File: stat.inc

package info (click to toggle)
gnuplot 6.0.2%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 14,940 kB
  • sloc: ansic: 95,319; cpp: 7,590; makefile: 2,470; javascript: 2,328; sh: 1,531; lisp: 664; perl: 304; pascal: 191; tcl: 88; python: 46
file content (253 lines) | stat: -rw-r--r-- 8,032 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# Library of Statistical Functions version 3.0
#
# Copyright (c) 1991, 1992 Jos van der Woude, jvdwoude@hut.nl

# History:
#    -- --- 1992 Jos van der Woude:  1st version
#    06 Jun 2006 Dan Sebald:  Defined PDF/CDF for whole real line or integer
#                             set and range checked all other parameters.

#
# Shortcut for testing if a variable is an integer
#
isint(x)=(int(x)==x)

# Define useful constants
fourinvsqrtpi=4.0/sqrt(pi)
invpi=1.0/pi
invsqrt2pi=1.0/sqrt(2.0*pi)
log2=log(2.0)
sqrt2=sqrt(2.0)
sqrt2invpi=sqrt(2.0/pi)
twopi=2.0*pi

#
#define 1.0/Beta function
#
Binv(p,q)=exp(lgamma(p+q)-lgamma(p)-lgamma(q))

# NOTE:
#
# The stat functions are defined appropriately for the whole real line or
# set of integers (the first input variable).  There are restrictions on
# some of the parameters, and an undefined value will result if the input
# value falls outside the parameter's range.
#
# The discrete PDFs (and some parameters) must have integer (natural number)
# inputs, otherwise an undefined result is produced.  This means the user
# must appropriately supply a discrete input set, perhaps by some form of
# scaling before and after calling the stat desired function.  To plot the
# output of such a discrete data set passed through a stat function, the
# user can make use of plotting features such as "with steps", and so on.

#
#define Probability Density Functions (PDFs)
#

# Arcsin PDF
arcsin(x,r)=r<=0?1/0:abs(x)>r?0.0:invpi/sqrt(r*r-x*x)

# Beta PDF
beta(x,p,q)=p<=0||q<=0?1/0:x<0||x>1?0.0:Binv(p,q)*x**(p-1.0)*(1.0-x)**(q-1.0)

# Binomial PDF
binom(x,n,p)=p<0.0||p>1.0||n<0||!isint(n)?1/0:\
  !isint(x)?1/0:x<0||x>n?0.0:exp(lgamma(n+1)-lgamma(n-x+1)-lgamma(x+1)\
  +x*log(p)+(n-x)*log(1.0-p))

# Cauchy PDF
# a location parameter, b > 0 scale parameter
cauchy(x,a,b)=b<=0?1/0:b/(pi*(b*b+(x-a)**2))

# Chi-square PDF
chisq(x,k)=k<=0||!isint(k)?1/0:\
  x<=0?0.0:exp((0.5*k-1.0)*log(x)-0.5*x-lgamma(0.5*k)-k*0.5*log2)

# Erlang PDF
erlang(x,n,lambda)=n<=0||!isint(n)||lambda<=0?1/0:\
  x<0?0.0:x==0?(n==1?real(lambda):0.0):exp(n*log(lambda)+(n-1.0)*log(x)-lgamma(n)-lambda*x)

# Extreme (Gumbel extreme value) PDF
extreme(x,mu,alpha)=alpha<=0?1/0:alpha*(exp(-alpha*(x-mu)-exp(-alpha*(x-mu))))

# F PDF
f(x,d1,d2)=d1<=0||!isint(d1)||d2<=0||!isint(d2)?1/0:\
  Binv(0.5*d1,0.5*d2)*(real(d1)/d2)**(0.5*d1)*x**(0.5*d1-1.0)/(1.0+(real(d1)/d2)*x)**(0.5*(d1+d2))

# Gamma PDF
# rho > 0 shape parameter, lambda > 0 inverse scale parameter
gmm(x,rho,lambda)=rho<=0||lambda<=0?1/0:\
  x<0?0.0:x==0?(rho>1?0.0:rho==1?real(lambda):1/0):\
  exp(rho*log(lambda)+(rho-1.0)*log(x)-lgamma(rho)-lambda*x)

# Geometric PDF
# p probability of success, x number of failures before first success
geometric(x,p)=p<=0||p>1?1/0:\
  !isint(x)?1/0:x<0||p==1?(x==0?1.0:0.0):exp(log(p)+x*log(1.0-p))

# Half normal PDF
halfnormal(x,sigma)=sigma<=0?1/0:x<0?0.0:sqrt2invpi/sigma*exp(-0.5*(x/sigma)**2)

# Hypergeometric PDF
# N objects, C of one class (N-C of another), d drawn without
# replacement, x drawn of class C.
hypgeo(x,N,C,d)=N<0||!isint(N)||C<0||C>N||!isint(C)||d<0||d>N||!isint(d)?1/0:\
  !isint(x)?1/0:x>d||x>C||x<0||x<d-(N-C)?0.0:exp(lgamma(C+1)-lgamma(C-x+1)-lgamma(x+1)+\
  lgamma(N-C+1)-lgamma(d-x+1)-lgamma(N-C-d+x+1)+lgamma(N-d+1)+lgamma(d+1)-lgamma(N+1))

# Laplace PDF
laplace(x,mu,b)=b<=0?1/0:0.5/b*exp(-abs(x-mu)/b)

# Logistic PDF
logistic(x,a,lambda)=lambda<=0?1/0:lambda*exp(-lambda*(x-a))/(1.0+exp(-lambda*(x-a)))**2

# Lognormal PDF
lognormal(x,mu,sigma)=sigma<=0?1/0:\
  x<0?0.0:invsqrt2pi/sigma/x*exp(-0.5*((log(x)-mu)/sigma)**2)

# Maxwell PDF
# a sqrt(2) times standard deviation of individual component of normal triple
maxwell(x,a)=a<=0?1/0:x<0?0.0:fourinvsqrtpi*a**3*x*x*exp(-a*a*x*x)

# Negative binomial PDF
# p probability of success, r number of success to complete,
# x failures before success r
negbin(x,r,p)=r<=0||!isint(r)||p<=0||p>1?1/0:\
  !isint(x)?1/0:x<0?0.0:p==1?(x==0?1.0:0.0):exp(lgamma(r+x)-lgamma(r)-lgamma(x+1)+\
  r*log(p)+x*log(1.0-p))

# Negative exponential PDF
nexp(x,lambda)=lambda<=0?1/0:x<0?0.0:lambda*exp(-lambda*x)

# Normal PDF
normal(x,mu,sigma)=sigma<=0?1/0:invsqrt2pi/sigma*exp(-0.5*((x-mu)/sigma)**2)

# Pareto PDF
pareto(x,a,b)=a<=0||b<0||!isint(b)?1/0:x<a?0:real(b)/x*(real(a)/x)**b

# Poisson PDF
poisson(x,mu)=mu<=0?1/0:!isint(x)?1/0:x<0?0.0:exp(x*log(mu)-lgamma(x+1)-mu)

# Rayleigh PDF
rayleigh(x,lambda)=lambda<=0?1/0:x<0?0.0:lambda*2.0*x*exp(-lambda*x*x)

# Sine PDF
# f frequency, a length
sine(x,f,a)=a<=0?1/0:\
  x<0||x>=a?0.0:f==0?1.0/a:2.0/a*sin(f*pi*x/a)**2/(1-sin(twopi*f))

# t (Student's t) PDF
t(x,nu)=nu<0||!isint(nu)?1/0:\
  Binv(0.5*nu,0.5)/sqrt(nu)*(1+real(x*x)/nu)**(-0.5*(nu+1.0))

# Triangular PDF
triangular(x,m,g)=g<=0?1/0:x<m-g||x>=m+g?0.0:1.0/g-abs(x-m)/real(g*g)

# Uniform PDF
uniform(x,a,b)=x<(a<b?a:b)||x>=(a>b?a:b)?0.0:1.0/abs(b-a)

# Weibull PDF
weibull(x,a,lambda)=a<=0||lambda<=0?1/0:\
  x<0?0.0:x==0?(a>1?0.0:a==1?real(lambda):1/0):\
  exp(log(a)+a*log(lambda)+(a-1)*log(x)-(lambda*x)**a)

#
#define Cumulative Distribution Functions (CDFs)
#

# Arcsin CDF
carcsin(x,r)=r<=0?1/0:x<-r?0.0:x>r?1.0:0.5+invpi*asin(x/r)

# incomplete Beta CDF
cbeta(x,p,q)=ibeta(p,q,x)

# Binomial CDF
cbinom(x,n,p)=p<0.0||p>1.0||n<0||!isint(n)?1/0:\
  !isint(x)?1/0:x<0?0.0:x>=n?1.0:ibeta(n-x,x+1.0,1.0-p)

# Cauchy CDF
# a location parameter, b > 0 scale parameter
ccauchy(x,a,b)=b<=0?1/0:0.5+invpi*atan((x-a)/b)

# Chi-square CDF
cchisq(x,k)=k<=0||!isint(k)?1/0:x<0?0.0:igamma(0.5*k,0.5*x)

# Erlang CDF
cerlang(x,n,lambda)=n<=0||!isint(n)||lambda<=0?1/0:x<0?0.0:igamma(n,lambda*x)

# Extreme (Gumbel extreme value) CDF
cextreme(x,mu,alpha)=alpha<=0?1/0:exp(-exp(-alpha*(x-mu)))

# F CDF
cf(x,d1,d2)=d1<=0||!isint(d1)||d2<=0||!isint(d2)?1/0:1.0-ibeta(0.5*d2,0.5*d1,d2/(d2+d1*x))

# incomplete Gamma CDF
# rho > 0 shape parameter, lambda > 0 inverse scale parameter
cgmm(x,rho,lambda)=rho<=0||lambda<=0?1/0:x<0?0.0:igamma(rho,x*lambda)

# Geometric CDF
# p probability of success, x number of failures before first success
cgeometric(x,p)=p<=0||p>1?1/0:\
  !isint(x)?1/0:x<0||p==0?0.0:p==1?1.0:1.0-exp((x+1)*log(1.0-p))

# Half normal CDF
chalfnormal(x,sigma)=sigma<=0?1/0:x<0?0.0:erf(x/sigma/sqrt2)

# Hypergeometric CDF
# N objects, C of one class (N-C of another), d drawn without
# replacement, x drawn of class C.
chypgeo(x,N,C,d)=N<0||!isint(N)||C<0||C>N||!isint(C)||d<0||d>N||!isint(d)?1/0:\
  !isint(x)?1/0:x<0||x<d-(N-C)?0.0:x>d||x>C?1.0:hypgeo(x,N,C,d)+chypgeo(x-1,N,C,d)

# Laplace CDF
claplace(x,mu,b)=b<=0?1/0:(x<mu)?0.5*exp((x-mu)/b):1.0-0.5*exp(-(x-mu)/b)

# Logistic CDF
clogistic(x,a,lambda)=lambda<=0?1/0:1.0/(1+exp(-lambda*(x-a)))

# Lognormal CDF
clognormal(x,mu,sigma)=sigma<=0?1/0:x<=0?0.0:cnormal(log(x),mu,sigma)

# Maxwell CDF
# a sqrt(2) times standard deviation of individual component of normal triple
cmaxwell(x,a)=a<=0?1/0:x<0?0.0:igamma(1.5,a*a*x*x)

# Negative binomial CDF
# p probability of success, r number of success to complete,
# x failures before success r
cnegbin(x,r,p)=r<=0||!isint(r)||p<=0||p>1?1/0:\
  !isint(x)?1/0:x<0?0.0:ibeta(r,x+1,p)

# Negative exponential CDF
cnexp(x,lambda)=lambda<=0?1/0:x<0?0.0:1-exp(-lambda*x)

# Normal CDF
cnormal(x,mu,sigma)=sigma<=0?1/0:0.5+0.5*erf((x-mu)/sigma/sqrt2)

# Pareto CDF
cpareto(x,a,b)=a<=0||b<0||!isint(b)?1/0:x<a?0.0:1.0-(real(a)/x)**b

# Poisson CDF
cpoisson(x,mu)=mu<=0?1/0:!isint(x)?1/0:x<0?0.0:1-igamma(x+1.0,mu)

# Rayleigh CDF
crayleigh(x,lambda)=lambda<=0?1/0:x<0?0.0:1.0-exp(-lambda*x*x)

# Sine CDF
# f frequency, a length
csine(x,f,a)=a<=0?1/0:\
  x<0?0.0:x>a?1.0:f==0?real(x)/a:(real(x)/a-sin(f*twopi*x/a)/(f*twopi))/(1.0-sin(twopi*f)/(twopi*f))

# t (Student's t) CDF
ct(x,nu)=nu<0||!isint(nu)?1/0:0.5+0.5*sgn(x)*(1-ibeta(0.5*nu,0.5,nu/(nu+x*x)))

# Triangular PDF
ctriangular(x,m,g)=g<=0?1/0:\
  x<m-g?0.0:x>=m+g?1.0:0.5+real(x-m)/g-(x-m)*abs(x-m)/(2.0*g*g)

# Uniform CDF
cuniform(x,a,b)=x<(a<b?a:b)?0.0:x>=(a>b?a:b)?1.0:real(x-a)/(b-a)

# Weibull CDF
cweibull(x,a,lambda)=a<=0||lambda<=0?1/0:x<0?0.0:1.0-exp(-(lambda*x)**a)