File: prob.dem

package info (click to toggle)
gnuplot 4.6.0-8
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 16,920 kB
  • sloc: ansic: 84,661; cpp: 6,631; lisp: 5,013; makefile: 2,129; sh: 1,092; objc: 647; asm: 539; perl: 298; awk: 235; pascal: 194; csh: 179; tcl: 88; python: 46
file content (918 lines) | stat: -rw-r--r-- 29,616 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
#
# $Id: prob.dem,v 1.10 2009/05/31 05:54:41 sfeam Exp $
#
# Demo Statistical Functions version 2.3
#
# Copyright (c) 1991, 1992 Jos van der Woude, jvdwoude@hut.nl

# History:
#    -- --- 1992 Jos van der Woude:  1st version
#    06 Jun 2006 Dan Sebald:  Added some variety and plotting techniques for
#                             better visual effect.  More tutorial in nature.

print "                   Statistical Library Demo, version 2.3"
print "\n          Copyright (c) 1991, 1992, Jos van de Woude, jvdwoude@hut.nl"
print "\n\n\n\n\n\n\n"
print "NOTE: contains 54 plots and consequently takes a lot of time to run"
print "                      Press Ctrl-C to exit right now"
pause   -1 "                      Press Return to start demo ..."

load "stat.inc"

eps = 1.0e-10  # Supposed to be float resolution (nice if were defined internally)

## Gamma function
xmin = -5.5
xmax = 5
ymin = -10
ymax = 10
unset key
set xzeroaxis
gsampfunc(t,n) = t<0?0.5*1/(-t+1.0)**n:1.0-0.5*1/(t+1.0)**n
set parametric
set trange [-1:1]
set sample 200
set xrange [xmin : xmax]
set yrange [ymin : ymax]
set xlabel "x"
set ylabel "gamma(x)"
set arrow 1 from  0,ymin to  0,ymax nohead lt 0
set arrow 2 from -1,ymin to -1,ymax nohead lt 0
set arrow 3 from -2,ymin to -2,ymax nohead lt 0
set arrow 4 from -3,ymin to -3,ymax nohead lt 0
set arrow 5 from -4,ymin to -4,ymax nohead lt 0
set arrow 6 from -5,ymin to -5,ymax nohead lt 0
set title "gamma function, very useful function for probability"
plot gsampfunc(5*t,5)-6, gamma(gsampfunc(5*t,5)-6) lt 1, \
     gsampfunc(5*t,5)-5, gamma(gsampfunc(5*t,5)-5) lt 1, \
     gsampfunc(5*t,4)-4, gamma(gsampfunc(5*t,4)-4) lt 1, \
     gsampfunc(5*t,3)-3, gamma(gsampfunc(5*t,3)-3) lt 1, \
     gsampfunc(5*t,2)-2, gamma(gsampfunc(5*t,2)-2) lt 1, \
     gsampfunc(5*t,1)-1, gamma(gsampfunc(5*t,1)-1) lt 1, \
     5*gsampfunc(5*t,2), gamma(5*gsampfunc(5*t,2)) lt 1
pause -1 "Hit return to continue"
ymin = ymin/2
ymax = ymax/2
set yrange [ymin:ymax]
set ylabel "lgamma(x)"
set arrow 1 from  0,ymin to  0,ymax nohead lt 0
set arrow 2 from -1,ymin to -1,ymax nohead lt 0
set arrow 3 from -2,ymin to -2,ymax nohead lt 0
set arrow 4 from -3,ymin to -3,ymax nohead lt 0
set arrow 5 from -4,ymin to -4,ymax nohead lt 0
set arrow 6 from -5,ymin to -5,ymax nohead lt 0
set title "log gamma function, similarly very useful function"
plot gsampfunc(5*t,5)-6, lgamma(gsampfunc(5*t,5)-6) lt 1, \
     gsampfunc(5*t,5)-5, lgamma(gsampfunc(5*t,5)-5) lt 1, \
     gsampfunc(5*t,4)-4, lgamma(gsampfunc(5*t,4)-4) lt 1, \
     gsampfunc(5*t,3)-3, lgamma(gsampfunc(5*t,3)-3) lt 1, \
     gsampfunc(5*t,3)-2, lgamma(gsampfunc(5*t,3)-2) lt 1, \
     gsampfunc(5*t,3)-1, lgamma(gsampfunc(5*t,3)-1) lt 1, \
     5*gsampfunc(5*t,3), lgamma(5*gsampfunc(5*t,3)) lt 1
pause -1 "Hit return to continue"
reset

# Arcsinus PDF and CDF
r = 2.0
mu = 0.0
sigma = r / sqrt2
xmin = -(r+1)
xmax = r+1
unset key
set zeroaxis
set xrange [xmin : xmax]
set yrange [-0.2 : 1.2]
set xlabel "x ->"
set ylabel "probability density ->"
set xtics autofreq
set ytics autofreq
set format x "%.1f"
set format y "%.1f"
set sample 50*xmax+1
set title "arcsin PDF with r = 2.0"
plot arcsin(x, r)
pause -1 "Hit return to continue"
set title "arcsin CDF with r = 2.0"
set yrange [-0.2 : 1.2]
plot carcsin(x, r)
pause -1 "Hit return to continue"

# Beta PDF and CDF
p = 5.0; q = 3.0
mu = p / (p + q)
sigma = sqrt(p**q) / ((p + q ) * sqrt(p + q + 1.0))
xmin = 0.0
xmax = 1.0
#Mode of beta PDF used
ymax = (p < 1.0 || q < 1.0) ? 2.0 : 1.4 * beta((p - 1.0)/(p + q - 2.0), p, q)
set key right box
set zeroaxis
set xrange [xmin : xmax]
set yrange [0 : ymax]
set xlabel "x ->"
set ylabel "probability density ->"
set xtics autofreq
set ytics autofreq
set format x "%.1f"
set format y "%.1f"
set sample 200
set title "beta PDF"
plot beta(x, 0.5, 0.7) title "p = 0.5, q = 0.7", \
     beta(x, 5.0, 3.0) title "p = 5.0, q = 3.0", \
     beta(x, 0.5, 2.5) title "p = 0.5, q = 2.5"
pause -1 "Hit return to continue"
set yrange [0:1.1]
set title "incomplete beta CDF"
set key left box
plot cbeta(x, 0.5, 0.7) title "p = 0.5, q = 0.7", \
     cbeta(x, 5.0, 3.0) title "p = 5.0, q = 3.0", \
     cbeta(x, 0.5, 2.5) title "p = 0.5, q = 2.5"
pause -1 "Hit return to continue"

# Binomial PDF and CDF
n = 25; p = 0.15
mu = n * p
sigma = sqrt(n * p * (1.0 - p))
xmin = int(mu - 4.0 * sigma)
xmin = xmin < -2 ? -2 : xmin
xmax = int(mu + 4.0 * sigma)
xmax = xmax < n+2 ? n+2 : xmax
ymax = 1.1 * binom(int((n+1)*p), n, p) #Mode of binomial PDF used
unset key
unset zeroaxis
set xrange [xmin : xmax]
set yrange [0 : ymax]
set xlabel "k ->"
set ylabel "probability density ->"
set ytics 0, ymax / 10, ymax
set format x "%2.0f"
set format y "%3.2f"
set sample (xmax - xmin) + 1
set title "binomial PDF with n = 25, p = 0.15"
plot binom(x, n, p) with impulses
pause -1 "Hit return to continue"
set ytics autofreq
set xzeroaxis
set title "binomial CDF with n = 25, p = 0.15"
set yrange [-0.1 : 1.1]
set ytics 0, 0.1, 1.0
plot cbinom(x, n, p) with steps
pause -1 "Hit return to continue"

# Cauchy PDF and CDF
a = 0.0; b = 2.0
#cauchy PDF has no moments
xmin = a - 5.0 * b
xmax = a + 5.0 * b
ymax = 1.1 * cauchy(a, a, b) #Mode of cauchy PDF used
set key left box
set zeroaxis
set xlabel "x ->"
set ylabel "probability density ->"
set xtics autofreq
set ytics autofreq
set format x "%.1f"
set format y "%.2f"
set sample 100
set title "cauchy PDF"
a=0
b=2
plot [xmin:xmax] [0:ymax] cauchy(x, 0, 2) title "a = 0, b = 2", \
                          cauchy(x, 0, 4) title "a = 0, b = 4"
pause -1 "Hit return to continue"
set title "cauchy CDF"
plot [xmin:xmax] [0:1.0] ccauchy(x, 0, 2) title "a = 0, b = 2", \
                         ccauchy(x, 0, 4) title "a = 0, b = 4"
pause -1 "Hit return to continue"

# Chi-square PDF and CDF
k = 4.0
mu = k
sigma = sqrt(2.0 * k)
xmin = mu - 4.0 * sigma
xmin = xmin < 0 ? 0 : xmin
xmax = int(mu + 4.0 * sigma)
k = 2.0
ymax = (k > 2.0 ? 1.1*chisq(k - 2.0, k) : 0.5) #Mode of chi PDF used
set key right box
set zeroaxis
set xrange [xmin+eps : xmax] #Discontinuity at zero for k < 2
set yrange [0:ymax]
set xlabel "x ->"
set ylabel "probability density ->"
set xtics autofreq
set ytics autofreq
set format x "%.1f"
set format y "%.2f"
set sample 100
set title "chi-square PDF"
set key right box
set samples 15*20+1
keystr(k) = sprintf("k = %d", k)
plot k = 1, x==0?1/0:chisq(x, k) title keystr(k), \
     k = 2, x==0?1/0:chisq(x, k) title keystr(k), \
     k = 3, chisq(x, k) title keystr(k), \
     k = 4, chisq(x, k) title keystr(k), \
     k = 5, chisq(x, k) title keystr(k), \
     k = 6, chisq(x, k) title keystr(k), \
     k = 7, chisq(x, k) title keystr(k), \
     k = 8, chisq(x, k) title keystr(k)
pause -1 "Hit return to continue"
set yrange [0:1.1]
set key bottom right box
set title "chi-square CDF"
plot k = 1, cchisq(x, k) title keystr(k), \
     k = 2, cchisq(x, k) title keystr(k), \
     k = 3, cchisq(x, k) title keystr(k), \
     k = 4, cchisq(x, k) title keystr(k), \
     k = 5, cchisq(x, k) title keystr(k), \
     k = 6, cchisq(x, k) title keystr(k), \
     k = 7, cchisq(x, k) title keystr(k), \
     k = 8, cchisq(x, k) title keystr(k)
pause -1 "Hit return to continue"

# Erlang PDF and CDF
lambda = 1.0; n = 2.0
mu = n / lambda
sigma = sqrt(n) / lambda
xmax = int(mu + 5.0 * sigma)
n = 1.0
ymax = n < 2.0 ? 1.0 : 1.1 * erlang((n - 1.0) / lambda, n, lambda) #Mode of erlang PDF used
set zeroaxis
set xlabel "x ->"
set ylabel "probability density ->"
set xtics autofreq
set ytics autofreq
set format x "%.1f"
set format y "%.1f"
set sample 100
set title "erlang PDF"
set key top right box
l1 = 1.0; l2 = 0.5
set arrow 1 from 2,0.8 to 0.33,erlang(0.33,1,l1)
set arrow 2 from 2,0.8 to 0.33,erlang(0.33,1,l2)
set label 1 "n = 1, exponential r.v." at 2.1,0.8 left
keystr(n,lambda) = sprintf("lambda = %0.1f, n = %d", lambda, n)
plot [0:xmax] [0:ymax] n = 1, lambda = l1, erlang(x, n, lambda) title keystr(n,lambda), \
                       n = 1, lambda = l2, erlang(x, n, lambda) title keystr(n,lambda), \
                       n = 2, lambda = l1, erlang(x, n, lambda) title keystr(n,lambda), \
                       n = 2, lambda = l2, erlang(x, n, lambda) title keystr(n,lambda)
pause -1 "Hit return to continue"
unset label 1
unset arrow 1; unset arrow 2
set title "erlang CDF"
set key bottom right box
plot [0:xmax] [0:1.1] n = 1, lambda = l1, cerlang(x, n, lambda) title keystr(n,lambda), \
                      n = 1, lambda = l2, cerlang(x, n, lambda) title keystr(n,lambda), \
                      n = 2, lambda = l1, cerlang(x, n, lambda) title keystr(n,lambda), \
                      n = 2, lambda = l2, cerlang(x, n, lambda) title keystr(n,lambda)
pause -1 "Hit return to continue"

# Thanks to mrb2j@kelvin.seas.Virginia.EDU for telling us about this.
# Extreme (Gumbel extreme value) PDF and CDF
alpha = 1.0; u = 0.0
mu = u + (0.577215665/alpha)   # Euler's constant
sigma = pi/(sqrt(6.0)*alpha)
xmin = mu - 6.0 * sigma
xmax = mu + 6.0 * sigma
ymax = 1.1 * extreme(u, u, alpha) #Mode of extreme PDF used
ymax = int(10*ymax)/10.0
set zeroaxis
set xlabel "x ->"
set ylabel "probability density ->"
set xtics autofreq
set ytics autofreq
set format x "%.1f"
set format y "%.2f"
set sample 100
set title "extreme PDF"
set key top left box
plot [xmin:xmax] [0:ymax] extreme(x, 1.0, 0.5) title "alpha = 0.5, u = 1.0", \
                          extreme(x, 0.0, 1.0) title "alpha = 1.0, u = 0.0"
pause -1 "Hit return to continue"
set title "extreme CDF"
plot [xmin:xmax] [0:1.1] cextreme(x, 1.0, 0.5) title "alpha = 0.5, u = 1.0", \
                         cextreme(x, 0.0, 1.0) title "alpha = 1.0, u = 0.0"
pause -1 "Hit return to continue"

# F PDF and CDF
df1 = 5.0; df2 = 9.0
mu = df2 < 2.0 ? 1.0 : df2 / (df2 - 2.0)
sigma = df2 < 4.0 ? 1.0 : mu * sqrt(2.0 * (df1 + df2 - 2.0) / (df1 * (df2 - 4.0)))
xmin = mu - 3.0 * sigma
xmin = xmin < 0 ? 0 : xmin
xmax = int(mu + 3.0 * sigma)
#Mode of F PDF used
ymax = df1 < 3.0 ? 1.0 : 1.1 * f((df1 / 2.0 - 1.0) / (df1 / 2.0 + df1 / df2), df1, df2)
set zeroaxis
set xlabel "x ->"
set ylabel "probability density ->"
set xtics autofreq
set ytics autofreq
set format x "%.1f"
set format y "%.2f"
set sample 100
set title "F PDF"
set key right box
plot [xmin:xmax] [0:ymax] f(x, 5.0, 9.0) title "df1 = 5, df2 = 9", \
                          f(x, 7.0, 6.0) title "df1 = 7, df2 = 6"
pause -1 "Hit return to continue"
set title "F CDF"
set key left box
plot [xmin:xmax] [0:1.1] cf(x, 5.0, 9.0) title "df1 = 5, df2 = 9", \
                         cf(x, 7.0, 6.0) title "df1 = 7, df2 = 6"
pause -1 "Hit return to continue"

# Gamma PDF and incomplete gamma CDF
rho = 1.0; lambda = 1.3
mu = rho / lambda
sigma = sqrt(rho) / lambda
xmin = mu - 4.0 * sigma
xmin = xmin < 0 ? 0 : xmin
xmax = mu + 4.0 * sigma
ymax = rho < 1.0 ? 2.0 : 1.1 * gmm((rho - 1.0) / lambda, rho, lambda) #Mode of gamma pdf used
set zeroaxis
set xlabel "x ->"
set ylabel "probability density ->"
set xtics autofreq
set ytics autofreq
set format x "%.1f"
set format y "%.1f"
set sample 100
set title "gamma PDF"
set key right
r1 = 0.5; r2 = 1.0; r3 = 1.0; r4 = 1.3; r5 = 2.0; r6 = 4.0; r7 = 6.0
l1 = 1.0; l2 = 1.0; l3 = 1.3; l4 = 1.3; l5 = 2.0; l6 = 2.0; l7 = 2.0
set arrow 1 from 1,1.3 to 0.15,gmm(0.15,r1,l1)
set label 1 "rho < 1, tends to infinity" at 1.1,1.3 left
set arrow 2 from 1.15,1.1 to 0.35,gmm(0.35,r3,l3)
set label 2 "rho = 1, finite, nonzero limit" at 1.25,1.1 left
set arrow 3 from 1.5,0.9 to 1.0,gmm(1.0,r5,l5)
set label 3 "rho > 1, tends to zero" at 1.6,0.9 left
keystr(rho,lambda) = sprintf("rho = %0.1f, lambda = %0.1f", rho, lambda)
plot [0:5] [0:1.5] rho = r1, lambda = l1, gmm(x, rho, lambda) title keystr(rho,lambda), \
                   rho = r2, lambda = l2, gmm(x, rho, lambda) title keystr(rho,lambda), \
                   rho = r3, lambda = l3, gmm(x, rho, lambda) title keystr(rho,lambda), \
                   rho = r4, lambda = l4, gmm(x, rho, lambda) title keystr(rho,lambda), \
                   rho = r5, lambda = l5, gmm(x, rho, lambda) title keystr(rho,lambda), \
                   rho = r6, lambda = l6, gmm(x, rho, lambda) title keystr(rho,lambda), \
                   rho = r7, lambda = l7, gmm(x, rho, lambda) title keystr(rho,lambda)
pause -1 "Hit return to continue"
unset label 1; unset label 2; unset label 3
unset arrow 1; unset arrow 2; unset arrow 3
set title "incomplete gamma CDF"
set key right bottom
plot [0:5] [0:1.1] rho = r1, lambda = l1, cgmm(x, rho, lambda) title keystr(rho,lambda), \
                   rho = r2, lambda = l2, cgmm(x, rho, lambda) title keystr(rho,lambda), \
                   rho = r3, lambda = l3, cgmm(x, rho, lambda) title keystr(rho,lambda), \
                   rho = r4, lambda = l4, cgmm(x, rho, lambda) title keystr(rho,lambda), \
                   rho = r5, lambda = l5, cgmm(x, rho, lambda) title keystr(rho,lambda), \
                   rho = r6, lambda = l6, cgmm(x, rho, lambda) title keystr(rho,lambda), \
                   rho = r7, lambda = l7, cgmm(x, rho, lambda) title keystr(rho,lambda)
pause -1 "Hit return to continue"

# Geometric PDF and CDF
p = 0.4
mu = (1.0 - p) / p
sigma = sqrt(mu / p)
xmin = int(mu - 4.0 * sigma)
xmin = xmin < -1 ? -1 : xmin
xmin = -1
xmax = int(mu + 4.0 * sigma)
ymax = 1.1 * geometric(0, p) #mode of geometric PDF used
unset key
unset zeroaxis
set xrange [xmin : xmax]
set yrange [0 : ymax]
set xlabel "k ->"
set ylabel "probability density ->"
set ytics 0, ymax / 10, ymax
set format x "%2.0f"
set format y "%3.2f"
set sample (xmax - xmin) + 1
set title "geometric PDF with p = 0.4"
plot geometric(x, p) with impulses
pause -1 "Hit return to continue"
set title "geometric CDF with p = 0.4"
set yrange [0 : 1.1]
set ytics 0, 0.1, 1.0
plot cgeometric(x, p) with steps
pause -1 "Hit return to continue"

# Half normal PDF and CDF
mu = sqrt2invpi
sigma = 1.0
s = sigma*sqrt(1.0 - 2.0/pi)
xmin = -0.2
xmax = mu + 4.0 * s
ymax = 1.1 * halfnormal(0, sigma) #Mode of half normal PDF used
unset key
set zeroaxis
set xrange [xmin: xmax]
set yrange [-0.1: ymax]
set xlabel "x ->"
set ylabel "probability density ->"
set xtics autofreq
set ytics autofreq
set format x "%.1f"
set format y "%.1f"
set sample 100
set parametric
set trange [xmin:xmax]
set title "half normal PDF, sigma = 1.0"
set arrow 1 from 0.5,0.13 to 0.0,0.4
set label 1 "Discontinuity achieved by plotting\ntwice with limited parametric ranges" at 0.2,0.1 left
plot t<0?t:-eps, halfnormal(t<0?t:-eps, sigma) ls 1, t<0?0.0:t, halfnormal(t<0?0.0:t, sigma) ls 1
pause -1 "Hit return to continue"
set title "half normal CDF, sigma = 1.0"
set yrange [-0.1:1.1]
set arrow 1 from 0.45,0.1 to 0.05,0.01
set label 1 "Cusp achieved by plotting twice\nwith limited parametric ranges" at 0.5,0.1 left
plot t<0?t:-eps, chalfnormal(t<0?t:-eps, sigma) ls 1, t<0?0.0:t, chalfnormal(t<0?0.0:t, sigma) ls 1
pause -1 "Hit return to continue"
unset label 1
unset arrow 1
unset parametric

# Hypergeometric PDF and CPF
N = 75; C = 25; d = 10
p = real(C) / N
mu = d * p
sigma = sqrt(real(N - d) / (N - 1.0) * d * p * (1.0 - p))
xmin = int(mu - 4.0 * sigma)
xmin = xmin < -1 ? -1 : xmin
xmax = int(mu + 4.0 * sigma)
xmax = xmax < d+1 ? d+1 : xmax
ymax = 1.1 * hypgeo(int(mu),N,C,d) # approximate mode of hypergeometric PDF used
unset key
unset zeroaxis
set xrange [xmin : xmax]
set yrange [0 : ymax]
set xlabel "k ->"
set ylabel "probability density ->"
set ytics 0, ymax / 10, ymax
set format x "%2.0f"
set format y "%3.2f"
set sample (xmax - xmin) + 1
set title "hypergeometric PDF with N = 75, C = 25, d = 10"
plot hypgeo(x,N,C,d) with impulses
pause -1 "Hit return to continue"
set yrange [0 : 1.1]
set ytics 0, 1.0 / 10.0, 1.1
set title "hypergeometric CDF with N = 75, C = 25, d = 10"
plot chypgeo(x,N,C,d) with steps
pause -1 "Hit return to continue"

# Laplace PDF
mu = 0.0; b = 1.0
sigma = sqrt(2.0) * b
xmin = mu - 4.0 * sigma
xmax = mu + 4.0 * sigma
ymax = 1.1 * laplace(mu, mu, b) #Mode of laplace PDF used
unset key
set zeroaxis
set xrange [xmin: xmax]
set yrange [0: ymax]
set xlabel "x ->"
set ylabel "probability density ->"
set xtics autofreq
set ytics autofreq
set format x "%.1f"
set format y "%.2f"
set sample 100+1
set title "laplace (or double exponential) PDF with mu = 0, b = 1"
set arrow 1 from -0.95,0.5 to -0.1,0.5
set label 1 "Cusp achieved by selecting point\nas part of function samples" at -1.0,0.5 right
plot laplace(x, mu, b)
pause -1 "Hit return to continue"
unset label 1
unset arrow 1
set title "laplace (or double exponential) CDF with mu = 0, b = 1"
set yrange [0: 1.1]
plot claplace(x, mu, b)
pause -1 "Hit return to continue"

# Logistic PDF and CDF
a = 0.0; lambda = 2.0
mu = a
sigma = pi / (sqrt(3.0) * lambda)
xmin = mu - 4.0 * sigma
xmax = mu + 4.0 * sigma
ymax = 1.1 * logistic(mu, a, lambda) #Mode of logistic PDF used
unset key
set zeroaxis
set xrange [xmin: xmax]
set yrange [0: ymax]
unset key
set zeroaxis
set xlabel "x ->"
set ylabel "probability density ->"
set xtics autofreq
set ytics autofreq
set format x "%.1f"
set format y "%.1f"
set sample 100
set title "logistic PDF with a = 0, lambda = 2"
plot logistic(x, a, lambda)
pause -1 "Hit return to continue"
set title "logistic CDF with a = 0, lambda = 2"
set yrange [0: 1.1]
plot clogistic(x, a, lambda)
pause -1 "Hit return to continue"

# Lognormal PDF and CDF
mu = 1.0; sigma = 0.5
m = exp(mu + 0.5 * sigma**2)
s = sqrt(exp(2.0 * mu + sigma**2) * (2.0 * exp(sigma) - 1.0))
xmin = m - 4.0 * s
xmin = xmin < 0 ? 0 : xmin
xmax = m + 4.0 * s
ymax = 1.1 * lognormal(exp(mu - sigma**2), mu, sigma) #Mode of lognormal PDF used
unset key
set zeroaxis
set xrange [xmin: xmax]
set yrange [0: ymax]
set xlabel "x ->"
set ylabel "probability density ->"
set xtics autofreq
set ytics autofreq
set format x "%.2f"
set format y "%.2f"
set sample 100
set title "lognormal PDF with mu = 1.0, sigma = 0.5"
plot lognormal(x, mu, sigma)
pause -1 "Hit return to continue"
set title "lognormal CDF with mu = 1.0, sigma = 0.5"
set yrange [0: 1.1]
plot clognormal(x, mu, sigma)
pause -1 "Hit return to continue"

# Maxwell PDF
a = 0.5
mu = 2.0 / sqrt(pi) / a
sigma = sqrt(3.0 - 8.0/pi) / a
xmin = int(mu - 3.0 * sigma)
xmin = xmin < 0 ? 0 : xmin
xmax = int(mu + 3.0 * sigma)
a = 1.5
ymax = 1.1 * maxwell(1.0 / a, a) + 0.5 #Mode of maxwell PDF used
ymax = int(ymax + 0.5)
set zeroaxis
set xlabel "x ->"
set ylabel "probability density ->"
set xtics autofreq
set ytics autofreq
set format x "%.1f"
set format y "%.1f"
set sample 100
set title "maxwell PDF"
set key right top box
plot [xmin:xmax] [0:ymax] maxwell(x, 1.5) title "a = 1.5", \
                   maxwell(x, 1.0) title "a = 1.0", \
                   maxwell(x, 0.5) title "a = 0.5"
pause -1 "Hit return to continue"
set title "maxwell CDF"
set key right bottom box
plot [xmin:xmax] [0:1.1] cmaxwell(x, 1.5) title "a = 1.5", \
                         cmaxwell(x, 1.0) title "a = 1.0", \
                         cmaxwell(x, 0.5) title "a = 0.5"
pause -1 "Hit return to continue"

# Negative binomial PDF and CDF
r = 8; p = 0.4
mu = r * (1.0 - p) / p
sigma = sqrt(mu / p)
xmin = int(mu - 4.0 * sigma)
xmin = xmin < 0 ? 0 : xmin
xmax = int(mu + 4.0 * sigma)
ymax = 1.1 * negbin(int(mu - (1.0-p)/p), r, p) #mode of gamma PDF used
unset key
unset zeroaxis
set xrange [xmin-1 : xmax]
set yrange [0 : ymax]
set xlabel "k ->"
set ylabel "probability density ->"
set ytics 0, ymax / 10, ymax
set format x "%2.0f"
set format y "%3.2f"
set sample (xmax - xmin+1) + 1
set title "negative binomial (or pascal or polya) PDF with r = 8, p = 0.4"
plot negbin(x, r, p) with impulses
pause -1 "Hit return to continue"
set yrange [0 : 1.1]
set ytics 0, 0.1, 1.0
set title "negative binomial (or pascal or polya) CDF with r = 8, p = 0.4"
plot cnegbin(x, r, p) with steps
pause -1 "Hit return to continue"

# Negative exponential PDF and CDF
lambda = 2.0
mu = 1.0 / lambda
sigma = 1.0 / lambda
xmax =  mu + 4.0 * sigma
ymax = lambda #No mode
unset key
set zeroaxis
set xrange [0: xmax]
set yrange [0: ymax]
set xlabel "x ->"
set ylabel "probability density ->"
set xtics autofreq
set ytics autofreq
set format x "%.2f"
set format y "%.1f"
set sample 100
set title "negative exponential (or exponential) PDF with lambda = 2.0"
plot nexp(x, lambda)
pause -1 "Hit return to continue"
set title "negative exponential (or exponential) CDF with lambda = 2.0"
set yrange [0: 1.1]
plot cnexp(x, lambda)
pause -1 "Hit return to continue"

# Normal PDF and CDF
mu = 0.0; sigma = 1.0
xmin = mu - 4.0 * sigma
xmax = mu + 4.0 * sigma
mu = 2.0; sigma = 0.5
ymax = 1.1 * normal(mu, mu, sigma) #Mode of normal PDF used
set zeroaxis
set xlabel "x ->"
set ylabel "probability density ->"
set xtics autofreq
set ytics autofreq
set format x "%.1f"
set format y "%.1f"
set sample 100
set title "normal (also called gauss or bell-curved) PDF"
set key left top box
plot [xmin:xmax] [0:ymax] normal(x, 0, 1.0) title "mu = 0, sigma = 1.0", \
                          normal(x, 2, 0.5) title "mu = 2, sigma = 0.5", \
                          normal(x, 1, 2.0) title "mu = 1, sigma = 2.0"
pause -1 "Hit return to continue"
set title "normal (also called gauss or bell-curved) CDF"
set key left top box
plot [xmin:xmax] [0:1.1] mu = 0, sigma = 1.0, cnormal(x, mu, sigma) title "mu = 0, sigma = 1.0", \
                         mu = 2, sigma = 0.5, cnormal(x, mu, sigma) title "mu = 2, sigma = 0.5", \
                         mu = 1, sigma = 2.0, cnormal(x, mu, sigma) title "mu = 1, sigma = 2.0"
pause -1 "Hit return to continue"

# Pareto PDF and CDF
a = 1.0; b = 3.0
mu = a * b / (b - 1.0)
sigma = a * sqrt(b) / (sqrt(b - 2.0) * (b - 1.0))
xmin = mu - 4.0 * sigma
xmin = xmin < 0 ? 0 : xmin
xmax = int(mu + 4.0 * sigma)
ymax = 1.1 * pareto(a, a, b) #mode of pareto PDF used
ymin = -0.1 * pareto(a, a, b)
unset key
set zeroaxis
set xrange [xmin: xmax]
set yrange [ymin: ymax]
set xlabel "x ->"
set ylabel "probability density ->"
set xtics autofreq
set ytics autofreq
set format x "%.1f"
set format y "%.1f"
set sample 200+1
set title "pareto PDF with a = 1, b = 3"
# Discontinuity at a
set parametric
set trange [0:1-eps]
x1(t) = -1 + 2*t
x2(t) =  1 + 3*t
set arrow 1 from 1.75,0.8 to 1.0,0.8
set arrow 2 from 1.0,0.0 to 1.0,3.0 nohead lt 0
set label 1 "Discontinuity achieved by plotting twice\nwith affine mapped parametric ranges" at 1.8,0.8 left
plot x1(t), pareto(x1(t), a, b) ls 1, x2(t), pareto(x2(t), a, b) ls 1
pause -1 "Hit return to continue"
unset arrow 2
set title "pareto CDF with a = 1, b = 3"
unset parametric
set yrange [-0.1: 1.1]
set arrow 1 from 1.45,0.1 to 1.05,0.01
set label 1 "Cusp achieved by selecting point\nas part of function samples" at 1.5,0.1 left
plot cpareto(x, a, b)
pause -1 "Hit return to continue"
unset label 1
unset arrow 1

# Poisson PDF and CDF
mu = 4.0
sigma = sqrt(mu)
xmin = int(mu - 4.0 * sigma)
xmin = xmin < -1 ? -1 : xmin
xmax = int(mu + 4.0 * sigma)
ymax = 1.1 * poisson(mu, mu) #mode of poisson PDF used
unset key
set zeroaxis
set xrange [xmin : xmax]
set yrange [0 : ymax]
set xlabel "k ->"
set ylabel "probability density ->"
set ytics 0, ymax / 10, ymax
set format x "%2.0f"
set format y "%3.2f"
set sample (xmax - xmin) + 1
set title "poisson PDF with mu = 4.0"
plot poisson(x, mu) with impulses
pause -1 "Hit return to continue"
set yrange [-0.1 : 1.1]
set ytics -0.1, 0.1, 1.1
set title "poisson CDF with mu = 4.0"
plot cpoisson(x, mu) with steps
pause -1 "Hit return to continue"

# Rayleigh PDF and CDF
lambda = 2.0
mu = 0.5 * sqrt(pi / lambda)
sigma = sqrt((1.0 - pi / 4.0) / lambda)
xmax = mu + 4.0 * sigma
ymax = 1.1 * rayleigh(1.0 / sqrt(2.0 * lambda), lambda) #Mode of rayleigh PDF used
unset key
set zeroaxis
set xrange [0: xmax]
set yrange [0: ymax]
set xlabel "x ->"
set ylabel "probability density ->"
set xtics autofreq
set ytics autofreq
set format x "%.2f"
set format y "%.1f"
set sample 100
set title "rayleigh PDF with lambda = 2.0"
plot rayleigh(x, lambda)
pause -1 "Hit return to continue"
set title "rayleigh CDF with lambda = 2.0"
set yrange [0: 1.1]
plot crayleigh(x, lambda)
pause -1 "Hit return to continue"

# Sine PDF and CDF
a = 3.2; f = 2.6
mu = a / 2.0
sigma = sqrt(a * a / 3.0 * (1.0 - 3.0 / (2.0 * n * n * pi * pi)) - mu * mu)
xmin = 0.0
xmax = a - eps
a = 2; f = 1.0
ymax = 1.1 * 2.0 / a #Mode of sine PDF used
set zeroaxis
set xlabel "x ->"
set ylabel "probability density ->"
set xtics autofreq
set ytics autofreq
set format x "%.2f"
set format y "%.1f"
set sample 250
set title "sine PDF"
set key bottom outside
keystr(a, f) = sprintf("a = %0.1f, f = %0.1f", a, f)
a1 = 2.0; a2 = 3.25; a3 = 2.75
f1 = 1.0; f2 = 3.0; f3 = 2.6; f4 = 0.0
plot [xmin:xmax] [0:ymax] a = a1, f = f1, sine(x, f, a) title keystr(a, f), \
                          a = a1, f = f2, sine(x, f, a) title keystr(a, f), \
                          a = a2, f = f3, sine(x, f, a) title keystr(a, f), \
                          a = a3, f = f4, sine(x, f, a) title keystr(a, f) with steps
pause -1 "Hit return to continue"
set title "sine CDF"
set key top left
plot [xmin:xmax] [0:1.1] a = a1, f = f1, csine(x, f, a) title keystr(a, f), \
                         a = a1, f = f2, csine(x, f, a) title keystr(a, f), \
                         a = a2, f = f3, csine(x, f, a) title keystr(a, f), \
                         a = a3, f = f4, csine(x, f, a) title keystr(a, f) with steps
pause -1 "Hit return to continue"

# t PDF and CDF
nu = 20
mu = 0
sigma = nu > 2 ? sqrt(nu / (nu - 2.0)) : 1.0
xmin = mu - 4.0 * sigma
xmax = mu + 4.0 * sigma
ymax = 1.1 * t(mu, nu) #Mode of t PDF used
set key inside center left title "degrees of freedom"
set zeroaxis
set xrange [xmin: xmax]
set yrange [0: ymax]
set xlabel "x ->"
set ylabel "probability density ->"
set xtics autofreq
set ytics autofreq
set format x "%.1f"
set format y "%.2f"
set sample 100
set title "t PDF (and Gaussian limit)"
ks(nu) = sprintf("nu = %d", nu)
plot t(x, 1) ti ks(1), t(x, 2) ti ks(2), t(x, 4) ti ks(4), t(x, 10) ti ks(10), \
     t(x, 20) ti ks(20), normal(x, 0, 1) ti "normal"
pause -1 "Hit return to continue"
set title "t CDF (and Gaussian limit)"
set yrange [0: 1.1]
plot ct(x, 1) ti ks(1), ct(x, 2) ti ks(2), ct(x, 4) ti ks(4), ct(x, 10) ti ks(10), \
     ct(x, 20) ti ks(20), cnormal(x, 0, 1) ti "normal"
pause -1 "Hit return to continue"

# Thanks to efrank@upenn5.hep.upenn.edu for telling us about this
# triangular PDF and CDF
m = 3.0
g = 2.0
mu = m
sigma = g/sqrt(6.0)
xmin = m - 1.1*g
xmax = m + 1.1*g
ymax = 1.1 * triangular(m, m, g) #Mode of triangular PDF used
ymin = -ymax/11.0;
unset key
set zeroaxis
set xrange [xmin: xmax]
set yrange [ymin: ymax]
set xlabel "x ->"
set ylabel "probability density ->"
set xtics autofreq
set ytics autofreq
set format x "%.1f"
set format y "%.2f"
set sample 50*1.1*g+1
set title "triangular PDF with m = 3.0, g = 2.0"
plot triangular(x, m, g)
pause -1 "Hit return to continue"
set title "triangular CDF with m = 3.0, g = 2.0"
set yrange [-0.1: 1.1]
plot ctriangular(x, m, g)
pause -1 "Hit return to continue"

# Uniform PDF and CDF
a = -2.0; b= 2.0
mu = (a + b) / 2.0
sigma = (b - a) / sqrt(12.0)
xmin = a - 0.1*(b - a)
xmax = b + 0.1*(b - a)
ymax = 1.1 * uniform(mu, a, b) #No mode
ymin = -0.1 * uniform(mu, a, b)
unset key
set zeroaxis
set xrange [xmin: xmax]
set yrange [ymin: ymax]
set xlabel "x ->"
set ylabel "probability density ->"
set xtics autofreq
set ytics autofreq
set format x "%.2f"
set format y "%.2f"
set sample 120+1
set title "uniform PDF with a = -2.0, b = 2.0"
plot uniform(x, a, b) with steps
pause -1 "Hit return to continue"
set title "uniform CDF with a = -2.0, b = 2.0"
set yrange [-0.1 : 1.1]
plot cuniform(x, a, b)
pause -1 "Hit return to continue"

# Weibull PDF and CDF
lambda = 1.0/5; a = 1.0
mu = 1.0 / lambda * gamma(1.0 / a) / a
sigma = sqrt(lambda**(-2.0) * (2.0 * gamma(2.0 / a) / a - (gamma(1.0 / a) / a)**2))
xmin = mu - 4.0 * sigma
xmin = xmin < 0 ? 0 : xmin
#Mode of weibull PDF used
ymax = 1.8 * (a >= 1.0 ? weibull(((a - 1.0) / a)**(1.0 / a) / lambda, a, lambda) : 2.0)
lambda = 1.0/15; a = 10.0
mu = 1.0 / lambda * gamma(1.0 / a) / a
sigma = sqrt(lambda**(-2.0) * (2.0 * gamma(2.0 / a) / a - (gamma(1.0 / a) / a)**2))
xmax = int(mu + 4.0 * sigma)
set key on title "" inside top right
set zeroaxis
set grid
set xrange [xmin : xmax]
set xlabel "x ->"
set ylabel "probability density ->"
set xtics autofreq
set ytics autofreq
set format x "%g"
set format y "%g"
set sample 100
set title "weibull PDF"
ks(a,lambda) = sprintf("lambda = 1/%g, a = %0.1f", 1.0/lambda, a)
a1 = 0.5; a2 = 1.0; a3 = 2.0; a4 = 10.0
lambda1 = 1.0/5; lambda2 = 1.0/15
set arrow 1 from 3.8,0.27 to 0.5,weibull(0.5,a1,lambda1)
set label 1 "a < 1, rate descreasing over time" at 4,0.27 left
set arrow 2 from 8,0.19 to 6.4,weibull(6.4,a3,lambda1)
set arrow 3 from 10.5,0.19 to 13,weibull(13,a4,lambda2)
set label 2 "a > 1, rate increasing over time" at 9,0.2 center
plot [] [0:ymax] lambda = lambda1, a = a1, weibull(x, a, lambda) ti ks(a, lambda), \
                 lambda = lambda1, a = a2, weibull(x, a, lambda) ti ks(a, lambda), \
                 lambda = lambda1, a = a3, weibull(x, a, lambda) ti ks(a, lambda), \
                 lambda = lambda2, a = a4, weibull(x, a, lambda) ti ks(a, lambda)
pause -1 "Hit return to continue"
unset label 1; unset label 2
unset arrow 1; unset arrow 2; unset arrow 3
set key at 9,0.4 center
set title "weibull CDF"
plot [] [0:1.1] lambda = lambda1, a = a1, cweibull(x, a, lambda) ti ks(a, lambda), \
                lambda = lambda1, a = a2, cweibull(x, a, lambda) ti ks(a, lambda), \
                lambda = lambda1, a = a3, cweibull(x, a, lambda) ti ks(a, lambda), \
                lambda = lambda2, a = a4, cweibull(x, a, lambda) ti ks(a, lambda)
pause -1 "Hit return to continue"
reset