot-mode/
}
For Python, Tk/Tcl, and other front-ends, check the links on
@uref{http://gnuplot.sourceforge.net/links.html,http://gnuplot.sourceforge.net/links.html
}


@menu
* Bugs::			
@end menu

@node Bugs, Concept_Index, Graphical_User_Interfaces, Top
@chapter Bugs

@cindex bugs

Bugs reported since the current release as well as older ones
may be located via the official distribution site on SourceForge.

Please e-mail bug reports to the gnuplot-bugs mailing list.
Or upload the report to the gnuplot web site on SourceForge.
Please give complete information on the version of gnuplot you are using
and, if possible, a test script that demonstrates the bug.
See @ref{Seeking-assistance}.

The sections below list problems known to be present in gnuplot version 4.4 at
the time of release.  Some of these are actually bugs in external support
libraries and may have been fixed independent of any changes in gnuplot.


@menu
* Gnuplot_limitations::         
* External_libraries::          
@end menu

@node Gnuplot_limitations, External_libraries, Bugs, Bugs
@section Gnuplot limitations

@c ?bugs gnuplot
@cindex gamma
@findex gamma


@cindex bessel

@cindex timefmt
@opindex timefmt


@cindex nohidden3d

@cindex floating point exceptions

Floating point exceptions (floating point number too large/small, divide by
zero, etc.) may occasionally be generated by user defined functions.  Some of
the demos in particular may cause numbers to exceed the floating point range.
Whether the system ignores such exceptions (in which case `gnuplot` labels
the corresponding point as undefined) or aborts `gnuplot` depends on the
compiler/runtime environment.

The gamma, bessel, and erf functions do not work for complex arguments.

Only one color palette at a time is active for any given x11 plot window.
This means that multiplots whose constituent plots use different palettes
will not display correctly in x11.

Coordinates specified as "time" wrap at 24 hours, and have a precision limited
to 1 second.  This is in particular a limitation in using time format to
handle geographic coordinates.

Error bars are not handled properly in polar/spherical coordinate plot modes.

The 'nohidden3d' option that is supposed to exempt individual plots from the
global property 'set hidden3d' does not work for parametric curves.


@node External_libraries,  , Gnuplot_limitations, Bugs
@section External libraries

@c ?bugs external_libraries
@cindex libgd

@cindex svgalib
@tmindex svgalib


@cindex locale
@opindex locale


@cindex internationalization

@cindex pdf
@tmindex pdf


External library GD (used by PNG/JPEG/GIF drivers):
Versions of libgd through 2.0.33 contain various bugs in mapping the characters
of Adobe's Symbol font.  Also it is possible to trigger a library segfault if
an anti-aliased line crosses an upper corner of the canvas.

External library PDFlib (used by PDF driver):
Gnuplot can be linked against libpdf versions 4, 5, or 6. However, these
versions differ in their handling of piped I/O.  Therefore gnuplot scripts
using piped output to PDF may work only for some versions of PDFlib.

External library svgalib (used by linux and vgagl driver):
Requires gnuplot to be suid root (bad!) and has many bugs that are specific
to the video card or graphics driver used in X11.

Internationalization (locale settings):
Gnuplot uses the C runtime library routine setlocale() to control
locale-specific formatting of input and output number, times, and date strings.
The locales available, and the level of support for locale features such as
"thousands' grouping separator", depend on the internationalization support
provided by your individual machine.
@node Concept_Index, Command_Index, Bugs, Top
@unnumbered Concept Index
@printindex cp

@node Command_Index, Options_Index, Concept_Index, Top
@unnumbered Command Index
@printindex cm

@node Options_Index, Function_Index, Command_Index, Top
@unnumbered Options Index
@printindex op

@node Function_Index, Terminal_Index, Options_Index, Top
@unnumbered Function Index
@printindex fn

@node Terminal_Index,  , Function_Index, Top
@unnumbered Terminal Index
@printindex tm

@c @shortcontents
@contents
@bye