1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
|
# Library of Statistical Functions version 3.0
#
# Copyright (c) 1991, 1992 Jos van der Woude, jvdwoude@hut.nl
# History:
# -- --- 1992 Jos van der Woude: 1st version
# 06 Jun 2006 Dan Sebald: Defined PDF/CDF for whole real line or integer
# set and range checked all other parameters.
#
# Shortcut for testing if a variable is an integer
#
isint(x)=(int(x)==x)
# Define useful constants
fourinvsqrtpi=4.0/sqrt(pi)
invpi=1.0/pi
invsqrt2pi=1.0/sqrt(2.0*pi)
log2=log(2.0)
sqrt2=sqrt(2.0)
sqrt2invpi=sqrt(2.0/pi)
twopi=2.0*pi
#
#define 1.0/Beta function
#
Binv(p,q)=exp(lgamma(p+q)-lgamma(p)-lgamma(q))
# NOTE:
#
# The stat functions are defined appropriately for the whole real line or
# set of integers (the first input variable). There are restrictions on
# some of the parameters, and an undefined value will result if the input
# value falls outside the parameter's range.
#
# The discrete PDFs (and some parameters) must have integer (natural number)
# inputs, otherwise an undefined result is produced. This means the user
# must appropriately supply a discrete input set, perhaps by some form of
# scaling before and after calling the stat desired function. To plot the
# output of such a discrete data set passed through a stat function, the
# user can make use of plotting features such as "with steps", and so on.
#
#define Probability Density Functions (PDFs)
#
# Arcsin PDF
arcsin(x,r)=r<=0?1/0:abs(x)>r?0.0:invpi/sqrt(r*r-x*x)
# Beta PDF
beta(x,p,q)=p<=0||q<=0?1/0:x<0||x>1?0.0:Binv(p,q)*x**(p-1.0)*(1.0-x)**(q-1.0)
# Binomial PDF
binom(x,n,p)=p<0.0||p>1.0||n<0||!isint(n)?1/0:\
!isint(x)?1/0:x<0||x>n?0.0:exp(lgamma(n+1)-lgamma(n-x+1)-lgamma(x+1)\
+x*log(p)+(n-x)*log(1.0-p))
# Cauchy PDF
# a location parameter, b > 0 scale parameter
cauchy(x,a,b)=b<=0?1/0:b/(pi*(b*b+(x-a)**2))
# Chi-square PDF
chisq(x,k)=k<=0||!isint(k)?1/0:\
x<=0?0.0:exp((0.5*k-1.0)*log(x)-0.5*x-lgamma(0.5*k)-k*0.5*log2)
# Erlang PDF
erlang(x,n,lambda)=n<=0||!isint(n)||lambda<=0?1/0:\
x<0?0.0:x==0?(n==1?real(lambda):0.0):exp(n*log(lambda)+(n-1.0)*log(x)-lgamma(n)-lambda*x)
# Extreme (Gumbel extreme value) PDF
extreme(x,mu,alpha)=alpha<=0?1/0:alpha*(exp(-alpha*(x-mu)-exp(-alpha*(x-mu))))
# F PDF
f(x,d1,d2)=d1<=0||!isint(d1)||d2<=0||!isint(d2)?1/0:\
Binv(0.5*d1,0.5*d2)*(real(d1)/d2)**(0.5*d1)*x**(0.5*d1-1.0)/(1.0+(real(d1)/d2)*x)**(0.5*(d1+d2))
# Gamma PDF
# rho > 0 shape parameter, lambda > 0 inverse scale parameter
gmm(x,rho,lambda)=rho<=0||lambda<=0?1/0:\
x<0?0.0:x==0?(rho>1?0.0:rho==1?real(lambda):1/0):\
exp(rho*log(lambda)+(rho-1.0)*log(x)-lgamma(rho)-lambda*x)
# Geometric PDF
# p probability of success, x number of failures before first success
geometric(x,p)=p<=0||p>1?1/0:\
!isint(x)?1/0:x<0||p==1?(x==0?1.0:0.0):exp(log(p)+x*log(1.0-p))
# Half normal PDF
halfnormal(x,sigma)=sigma<=0?1/0:x<0?0.0:sqrt2invpi/sigma*exp(-0.5*(x/sigma)**2)
# Hypergeometric PDF
# N objects, C of one class (N-C of another), d drawn without
# replacement, x drawn of class C.
hypgeo(x,N,C,d)=N<0||!isint(N)||C<0||C>N||!isint(C)||d<0||d>N||!isint(d)?1/0:\
!isint(x)?1/0:x>d||x>C||x<0||x<d-(N-C)?0.0:exp(lgamma(C+1)-lgamma(C-x+1)-lgamma(x+1)+\
lgamma(N-C+1)-lgamma(d-x+1)-lgamma(N-C-d+x+1)+lgamma(N-d+1)+lgamma(d+1)-lgamma(N+1))
# Laplace PDF
laplace(x,mu,b)=b<=0?1/0:0.5/b*exp(-abs(x-mu)/b)
# Logistic PDF
logistic(x,a,lambda)=lambda<=0?1/0:lambda*exp(-lambda*(x-a))/(1.0+exp(-lambda*(x-a)))**2
# Lognormal PDF
lognormal(x,mu,sigma)=sigma<=0?1/0:\
x<0?0.0:invsqrt2pi/sigma/x*exp(-0.5*((log(x)-mu)/sigma)**2)
# Maxwell PDF
# a sqrt(2) times standard deviation of individual component of normal triple
maxwell(x,a)=a<=0?1/0:x<0?0.0:fourinvsqrtpi*a**3*x*x*exp(-a*a*x*x)
# Negative binomial PDF
# p probability of success, r number of success to complete,
# x failures before success r
negbin(x,r,p)=r<=0||!isint(r)||p<=0||p>1?1/0:\
!isint(x)?1/0:x<0?0.0:p==1?(x==0?1.0:0.0):exp(lgamma(r+x)-lgamma(r)-lgamma(x+1)+\
r*log(p)+x*log(1.0-p))
# Negative exponential PDF
nexp(x,lambda)=lambda<=0?1/0:x<0?0.0:lambda*exp(-lambda*x)
# Normal PDF
normal(x,mu,sigma)=sigma<=0?1/0:invsqrt2pi/sigma*exp(-0.5*((x-mu)/sigma)**2)
# Pareto PDF
pareto(x,a,b)=a<=0||b<0||!isint(b)?1/0:x<a?0:real(b)/x*(real(a)/x)**b
# Poisson PDF
poisson(x,mu)=mu<=0?1/0:!isint(x)?1/0:x<0?0.0:exp(x*log(mu)-lgamma(x+1)-mu)
# Rayleigh PDF
rayleigh(x,lambda)=lambda<=0?1/0:x<0?0.0:lambda*2.0*x*exp(-lambda*x*x)
# Sine PDF
# f frequency, a length
sine(x,f,a)=a<=0?1/0:\
x<0||x>=a?0.0:f==0?1.0/a:2.0/a*sin(f*pi*x/a)**2/(1-sin(twopi*f))
# t (Student's t) PDF
t(x,nu)=nu<0||!isint(nu)?1/0:\
Binv(0.5*nu,0.5)/sqrt(nu)*(1+real(x*x)/nu)**(-0.5*(nu+1.0))
# Triangular PDF
triangular(x,m,g)=g<=0?1/0:x<m-g||x>=m+g?0.0:1.0/g-abs(x-m)/real(g*g)
# Uniform PDF
uniform(x,a,b)=x<(a<b?a:b)||x>=(a>b?a:b)?0.0:1.0/abs(b-a)
# Weibull PDF
weibull(x,a,lambda)=a<=0||lambda<=0?1/0:\
x<0?0.0:x==0?(a>1?0.0:a==1?real(lambda):1/0):\
exp(log(a)+a*log(lambda)+(a-1)*log(x)-(lambda*x)**a)
#
#define Cumulative Distribution Functions (CDFs)
#
# Arcsin CDF
carcsin(x,r)=r<=0?1/0:x<-r?0.0:x>r?1.0:0.5+invpi*asin(x/r)
# incomplete Beta CDF
cbeta(x,p,q)=ibeta(p,q,x)
# Binomial CDF
cbinom(x,n,p)=p<0.0||p>1.0||n<0||!isint(n)?1/0:\
!isint(x)?1/0:x<0?0.0:x>=n?1.0:ibeta(n-x,x+1.0,1.0-p)
# Cauchy CDF
# a location parameter, b > 0 scale parameter
ccauchy(x,a,b)=b<=0?1/0:0.5+invpi*atan((x-a)/b)
# Chi-square CDF
cchisq(x,k)=k<=0||!isint(k)?1/0:x<0?0.0:igamma(0.5*k,0.5*x)
# Erlang CDF
cerlang(x,n,lambda)=n<=0||!isint(n)||lambda<=0?1/0:x<0?0.0:igamma(n,lambda*x)
# Extreme (Gumbel extreme value) CDF
cextreme(x,mu,alpha)=alpha<=0?1/0:exp(-exp(-alpha*(x-mu)))
# F CDF
cf(x,d1,d2)=d1<=0||!isint(d1)||d2<=0||!isint(d2)?1/0:1.0-ibeta(0.5*d2,0.5*d1,d2/(d2+d1*x))
# incomplete Gamma CDF
# rho > 0 shape parameter, lambda > 0 inverse scale parameter
cgmm(x,rho,lambda)=rho<=0||lambda<=0?1/0:x<0?0.0:igamma(rho,x*lambda)
# Geometric CDF
# p probability of success, x number of failures before first success
cgeometric(x,p)=p<=0||p>1?1/0:\
!isint(x)?1/0:x<0||p==0?0.0:p==1?1.0:1.0-exp((x+1)*log(1.0-p))
# Half normal CDF
chalfnormal(x,sigma)=sigma<=0?1/0:x<0?0.0:erf(x/sigma/sqrt2)
# Hypergeometric CDF
# N objects, C of one class (N-C of another), d drawn without
# replacement, x drawn of class C.
chypgeo(x,N,C,d)=N<0||!isint(N)||C<0||C>N||!isint(C)||d<0||d>N||!isint(d)?1/0:\
!isint(x)?1/0:x<0||x<d-(N-C)?0.0:x>d||x>C?1.0:hypgeo(x,N,C,d)+chypgeo(x-1,N,C,d)
# Laplace CDF
claplace(x,mu,b)=b<=0?1/0:(x<mu)?0.5*exp((x-mu)/b):1.0-0.5*exp(-(x-mu)/b)
# Logistic CDF
clogistic(x,a,lambda)=lambda<=0?1/0:1.0/(1+exp(-lambda*(x-a)))
# Lognormal CDF
clognormal(x,mu,sigma)=sigma<=0?1/0:x<=0?0.0:cnormal(log(x),mu,sigma)
# Maxwell CDF
# a sqrt(2) times standard deviation of individual component of normal triple
cmaxwell(x,a)=a<=0?1/0:x<0?0.0:igamma(1.5,a*a*x*x)
# Negative binomial CDF
# p probability of success, r number of success to complete,
# x failures before success r
cnegbin(x,r,p)=r<=0||!isint(r)||p<=0||p>1?1/0:\
!isint(x)?1/0:x<0?0.0:ibeta(r,x+1,p)
# Negative exponential CDF
cnexp(x,lambda)=lambda<=0?1/0:x<0?0.0:1-exp(-lambda*x)
# Normal CDF
cnormal(x,mu,sigma)=sigma<=0?1/0:0.5+0.5*erf((x-mu)/sigma/sqrt2)
# Pareto CDF
cpareto(x,a,b)=a<=0||b<0||!isint(b)?1/0:x<a?0.0:1.0-(real(a)/x)**b
# Poisson CDF
cpoisson(x,mu)=mu<=0?1/0:!isint(x)?1/0:x<0?0.0:1-igamma(x+1.0,mu)
# Rayleigh CDF
crayleigh(x,lambda)=lambda<=0?1/0:x<0?0.0:1.0-exp(-lambda*x*x)
# Sine CDF
# f frequency, a length
csine(x,f,a)=a<=0?1/0:\
x<0?0.0:x>a?1.0:f==0?real(x)/a:(real(x)/a-sin(f*twopi*x/a)/(f*twopi))/(1.0-sin(twopi*f)/(twopi*f))
# t (Student's t) CDF
ct(x,nu)=nu<0||!isint(nu)?1/0:0.5+0.5*sgn(x)*(1-ibeta(0.5*nu,0.5,nu/(nu+x*x)))
# Triangular PDF
ctriangular(x,m,g)=g<=0?1/0:\
x<m-g?0.0:x>=m+g?1.0:0.5+real(x-m)/g-(x-m)*abs(x-m)/(2.0*g*g)
# Uniform CDF
cuniform(x,a,b)=x<(a<b?a:b)?0.0:x>=(a>b?a:b)?1.0:real(x-a)/(b-a)
# Weibull CDF
cweibull(x,a,lambda)=a<=0||lambda<=0?1/0:x<0?0.0:1.0-exp(-(lambda*x)**a)
|