1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 16699 16700 16701 16702 16703 16704 16705 16706 16707 16708 16709 16710 16711 16712 16713 16714 16715 16716 16717 16718 16719 16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 16734 16735 16736 16737 16738 16739 16740 16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800 16801 16802 16803 16804 16805 16806 16807 16808 16809 16810 16811 16812 16813 16814 16815 16816 16817 16818 16819 16820 16821 16822 16823 16824 16825 16826 16827 16828 16829 16830 16831 16832 16833 16834 16835 16836 16837 16838 16839 16840 16841 16842 16843 16844 16845 16846 16847 16848 16849 16850 16851 16852 16853 16854 16855 16856 16857 16858 16859 16860 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 16873 16874 16875 16876 16877 16878 16879 16880 16881 16882 16883 16884 16885 16886 16887 16888 16889 16890 16891 16892 16893 16894 16895 16896 16897 16898 16899 16900 16901 16902 16903 16904 16905 16906 16907 16908 16909 16910 16911 16912 16913 16914 16915 16916 16917 16918 16919 16920 16921 16922 16923 16924 16925 16926 16927 16928 16929 16930 16931 16932 16933 16934 16935 16936 16937 16938 16939 16940 16941 16942 16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 16957 16958 16959 16960 16961 16962 16963 16964 16965 16966 16967 16968 16969 16970 16971 16972 16973 16974 16975 16976 16977 16978 16979 16980 16981 16982 16983 16984 16985 16986 16987 16988 16989 16990 16991 16992 16993 16994 16995 16996 16997 16998 16999 17000 17001 17002 17003 17004 17005 17006 17007 17008 17009 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 17020 17021 17022 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 17038 17039 17040 17041 17042 17043 17044 17045 17046 17047 17048 17049 17050 17051 17052 17053 17054 17055 17056 17057 17058 17059 17060 17061 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097 17098 17099 17100 17101 17102 17103 17104 17105 17106 17107 17108 17109 17110 17111 17112 17113 17114 17115 17116 17117 17118 17119 17120 17121 17122 17123 17124 17125 17126 17127 17128 17129 17130 17131 17132 17133 17134 17135 17136 17137 17138 17139 17140 17141 17142 17143 17144 17145 17146 17147 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 17168 17169 17170 17171 17172 17173 17174 17175 17176 17177 17178 17179 17180 17181 17182 17183 17184 17185 17186 17187 17188 17189 17190 17191 17192 17193 17194 17195 17196 17197 17198 17199 17200 17201 17202 17203 17204 17205 17206 17207 17208 17209 17210 17211 17212 17213 17214 17215 17216 17217 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 17231 17232 17233 17234 17235 17236 17237 17238 17239 17240 17241 17242 17243 17244 17245 17246 17247 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265 17266 17267 17268 17269 17270 17271 17272 17273 17274 17275 17276 17277 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289 17290 17291 17292 17293 17294 17295 17296 17297 17298 17299 17300 17301 17302 17303 17304 17305 17306 17307 17308 17309 17310 17311 17312 17313 17314 17315 17316 17317 17318 17319 17320 17321 17322 17323 17324 17325 17326 17327 17328 17329 17330 17331 17332 17333 17334 17335 17336 17337 17338 17339 17340 17341 17342 17343 17344 17345 17346 17347 17348 17349 17350 17351 17352 17353 17354 17355 17356 17357 17358 17359 17360 17361 17362 17363 17364 17365 17366 17367 17368 17369 17370 17371 17372 17373 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 17384 17385 17386 17387 17388 17389 17390 17391 17392 17393 17394 17395 17396 17397 17398 17399 17400 17401 17402 17403 17404 17405 17406 17407 17408 17409 17410 17411 17412 17413 17414 17415 17416 17417 17418 17419 17420 17421 17422 17423 17424 17425 17426 17427 17428 17429 17430 17431 17432 17433 17434 17435 17436 17437 17438 17439 17440 17441 17442 17443 17444 17445 17446 17447 17448 17449 17450 17451 17452 17453 17454 17455 17456 17457 17458 17459 17460 17461 17462 17463 17464 17465 17466 17467 17468 17469 17470 17471 17472 17473 17474 17475 17476 17477 17478 17479 17480 17481 17482 17483 17484 17485 17486 17487 17488 17489 17490 17491 17492 17493 17494 17495 17496 17497 17498 17499 17500 17501 17502 17503 17504 17505 17506 17507 17508 17509 17510 17511 17512 17513 17514 17515 17516 17517 17518 17519 17520 17521 17522 17523 17524 17525 17526 17527 17528 17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 17543 17544 17545 17546 17547 17548 17549 17550 17551 17552 17553 17554 17555 17556 17557 17558 17559 17560 17561 17562 17563 17564 17565 17566 17567 17568 17569 17570 17571 17572 17573 17574 17575 17576 17577 17578 17579 17580 17581 17582 17583 17584 17585 17586 17587 17588 17589 17590 17591 17592 17593 17594 17595 17596 17597 17598 17599 17600 17601 17602 17603 17604 17605 17606 17607 17608 17609 17610 17611 17612 17613 17614 17615 17616 17617 17618 17619 17620 17621 17622 17623 17624 17625 17626 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 17642 17643 17644 17645 17646 17647 17648 17649 17650 17651 17652 17653 17654 17655 17656 17657 17658 17659 17660 17661 17662 17663 17664 17665 17666 17667 17668 17669 17670 17671 17672 17673 17674 17675 17676 17677 17678 17679 17680 17681 17682 17683 17684 17685 17686 17687 17688 17689 17690 17691 17692 17693 17694 17695 17696 17697 17698 17699 17700 17701 17702 17703 17704 17705 17706 17707 17708 17709 17710 17711 17712 17713 17714 17715 17716 17717 17718 17719 17720 17721 17722 17723 17724 17725 17726 17727 17728 17729 17730 17731 17732 17733 17734 17735 17736 17737 17738 17739 17740 17741 17742 17743 17744 17745 17746 17747 17748 17749 17750 17751 17752 17753 17754 17755 17756 17757 17758 17759 17760 17761 17762 17763 17764 17765 17766 17767 17768 17769 17770 17771 17772 17773 17774 17775 17776 17777 17778 17779 17780 17781 17782 17783 17784 17785 17786 17787 17788 17789 17790 17791 17792 17793 17794 17795 17796 17797 17798 17799 17800 17801 17802 17803 17804 17805 17806 17807 17808 17809 17810 17811 17812 17813 17814 17815 17816 17817 17818 17819 17820 17821 17822 17823 17824 17825 17826 17827 17828 17829 17830 17831 17832 17833 17834 17835 17836 17837 17838 17839 17840 17841 17842 17843 17844 17845 17846 17847 17848 17849 17850 17851 17852 17853 17854 17855 17856 17857 17858 17859 17860 17861 17862 17863 17864 17865 17866 17867 17868 17869 17870 17871 17872 17873 17874 17875 17876 17877 17878 17879 17880 17881 17882 17883 17884 17885 17886 17887 17888 17889 17890 17891 17892 17893 17894 17895 17896 17897 17898 17899 17900 17901 17902 17903 17904 17905 17906 17907 17908 17909 17910 17911 17912 17913 17914 17915 17916 17917 17918 17919 17920 17921 17922 17923 17924 17925 17926 17927 17928 17929 17930 17931 17932 17933 17934 17935 17936 17937 17938 17939 17940 17941 17942 17943 17944 17945 17946 17947 17948 17949 17950 17951 17952 17953 17954 17955 17956 17957 17958 17959 17960 17961 17962 17963 17964 17965 17966 17967 17968 17969 17970 17971 17972 17973 17974 17975 17976 17977 17978 17979 17980 17981 17982 17983 17984 17985 17986 17987 17988 17989 17990 17991 17992 17993 17994 17995 17996 17997 17998 17999 18000 18001 18002 18003 18004 18005 18006 18007 18008 18009 18010 18011 18012 18013 18014 18015 18016 18017 18018 18019 18020 18021 18022 18023 18024 18025 18026 18027 18028 18029 18030 18031 18032 18033 18034 18035 18036 18037 18038 18039 18040 18041 18042 18043 18044 18045 18046 18047 18048 18049 18050 18051 18052 18053 18054 18055 18056 18057 18058 18059 18060 18061 18062 18063 18064 18065 18066 18067 18068 18069 18070 18071 18072 18073 18074 18075 18076 18077 18078 18079 18080 18081 18082 18083 18084 18085 18086 18087 18088 18089 18090 18091 18092 18093 18094 18095 18096 18097 18098 18099 18100 18101 18102 18103 18104 18105 18106 18107 18108 18109 18110 18111 18112 18113 18114 18115 18116 18117 18118 18119 18120 18121 18122 18123 18124 18125 18126 18127 18128 18129 18130 18131 18132 18133 18134 18135 18136 18137 18138 18139 18140 18141 18142 18143 18144 18145 18146 18147 18148 18149 18150 18151 18152 18153 18154 18155 18156 18157 18158 18159 18160 18161 18162 18163 18164 18165 18166 18167 18168 18169 18170 18171 18172 18173 18174 18175 18176 18177 18178 18179 18180 18181 18182 18183 18184 18185 18186 18187 18188 18189 18190 18191 18192 18193 18194 18195 18196 18197 18198 18199 18200 18201 18202 18203 18204 18205 18206 18207 18208 18209 18210 18211 18212 18213 18214 18215 18216 18217 18218 18219 18220 18221 18222 18223 18224 18225 18226 18227 18228 18229 18230 18231 18232 18233 18234 18235 18236 18237 18238 18239 18240 18241 18242 18243 18244 18245 18246 18247 18248 18249 18250 18251 18252 18253 18254 18255 18256 18257 18258 18259 18260 18261 18262 18263 18264 18265 18266 18267 18268 18269 18270 18271 18272 18273 18274 18275 18276 18277 18278 18279 18280 18281 18282 18283 18284 18285 18286 18287 18288 18289 18290 18291 18292 18293 18294 18295 18296 18297 18298 18299 18300 18301 18302 18303 18304 18305 18306 18307 18308 18309 18310 18311 18312 18313 18314 18315 18316 18317 18318 18319 18320 18321 18322 18323 18324 18325 18326 18327 18328 18329 18330 18331 18332 18333 18334 18335 18336 18337 18338 18339 18340 18341 18342 18343 18344 18345 18346 18347 18348 18349 18350 18351 18352 18353 18354 18355 18356 18357 18358 18359 18360 18361 18362 18363 18364 18365 18366 18367 18368 18369 18370 18371 18372 18373 18374 18375 18376 18377 18378 18379 18380 18381 18382 18383 18384 18385 18386 18387 18388 18389 18390 18391 18392 18393 18394 18395 18396 18397 18398 18399 18400 18401 18402 18403 18404 18405 18406 18407 18408 18409 18410 18411 18412 18413 18414 18415 18416 18417 18418 18419 18420 18421 18422 18423 18424 18425 18426 18427 18428 18429 18430 18431 18432 18433 18434 18435 18436 18437 18438 18439 18440 18441 18442 18443 18444 18445 18446 18447 18448 18449 18450 18451 18452 18453 18454 18455 18456 18457 18458 18459 18460 18461 18462 18463 18464 18465 18466 18467 18468 18469 18470 18471 18472 18473 18474 18475 18476 18477 18478 18479 18480 18481 18482 18483 18484 18485 18486 18487 18488 18489 18490 18491 18492 18493 18494 18495 18496 18497 18498 18499 18500 18501 18502 18503 18504 18505 18506 18507 18508 18509 18510 18511 18512 18513 18514 18515 18516 18517 18518 18519 18520 18521 18522 18523 18524 18525 18526 18527 18528 18529 18530 18531 18532 18533 18534 18535 18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 18547 18548 18549 18550 18551 18552 18553 18554 18555 18556 18557 18558 18559 18560 18561 18562 18563 18564 18565 18566 18567 18568 18569 18570 18571 18572 18573 18574 18575 18576 18577 18578 18579 18580 18581 18582 18583 18584 18585 18586 18587 18588 18589 18590 18591 18592 18593 18594 18595 18596 18597 18598 18599 18600 18601 18602 18603 18604 18605 18606 18607 18608 18609 18610 18611 18612 18613 18614 18615 18616 18617 18618 18619 18620 18621 18622 18623 18624 18625 18626 18627 18628 18629 18630 18631 18632 18633 18634 18635 18636 18637 18638 18639 18640 18641 18642 18643 18644 18645 18646 18647 18648 18649 18650 18651 18652 18653 18654 18655 18656 18657 18658 18659 18660 18661 18662 18663 18664 18665 18666 18667 18668 18669 18670 18671 18672 18673 18674 18675 18676 18677 18678 18679 18680 18681 18682 18683 18684 18685 18686 18687 18688 18689 18690 18691 18692 18693 18694 18695 18696 18697 18698 18699 18700 18701 18702 18703 18704 18705 18706 18707 18708 18709 18710 18711 18712 18713 18714 18715 18716 18717 18718 18719 18720 18721 18722 18723 18724 18725 18726 18727 18728 18729 18730 18731 18732 18733 18734 18735 18736 18737 18738 18739 18740 18741 18742 18743 18744 18745 18746 18747 18748 18749 18750 18751 18752 18753 18754 18755 18756 18757 18758 18759 18760 18761 18762 18763 18764 18765 18766 18767 18768 18769 18770 18771 18772 18773 18774 18775 18776 18777 18778 18779 18780 18781 18782 18783 18784 18785 18786 18787 18788 18789 18790 18791 18792 18793 18794 18795 18796 18797 18798 18799 18800 18801 18802 18803 18804 18805 18806 18807 18808 18809 18810 18811 18812 18813 18814 18815 18816 18817 18818 18819 18820 18821 18822 18823 18824 18825 18826 18827 18828 18829 18830 18831 18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 18879 18880 18881 18882 18883 18884 18885 18886 18887 18888 18889 18890 18891 18892 18893 18894 18895 18896 18897 18898 18899 18900 18901 18902 18903 18904 18905 18906 18907 18908 18909 18910 18911 18912 18913 18914 18915 18916 18917 18918 18919 18920 18921 18922 18923 18924 18925 18926 18927 18928 18929 18930 18931 18932 18933 18934 18935 18936 18937 18938 18939 18940 18941 18942 18943 18944 18945 18946 18947 18948 18949 18950 18951 18952 18953 18954 18955 18956 18957 18958 18959 18960 18961 18962 18963 18964 18965 18966 18967 18968 18969 18970 18971 18972 18973 18974 18975 18976 18977 18978 18979 18980 18981 18982 18983 18984 18985 18986 18987 18988 18989 18990 18991 18992 18993 18994 18995 18996 18997 18998 18999 19000 19001 19002 19003 19004 19005 19006 19007 19008 19009 19010 19011 19012 19013 19014 19015 19016 19017 19018 19019 19020 19021 19022 19023 19024 19025 19026 19027 19028 19029 19030 19031 19032 19033 19034 19035 19036 19037 19038 19039 19040 19041 19042 19043 19044 19045 19046 19047 19048 19049 19050 19051 19052 19053 19054 19055 19056 19057 19058 19059 19060 19061 19062 19063 19064 19065 19066 19067 19068 19069 19070 19071 19072 19073 19074 19075 19076 19077 19078 19079 19080 19081 19082 19083 19084 19085 19086 19087 19088 19089 19090 19091 19092 19093 19094 19095 19096 19097 19098 19099 19100 19101 19102 19103 19104 19105 19106 19107 19108 19109 19110 19111 19112 19113 19114 19115 19116 19117 19118 19119 19120 19121 19122 19123 19124 19125 19126 19127 19128 19129 19130 19131 19132 19133 19134 19135 19136 19137 19138 19139 19140 19141 19142 19143 19144 19145 19146 19147 19148 19149 19150 19151 19152 19153 19154 19155 19156 19157 19158 19159 19160 19161 19162 19163 19164 19165 19166 19167 19168 19169 19170
|
C corresponding original gnuplot.doc for gnuplot-6.0.0
C
C Copyright (C) 1986 - 1993, 1998, 1999, 2000, 2001, 2004 Thomas Williams, Colin Kelley et al.
C
C Japanese translation: Hiroharu Tamaru (2.0, 3.2), MASUTANI Yasuhiro (3.5),
C Shigeharu Takeno et al (3.7, 4.X, 5.X, 6.X)
1 Gnuplot
?gnuplot
C contributors ɽΥʸϡߤΥꥸʥǤ UTF-8
C ǽƤ뤬 HTML ̾ȷѹƤ롣
^<h2 align="center"> An Interactive Plotting Program </h2>
^<p align="center"> Thomas Williams & Colin Kelley</p>
^<p align="center"> Version 6 organized by Ethan A Merritt</p>
^<p align="center">Major contributors (alphabetic order):<br>
^<br>
^ Hans-Bernhard Broeker, John Campbell,<br>
^ Robert Cunningham, David Denholm,<br>
^ Gershon Elber, Roger Fearick,<br>
^ Carsten Grammes, Lucas Hart, Lars Hecking,<br>
^ Péter Juhász, Thomas Koenig, David Kotz,<br>
^ Ed Kubaitis, Russell Lang, Timothée Lecomte,<br>
^ Alexander Lehmann, Alexander Mai, Bastian Märkisch,<br>
^ Tatsuro Matsuoka, Ethan A Merritt, Petr Mikulík,<br>
^ Hiroki Motoyoshi, Carsten Steger, Shigeharu Takeno,<br>
^ Tom Tkacik, Jos Van der Woude,<br>
^ James R. Van Zandt, Alex Woo, Johannes Zellner<br>
^</p>
^<p align="center"> Copyright (C) 1986 - 1993, 1998 - 2004 Thomas Williams, Colin Kelley<br>
^ Copyright (C) 2004 - 2023 various authors</p>
^<p align="center"> Mailing list for comments: <tt>gnuplot-info@lists.sourceforge.net</tt><br>
^ Gnuplot <a href="http://gnuplot.info"> home page </a><br>
^ Issue trackers:
^<a href="https://sourceforge.net/p/gnuplot/bugs"> bugs </a>
^<a href="https://sourceforge.net/p/gnuplot/feature-requests"> feature requests </a>
^<p align="center"> This manual was originally prepared by Dick Crawford</p>
^<!-- end of titlepage -->
C ԤĹΤϡǤФʤȤ
2 (Copyright)
?copyright
?license
Copyright (C) 1986 - 1993, 1998, 2004, 2007 Thomas Williams, Colin Kelley
Copyright (C) 2004-2023 various authors
Permission to use, copy, and distribute this software and its
documentation for any purpose with or without fee is hereby granted,
provided that the above copyright notice appear in all copies and
that both that copyright notice and this permission notice appear
in supporting documentation.
Permission to modify the software is granted, but not the right to
distribute the complete modified source code. Modifications are to
be distributed as patches to the released version. Permission to
distribute binaries produced by compiling modified sources is granted,
provided you
1. distribute the corresponding source modifications from the
released version in the form of a patch file along with the binaries,
2. add special version identification to distinguish your version
in addition to the base release version number,
3. provide your name and address as the primary contact for the
support of your modified version, and
4. retain our contact information in regard to use of the base software.
Permission to distribute the released version of the source code along
with corresponding source modifications in the form of a patch file is
granted with same provisions 2 through 4 for binary distributions.
This software is provided "as is" without express or implied warranty
to the extent permitted by applicable law.
AUTHORS
Original Software:
Thomas Williams, Colin Kelley.
Gnuplot 2.0 additions:
Russell Lang, Dave Kotz, John Campbell.
Gnuplot 3.0 additions:
Gershon Elber and many others.
Gnuplot 4.0 and subsequent releases:
See list of contributors at head of this document.
(ʲޤ; ʤΤޤΤǾܤϾ嵭θʸ
äƤԤǤޤ)
Copyright (C) 1986 - 1993, 1998, 2004, 2007 Thomas Williams, Colin Kelley
Copyright (C) 2004-2023 ¿
ΥեȥȤ°ʸλѡʣۤεĤϡ嵭
(copyright) ɽƤʣʪ˽Ƥ뤳ȡɽ
εʸξλٱʸ˽Ƥ뤳ȤȤǡ
ʸˤݾڤޤ
ΥեȥνǧƤޤޤ
ɤۤθǧޤϥǤФѥåη
ۤʤФʤޤ줿ѥ뤷ƺ줿Х
ʥۤϡʲξθǧޤ:
1. ǤΥνʬѥåηǥХʥȶ
ۤ뤳
2. ١ȤʤǤȶ̤뤿ˡΥСֹ
ʥСҤղä뤳
3. νǤΥݡѤˡʤ̾ȥǽʥɥ쥹
뤳
4. ١Ȥʤ륽եȥλѤ˴ؤƤϡ桹Ϣݻ
³뤳
ǤΥɤѥåηǤΥνȰۤ
ȤϡХʥۤ˴ؤ 2 4 ޤǤξθǵޤ
Υեȥ "뤬ޤ" 졢ŬѲǽˡΧǵ
Ϥݾڤɽ뤤ϰżƤϤޤ
ꥸʥ륽եȥ:
Thomas Williams, Colin Kelley.
Gnuplot 2.0 ɲ:
Russell Lang, Dave Kotz, John Campbell.
Gnuplot 3.0 ɲ:
Gershon Elber Ȥ¾ο͡
Gnuplot 4.0 ӤʹߤΥ:
ʸƬδͿ (contributors) ΰȡ
2 Ϥ (Introduction)
?introduction
?
`gnuplot` ϡݡ֥ʥޥΥե桼ƥƥǡ
Linux, OS/2, MS Windows, macOS, VMS, ¾¿Υץåȥۡư
ޤɤˤޤ̵ۤƤޤ
(ʤвʧɬפϤޤ)ϡʳؼԤ
شؿǡʤɤŪɽǤ褦줿ΤǤߤޤǤ
㤨 Web ץȤʤɡ¿÷Ѥ⥵ݡȤ褦
ĹƤޤϡ㤨 Octave Τ褦˥ɥѡƥΥץꥱ
襨ȤƤȤƤޤgnuplot ϡ1986 ꥵ
ȤȳȯʳȯԤƤޤ
gnuplot ϡ2 ޤ 3 ¿μΥդǤޤ
ޤ: աաա٥ȥ衢
ߡ̡Ƥ˴Ϣ뤵ޤޤʸƤ
Ĥ̤ʥա㤨вʬۿ (heatmap)㥰 (
㡼, spiderplot)˼ͱ (polar projection)ҥȥ
(histograms)ȢҤ (boxplot)ӡ॰ (bee swarm)
ʤɤ⥵ݡȤƤޤ
gnuplot ¿ΰۤʤϤݡȤƤޤ: ÷Ϸ
(ޥۥåȥϤǽ)ڥץå丽ߤΥץؤľ
ܽϡޤ¿Υեؤν (eps, emf, fig, jpeg, LaTeX,
pdf, png, postscript, ...)gnuplot ϡưפ˿Ϸɲä
褦ĥ뤳ȤǤޤǶǤ㤨 webp ˥ݡ
Ȥޤsvg HTML5 canvas ϷѤСդ Web
ڡ˥ޥѲǽʷϤ뤳ȤǤޤ
`gnuplot` Υޥɸʸʸ̤ޤʤʸ
줿ޥɤؿ̾ϡʸǽΤȤƱǤϤ
ޤΥޥɤ⡢ޤ̵¤ˤƾά뤳Ȥ
Ǥޤ1 ˤϥߥ (;) ǶڤäʣΥޥɤ
Ǥޤʸñ䡢뤤ŰΤɤ餫ǽϤ
ޤξԤˤ̯ʰ㤤ޤ (ܺ٤ϡʲ: `syntax`):
set title "My First Plot"; plot 'data'; print "all done!"
ޥɤϡʣԤˤޤ뤳ȤǤޤξϡǽʳ
ƤιԤι˥Хåå (\) ɬפޤХå
åɬƹ *Ǹ* ʸǤʤƤϤʤޤη̤ȤƥХ
åȡ³ʸ¸ߤʤäΤ褦˰ޤ
Ĥޤꡢʸڡ뤳Ȥ⤢ޤԤˤäƥ
Ȥλ뤳Ȥ⤢ޤǤʣԤˤޤԤƬ
ȥȤȡΥޥΤȥȤ뤳Ȥˤʤ
(ʲ: `comments`)ʤդޤ⤷ʣԤΥޥɤ
ɤǥ顼ȤѡϤξΤˤϻؼ뤳Ȥ
ޤޤԤ˻ؼɬפʤǤ礦
ΥɥȤˤơ ({}) ϾάǽʰɽΤȤ
(|) ϡߤ¾ŪʰڤΤȤޤ`gnuplot` Υ
ɤ `help` ˤ̾ϡհ ()ޤϲǽʾˤ
`boldface` () ɽޤѳ (<>) ϡбΤ֤
٤Τɽޤ¿ξ硢ץΰˤϡ줬
άȥǥեȤͤѤޤξ硢ɬ
ѳ̤̤ǰϤޤƽƤ櫓ǤϤޤ
ܤˤĤƤΥإפɬפʤȤˤϡ`help` ³Ƥι̾
ϤƲޤñ `help ?` ǤإפιܤΥ˥塼
ޤ
̤Υեץ뤬ʲ Web ڡˤޤ
^ <a href="http://www.gnuplot.info/demo/">
http://www.gnuplot.info/demo/
^ </a>
ޥɥ饤鵯ưȤϡʲνȤޤ
gnuplot {OPTIONS} file1 file2 ...
file1, file2 ϡ`local` ޥɤǼΤƱϥե
(ץȥե) Ǥ
gnuplot Ϳ륪ץϡޥɹԤΤɤ֤Ƥޤ
ϻꤷ˼¹Ԥ졢Ʊͤ -e ץǤդΥޥɤͿ
뤳ȤǤޤ:
gnuplot file1.in -e "reset" file2.in
̤ʥե̾ "-" ϡɸϤɤޤΤ˻Ȥޤ`gnuplot`
ϺǸΥեȽλޤɤ߹ޤե
ꤷʤϡ`gnuplot` ɸϤϤޤܺ
ϡʲ: `batch/interactive`
ޥɥ饤ץξܺ٤ϰʲ: `command-line-options`ޤ
ϰʲ¹ԤƤ
gnuplot --help
÷襦ɥǤκϡ'h' ǤĤȥۥåȥ (`hotkeys`)
ȥޥǽ (`mousing`) ˴ؤإפ뤳ȤǤޤ
2 õФ/Х (Seeking-assistance / Bugs)
?help-desk
?faq
?FAQ
?bugs
?seeking-assistance
gnuplot ۡڡϰʲˤޤ
^ <a href="http://www.gnuplot.info">
http://www.gnuplot.info
^ </a>
ˡե FAQ.pdf ޤϾ Web Ȥ
^ <a href="http://www.gnuplot.info/faq/">
FAQ (١ʹ; Frequently Asked Questions) ΰ
^ </a>
åƤ
¾ˡ(Хʳ) Υ˴ؤϰʲǤ
ޤ
https://stackoverflow.com/questions/tagged/gnuplot
ХȡǽΥꥯȤϡʲΥȥåƥˤƤ
https://sourceforge.net/p/gnuplot/_list/tickets
ʤ𤷤褦ȤƤХ꿷ǤǴ˽
ƤʤåƤ
ХƤȤϡʤѤƤ gnuplot ΥС
Ϸ (terminal)ڥ졼ƥƥࡢȤä
٤ƤƸ뼫ʴ뷿ûץȤ
ȤʤɤǤ礦
gnuplot ꥹȤؤƤˡ˴ؤƤϡgnuplot γȯ Web
^ <a href="http://sourceforge.net/projects/gnuplot">
http://sourceforge.net/projects/gnuplot
^ </a>
ȤƤ
gnuplot ꥹȤ˥ˡǽˤΥꥹ
˻äɬפ뤳ȤդƤϡѥ̤餹
ɬפǤ
ꥹȥСؤΥ륢ɥ쥹:
gnuplot-info@lists.sourceforge.net
ȯǤ˴ؤꥹ:
gnuplot-beta@lists.sourceforge.net
2 С 6 Ǥοǽ (New features in version 6)
?new version_6
?new
?version
С 6 ϡ̤뤳 1986 ǯ gnuplot ȯǤκǿ㡼
Ǥϡ㡼С 5 (2015)ƤθΥޥ
5.2 (2017), 5.4 (2020) ³ΤǤȯϡSouceForge
git ݥȥץΡǤȤ̤ʥ֥³
Ƥޤ
ΥɥȤ˵ҤƤ뵡ǽˤϡgnuplot 饳
ѥ뤹ݤˤꤷƤȤΤޤ
ʤ¹ԤƤ gnuplot ѥˤɤΤ褦ʥץ
ꤷƺ줿Τˤϡ`show version long` ȥפƤ
3 ؿ֥åȶɽѿ (Function blocks and scoped variables)
?new function blocks
Ǥ gnuplot ǤϡɸŪ gnuplot ޥɤΥ֥åƤӽФ
ؿȤƻȤ뵡ǽƳƤޤؿ֥åϡ0 9 Ĥΰ
ȤơĤ֤ͤޤؿ֥åϡͤѿ
˳Ƥꡢۤʤؿ黻Ҥ礷ꡢͿ줿ǡФ
뷫֤κȤԤäꤹΤ˻ȤȤǤޤ
λȤߤˤϡ3 ĤǤޤ
ʲ: `local`, `scope`, `function blocks`, `return`
#start
#b `local` ϡѿΥץǡΥפϡ
## 줬Ƥץñ̤μ¹Τߤ¤ޤñ̤Ȥϡ
## ߤϡ`load` `call` ʸμ¹ñ̡ؿ֥åɾ `if`,
## `else`, `do for`, `while` ³椫äǰϤޤ줿ɥ֥åñ
## Ǥɽ (local) ѿ̾ (global) ѿ̾Ȥ֤Ĥ
## ϡζɽꥹפȴޤǤѿϱޤ
#b ޥ `function` ϡgnuplot ޥɤʤ̾դؿ֥å
## (ºݤϤʸ) ޤؿ֥åƤӽФȡ
## Υޥɤ֥åκǸˤʤ뤫ޤ `return` ޥɤ
## ޤǡ缡¹Ԥޤ
#b ޥ `return <expression>` ϡؿ֥åμ¹Ԥλޤ
## <expression> ɾη̤δؿͤȤ֤ޤؿ
## åγǤϡɤǤ `return` `exit` Ʊͤưޤ
#end
λȤߤȤäơñʰԤδؿ `f(x) = ...` äʣ
ǤϤʤؿ褹ˤĤƤϡ
^ <a href="http://www.gnuplot.info/demo_6.0/function_block.html">
`function_block.dem`
^ </a>
ȤƤ
3 üؿʣǿʹؿ (Special and complex-valued functions)
?new math
gnuplot С 6 ϡʣǿʹؿȡΥСˤ
äؿβǤĤޤ
#start
#b : ʣѿʣǿͤΥޥ () ؿʲ: `zeta`
#b () Դؿ٤βɡʣǰǽˡ
## ʲ: `igamma`
#b Դؿɲ (°Τ)
## ʲ: `uigamma`
#b () Դ١ؿ٤βɡ
## ʲ: `ibeta`
#b () Դؿɲá
## ʲ: `invigamma`
#b () Դ١ؿɲá
## ʲ: `invibeta`
#b ¿ؿ W_k(z) k ʬ֤ʣǴؿ LambertW(z,k) ɲá
^<br>
## Ť lambertw(x) real(LambertW( real(z), 0 )) Ǥ뤳Ȥա
## ʲ: `LambertW`
#b ʣǴؿ lnGamma(z) ɲá
## ˤ lgamma(x) real(lnGamma(real(z)) Ǥ뤳Ȥա
## ʲ: `lnGamma`
#b z ʣǶ֤ʣǴؿ conj(z)
#b ( 1) ȥؿ F(x)ʲ: `SynchrotronF`
#b acosh(z) μ¿ʤ褦˳ĥ
#b asin(z) asinh(z) ʣǿФ٤βɡ
#b ʤ褦 I = sqrt(-1) = {0,1} Ѥѿˡ
^<br>
## gnuplot {a,b} ʣǿȸʤƤޤ
## (a + b*I) ʤʣǿȤƼĤƤΤͭѤǤ
#end
ӥɻŬڤʳ饤֥꤬СˤĤüؿ
Ȥޤʲ: `special_functions`
#start
#b (¿) Ρ z Фʣǥ٥åؿ I(z), J(z),
## K(z), Y(z)ʲ: `BesselK`
#b (¿) Ρ z Фʣǥϥؿ H1(z), H2(z)
## ʲ: `BesselH1`
#b ʣǥؿ Ai(z), Bi(z)
#b n ʣǻؿʬʲ: `expint`
#b եͥʬ C(x), S(x)ʲ: `FresnelC`
#b Voigt ץեȾ֤ؿ `VP_fwhm(sigma,gamma)`ʲ
## : `VP`, `VP_fwhm`
#end
3 襹 (New plot styles)
?new styles
#start
#b 襹 `with surface` ϡ2 ˺ɸưʿ̤ɤꤷ
## ʻɽΥդޤ ǤդνΤδͿ
## Ťդäƿդޤϡ3 ʻҶ̤
## `dgrid3d`ȥ `with pm3d` ʤǤ
## ʲ: `set polar grid`, `polar heatmap`
#b 2 襹 `with sectors` ϡʶ˺ɸʻ̤
## ̤λȤߤǤϳǰζ˺ɸʻˡϥǡ
## ˴ݤҤҤȤޤ˺ɸ⡼ɤǤ `with surface` Ȥϰ
## ϶˺ɸդǤľɸդǤѤǤޤ
#b 襹 `with lines` ˤϡߥե륿ץ `sharpen`
## ޤΥե륿ϴؿդǥѥФޤΥԡ
## ϴؿɸܤȤƼä 2 Ĥ x ɸδ֤ˤ뤿ᡢϤǤ
## ڤƤޤޤΥե륿ϡΤ褦ʥԡξ
## ˿ɸɲäޤʲ: `filters`
#b ϸ̩ˤϿ襹ǤϤޤե륿 concave
## hull ΰɤ٤Υѥ˱äʿ경Ȥ߹碌뤳ȤǡĤ
## ΰץդκǽˤʤޤ㤨ʣΥǡΤ
## ޤ꤬ŤʤäƤΤιޤʲ: `concavehull`
#b 3 襹 `with pm3d` ǥץ `zclip [zmin:zmax]`
## Ȥơ϶ΤΤҤȤĤ̤Τߤޤåԥ
## ζͤäϢ³ԤȤǡ3 ǤڤФ
## Τ˻Ȥޤ֤ɤ٤ޤΤ
## Ȥޤϡ襹 `with contourfill` ǼưǤ
## 2 ͱƤäͭѤǤʲ: `contourfill`
#end
D polargrid 4
DB
D windrose 1
D sectors 4
DB
D sharpen 1
D iris 2
DB
D contourfill 4
3 ȥޥʿ경 (Hulls, masks, and smoothing)
?new hulls
#start
#b 2 νζ¿ѷ֤뿷ե륿
## `convexhull`ζζ餫ˤˤϡ
## "convexhull smooth path with filledcurves" Ȥäɤ٤ΰȤ
## 褹뤳ȤǤǤޤʲ: `convexhull`
#b ե륿 `concavehull` ϡ̤Ȥϸ¤ʤٹ椹Ĺ
## ѥǷꤵ-Ρ¿ѷΥǡޤ
## ϥǡβܼŪʤߤ褷ޤʲ:
## `concavehull`
#b pm3d ̤ image ʬΤߤɽ褦ޥ
## ˡ (convex hull) ¾¿ѷ (polygon) ѤǤޤ
## 襹 `with mask` (ޥ) 䡢 `mask` (
## Ǥ˥ޥŬѤ) ȤƤ
#b Ķ x ˴ؤñĴǤϤʤ 2 Ρѥ˱ä 3
## ץ饤ʿ경ʲ: `smooth path`ϡޥ
## ʿ경ǽˤޤ
#b 3 3 ץ饤ʿ경ʲ: `splot smooth csplines`
#b ʿ경ץ `with filledcurves {above|below|between}` Ǥ
## ˤŬѤޤ
#b Ūǡʿ경Ѥο `period`ʲ:
## `smooth kdensity`
#end
D convex_hull 2
D mask_pm3d 3
D smooth_path 2
3 ̾դѥå (Named palettes)
?new colormaps
#start
#b ߤΥѥåȤθѤΤ̾դ顼ޥåפ¸Ǥޤ
## ʲ: `set colormap`
#b pm3d image plot ǰ¸ѥåȤ̾ǻǤޤ
## ˤꡢĤ plot ޥɤʣΥѥåȤѤǤޤ
## ʲ: `colorspec palette`
#b ̾դѥåȥ顼ޥåפϡ32-bit ARGB ͤȤǤ
## ޤˤꡢեͥͤɲäꡢޥ
## `set palette` Ǥϴñ˻Ǥʤ¾νǽˤޤ
#b Ѥߤο `set palette viridis`
#b եǡ֥åɤ߹ѥå (`set palette file`)
## ϡ¿οʬ24bit RGB ͤΤ줫ǻǤޤ
#end
D named_palettes 4
D viridis 1
3 ǡ (New data formats)
?new data_formats
#start
#b ץ `sparse matrix=(cols,rows)` ϡ`plot` `splot` ˡ
## ΥԥͤǤդν֤ɤߤȤǤ褦ʰͤʥԥ
## ʻҤޤϡԴʥǡ鲹ʬۿ (heatmap)
## 褹褦ʾͭѤǤʲ: `sparse`
#b ͤ matrix ǡ桢ߤ column(0) Ϥ matrix
## ֤ޤʤMxN matrix A A[i,j] Ф
## Ƥϡcolumn(0)/M ֹ i ˡcolumn(0)%M ֹ j ˤʤޤ
#end
3 Ȥ߹ߴؿ (New built-in functions and array operations)
?new built-in functions
#start
#b cbrange z ˳Ƥ븽ߤ RGB ѥåȿ֤ؿ `palette(z)`
#b ̾餽ο 32bit ARGB ֤ͤؿ `rgbcolor("name")`
#b Array[i] element ǽź `i` ֤ؿ
## `index( Array, element )`ʲ: `arrays`
#b Ȥ桼ؿεġ
^<br>
## : dot(A,B) = sum [i=1:|A|] A[i]*B[i]
#b ̾ϰϤꤹ뤳Ȥʬ¸
## Array[n] ñǡArray[n:n+5] ϸ 6 Ǥʬ
## ʲ: `arrays`, `slice`
#b `split("string", "separator")` ϡʸ string ˴ޤޤե
## Ǥʸ˵֤ͤޤʲ: `split`
#b `join(array, "separator")` ϡ`split` εդǡʸǤ
## եɶڤʸ separator ֤˶Ƿ礷ưĤʸˤ
## Τ֤ޤʲ: `join`
#b `stats <non-existent file>` ϥƥȲǽͤϡʲ:
## `stats test`
#b `stats $vgrid` dzʻΥܥκǾ//ʿ/ɸкĴ
#end
3 ץή (Program control flow)
?control flow
#start
#b ʸ `if ... else if ... else ...`
#b gnuplot ǡXDG ١Υǥ쥯ȥ֤ݡȤƤ
## gnuplot ϡ$XDG_CONFIG_HOME/gnuplot/gnuplotrc ޥ
## ɤ߹ߤޤåޥϡ$XDG_STATE_HOME/gnuplot_history
## ¸ޤΥե뤬ʤϡgnuplot ΰΥС
## Ʊ͡$HOME/.gnuplot $HOME/.gnuplot_history 줾Ѥ
## ޤ
#b `unset warnings` ϡstderr ؤηٹåϤޤ
#b `warn "message"` ϡեֹ̾ "message" stderr ˽
## ޤ
#b ޥ "fit" Ф㳰fit 顼Ǥ⡢
## ϤμιԤ֤ޤ顼ϡ֤äȤ
## FIT_ERROR Ǥʤͤˤʤޤϡɤʤեåƥ
## 륹ץȤǽˤޤʲ: `fit error_recovery`
#end
3 ¿⡼ (Multiplots)
?new multiplots
ߤϡ¿襰 (multiplot) κǽ˼¹Ԥޥɤ
ǡ֥å $GPVAL_LAST_MULTIPLOT ¸ޤƤϡ
ޥ `remultiplot` ǺƼ¹ԤǤޤ¸ޥɤΤ
Ƽ¹Ԥ꤬륳ޥɤϡƼ¹ԤϤޤ¿襰
դϡδ֤˥դ (ϰϤп) ѹƤ
СΤΤȴ˰פȤϸ¤ޤ
ʲΥޥϡΥդξ֤ multiplot ޥɤξ
ץȥե¸Ǻɤ߹ߤǤ褦ˤޤ
save "my_multiplot.gp"
set multiplot
... (Ǥ뤤ĤΥޥɤ¤) ...
unset multiplot
set print "my_multiplot.gp" append
print $GPVAL_LAST_MULTIPLOT
unset print
#start
#b ޥ `replot` ϡľ plot ޥɤλѤߤ multiplot
## ʬǤ뤫ɤåޤ⤷ʤ顢ñ plot
## ɤ¹Ԥ `remultiplot` ¹Ԥޤ
#b ʳ: ɽƤ multiplot վǤΥɥ٥ȡ
## ޥ٥ȡޤϥۥåȥ replot ϡŬڤʾ
## `remultiplot` ƤӽФޤϡߤϥɽ
## multiplot դ㤨ХꥵǽǤ뤳Ȥ̣ޤ
## ޥɸɤ߽Ф/ưϡ gnuplot
## ǤǤä褦ˡǸ plot ǤФ뼴ˤΤߴŤ
## Ԥޤ$GPVAL_LAST_MULTIPLOT ¸륳ޥɤ plot
## ǤФŬڤʥˤԽʬǤǽ뤿
## ᡢmultiplot ǤΥޥϡʤ˾褦ʤΤˤϤʤʤ
## ⤷ޤϺǤ礦
#end
3 Ϸȥץ (New terminals and terminal options)
?new terminals
#start
#b Ϸ `kittygd` `kittycairo` ϡkitty ץȥ
## Ȥüߥ졼ǡüɥǤΥեå
## ޤkitty ϡsixel եåȤ̤ǡ24 ӥå RGB
## 륫顼ޤʲ: `kittycairo`
#b Ϸ `block` ϡեåΥƥȥ⡼ѤΤ
## ǡ`dumb` `caca` ϷФƲɤ줿٤뤿
## Unicode ֥å뤤 (Braille ʸ) Ѥޤ
#b Ϸ `webp` ϡwebp ǥѤơñե졼
## फ˥ޤƥե졼 pngcairo
## θ libwebp libwebpmux ˤ WebPAnimEncoder API ̤ƥ
## ɤԤޤ
#b `dumb`, `sixel`, `kitty`, `block` ϷΤ褦ˡʸϤȥ
## եåɽƱɥǹԤϷǤϡߤϥޥ
## `pause mouse` δ֤ϥܡϤȿޤδ֡ν
## ǤϡޥǽʽϷԤΤƱˡǥϤ
## ᤷޤʲ: `pseudo-mousing`
## 㤨С///ϡ3 դǤϻѤ2
## դǤϻư/ʬƥåפ¹Ԥޤ
#end
3 åݥ (Watchpoints)
?new watchpoints
åݥȤϡθġζ˴ϢоͤǤ
褵ȤʬǤξüδ֤˥åݥȺɸ (x, y
z) ؿ f(x,y) оͤޤǤ뤫ǧޤ줬Ĥ
硢Υޥåκɸ [x,y] ǻѤ뤿¸ޤ
ʲ: `watchpoints`
#start
#b 2 ĤζθĤ뤳
#b ؿΥĤ뤳
#b °ѿ (y z) ؿ f(x,y) ͤȰפĤɽ
## 뤳
#b ޥȤäʣΥդ˱äͤƱפ뤳
#end
D watchpoints 2
3 Υݡ (Week-date time support)
?new week-date time
2020 ǯ˻Ϥޤäʥ륹 (Covid-19) ưǤϡֳŪǡ
ΥղδؿޤޤǤδȤơ褯ֽ
פȤäɽƤޤδФ gnuplot Υݡ
Ȥϲ⥵ݡȤ褦˳ĥƤޤ
#start
#b %W ϡISO 8601 ν§˽褦ˤʤޤ
#b %U ϡCDC/MMWR ν§˽褦ˤʤޤ
#b ؿ `tm_week(time, std)` ϡISO CDC §ǤΤǯν
## ֤ޤ
#b ؿ `weekdate_iso(year, week, day)` ϡISO §Ǥν
## Ѵޤ
#b ؿ `weekdate_cdc(year, week, day)` ϡCDC §Ǥν
## Ѵޤ
#end
D epi_data 1
3 ¾οǽ
?new other_features
#start
#b `ּμѤλñ`
## ּμϡminutes/hours/days/weeks/months/years
## ñ̤Ȥֳֻդޤ
## ʲ: `set xtics`, `set mxtics time`
#b `using` Ǥʸ $# ϡߤϥǡԤˤɾ
## ޤ㤨С`plot FOO using 0:(column($# - 1))` ϡƹԤκǸ夫
## ļ褷ޤ
#b bin (Ȣ) ѤΡפǤʤʿѤ褹륭 `binvalue=avg`
#b `set colorbox bottom` ϡľʥ顼ܥå֤
## ʿʥ顼ܥåդβ֤ޤ
#b pm3d ̤Υβ - Ťʤ̤Υ
## ˱ä 2 Ĥʬʬ䤷ζ̤Υ뤬¾ζ̤
## äͤФƤޤȤʤ褦ˤޤ
#b pm3d ǥˡ桼淿Υݥåȥ饤Ȥɲáʲ:
## `set pm3d spotlight`
#b key Τꤹ뿷ץʲ: `key layout`
#b `set pm3d border retrace` ϡ pm3d շμˡɤ٤ΰ
## ƱǶޤϡŪ˻и̤Ϥޤ
## 褯ʤ pdf postscript ӥ塼Τ褦ʥǥץ쥤⡼ɤǡ
## ꥢˤʪƳʤ褦ˤޤ
#b `set isotropic` ϡ2 դ 3 դξǡx, y, z
## Τ٤ƤΥ뤬Ʊˤʤ褦˥碌ޤ
#b ѹ: ʸβžѤȤ¤Ϥʤʤޤ
#b ̤ (ͤ) (linetype) `lt nodraw`, `lt black`, `lt bgnd`
## ʲ: `special_linetypes`
#b ǡư histogram դοơʲ:
## `histograms colors`
#b (key) Ȣΰ֤ϡgnuplot ¾˹ԤȤߤˤɤʰַ
## ФƤ⡢եåȤͿ뤳ȤǼưĴǤޤʲ:
## `set key offset`
#end
3 С 5 Ƴ줿ǽ (3 Brief summary of features introduced in version 5)
?new version_5
?version_5
4 5.4 Ƴ줿ǽ (Features introduced in 5.4)
?new version_5 version_5.4
?version_5 version_5.4
#start
#b ȴؿ 64 ӥå黻ѡʲ: `integer`
#b 2 襹 `polygons`, `spiderplot`, `arrows`
#b 3 襹 `boxes`, `circles`, `polygons`, `isosurface`,
## Ƥ¾ܥʻҥǡɽ
#b ǡե륿 `zsort`
#b ޥ (key) `keyentry`
#b LaTeX ϽϷ pict2e ϡŤϷ `latex`, `emtex`,
## `eepic`, `tpic` ǤŤϷϤϤǥեȤǤϥӥ
## ɤޤ
#b `set pixmap` ϡpng/jpeg/gif ԥޥåײȤƼߡ
## դڡǤդΰ֤֤Ѵǽ
#b ĥʸ⡼ɤ \U+xxxx (xxxx 16 ͤ 4 ޤ 5 ʸ)
## Unicode ɥݥȤǤ褦ˡϽϻб
## UTF-8 ХʸѴޤ
#b `with parallelaxes` νβѤˤꡢ襹 `histogram`
## `spiderplot` Ʊͤ plot ޥǤʷ֤ǽ
#end
4 5.2 Ƴ줿ǽ (Features introduced in 5.2)
?new version_5 version_5.2
?version_5 version_5.2
#start
#b ɸ (ʲ: `set nonlinear`)
#b ǡγƤμư (ʲ: `bins`)
#b 2 ӡ॰աʲ: `set jitter`
#b 3 襹 `zerrorfill`
#b 3 ǥDZƤȿϥ饤Ȥ (ʲ: `lighting`)
#b ǡȴϢ륳ޥɤ黻ҡʲ: `arrays`
#b Ϸ `sixelgd`, `domterm`
#b л (ֳĹ) 뿷 tH tM tS
## ʲ: `time_specifiers`
#end
4 5.0 Ƴ줿ǽ (Features introduced in 5.0)
?new version_5 version_5.0
?version_5 version_5.0
#start
#b Ϸ˰¸ʤ/
#b ҤȤĤ plot Ǥΰ³Ǥ˻ѤǥեȤοϡ
## Ԥˤưפ˶̤ǤΤˡ
#b 襹 `with parallelaxes`, `with table`
#b ޥξˤȤͭˤʤϥѡƥȥ٥롣
#b 2 3 ؿ䵿ե '+', '++' Ǥˤ
## Ūʥץϰϡ
#b ޥ `import` ˤץ饰Υݡȡζ֥ͭ
## Ȥؿ˥桼ؿ̾Ƥޤ
#end
2 С 5 6 Ȥΰ㤤 (2 Differences between versions 5 and 6)
С 5 ƳĤѹϡgnuplot ΰΥС
ΥץȤԤ롢ޤϰۤʤ뿶뤳Ȥޤ
С 6 ƳѹǤϡȤϤȤƤ⾯ʤǤ
3 侩ʽ (Deprecated syntax)
?deprecated syntax
С 5.4 Ǥ侩6.0 ǤϺ:
# ֤Ԥ `reread` ޤե
N = 0; load "file-containing-reread";
file content:
N = N+1
plot func(N,x)
pause -1
if (N<5) reread
ߤƱεǽ:
do for [N=1:5] {
plot func(N, x)
pause -1
}
С 5.4 Ǥ侩6.0 ǤϺ
set dgrid3d ,,foo # foo ̣ؼΥɤʤ
ߤϰʲƱ
set dgrid3d qnorm foo # (Τߡqnorm ñȤΥץǤʤ)
С 5.0 Ǥ侩6.0 ǤϺ
set style increment user
ߤϰʲƱ
ɬפϰϤ "set linetype" Ѥƺ
С 5.0 Ǥ侩6.0 ǤϺ
show palette fit2rgbformulae
2 ǥ⡢ͥåȾΥץ (Demos and Online Examples)
?demos
?online examples
?examples
`gnuplot` ʪ `demo` ǥ쥯ȥˤϡ¿Υץ뤬
ƤޤΥץ png, svg, canvas ϷˤϤ
ʲΥͥåȾǸ뤳ȤǤޤ:
^ <a href="http://gnuplot.info/demos/">
http://gnuplot.info/demos
^ </a>
Ǥϡƥǥ륳ޥɤդ٤ɽޤ
gnuplot ץȤɤ뤳ȤǤޤΤǡ¸Ʊ
ͤΥդ뤳ȤǤޤ
2 Хå/÷ (Batch/Interactive)
?batch/interactive
`gnuplot` ϡХå뤤÷ΤɤηǤ¹ԤǤ
Ȥ߹碌뤳ȤǽǤ
ޥɥ饤ϡץؤΥץ`gnuplot` ޥɤ
ޤե̾ǤȲᤷޤ
ƥեȥޥʸϡꤷ˼¹Ԥޤ
̤ʥե̾ "-" ϡޥɤɸϤɹळȤ̣ޤ
ǸΥե¹Ԥ `gnuplot` Ͻλޤɤ߹ޤե
롢ӥޥʸꤷʤäϡ`gnuplot` ɸ
÷Ϥդޤ
3 ޥɥ饤ץ (command line options)
?command-line-options
?batch/interactive command-line-options
gnuplot ϡޥɥ饤ǰʲΥץĤޤ:
-V, --version
-h, --help
-p, --persist
-d, --default-settings
-s, --slow
-e "command1; command2; ..."
-c scriptfile ARG1 ARG2 ...
-p ϡץνλˡĤäƤ÷եɥ
ʤ褦 gnuplot ˻ؼޤ
-d ϡƥ桼ѡӥƥѤν (ʲ: `initialization`)
ڹԤʤ褦 gnuplot ˻ؼޤ
-s ϡưΥեȤνäԤĤ褦˻ؼޤ
ʤȡ顼ɽʥեȥư³ޤ
-e "command" ϡ˿ʤ˻ꤷñΥޥɤ¹Ԥ褦
gnuplot ˻ؼޤ
-c ϡ-e "call scriptfile ARG1 ARG2 ..." ƱǤʲ: `call`
3 (Examples)
?batch/interactive examples
äϤ:
gnuplot
Хå⡼ɤ 2 ĤΥޥɥե "input1", "input2" ¹:
gnuplot input1 input2
ե "header" θ塢÷⡼ɤưθ̤Υޥ
ե "tailer" ¹Ԥ:
gnuplot header - trailer
ޥɥ饤 `gnuplot` ޥɤľͿλ˥
˥դĤ褦˥ץ "-persist" Ȥ:
gnuplot -persist -e "set title 'Sine curve'; plot sin(x)"
եΥޥɤ¹Ԥˡ桼ѿ a s åȤ:
gnuplot -e "a=2; s='file.png'" input.gpl
2 Х (Canvas size)
?canvas size
?canvas
?set term size
ʸǻѤ "canvas" ȤѸϡդ䤽˴Ϣ
䥿ȥ롢ʤɤ֤ΤѲǽΰΤ̣ޤ
: HTML5 canvas Ϸ˴ؤΤꤿϡʲ:
`set term canvas`
`set term <terminal_type> size <XX>, <YY>` ϡϥեΥ
ޤ "Х" Υ椷ޤǥեȤǤϡդϤ
ХΤ褵ޤ
`set size <XX>, <YY>` ϡ輫ΤХΥФŪ
̤ޤ1 꾮ͤꤹȡդϥХΤ
᤺1 礭ͤꤹȡդΰʬΤߤХ
Τ˹礦褦褵ޤ1 礭ͤꤹȡ꤬
뤫⤷ʤȤդƤ
:
set size 0.5, 0.5
set term png size 600, 400
set output "figure.png"
plot "data" with lines
Υޥɤϡ 600 ԥ롢⤵ 400 ԥνϥե
"figure.png" ޤդϥХκ֤ޤ
: gnuplot ΰΥСǤϡ`set size` ϥХΥ
Τ椹Τ˻ѤϷޤϥС
4 侩ȤʤäƤޤ
2 ޥɥ饤Խ (Command-line-editing)
?line-editing
?editing
?command-line-editing
ޥɥ饤ǤԽǽȥޥɥҥȥεǽϡ GNU
readline 饤֥꤫ BSD libedit 饤֥ꡢޤȤ߹ޤ
ƱΤΤΤ줫ȤäƥݡȤƤޤϡ
gnuplot Υѥ configure ΥץǹԤޤ
Ȥ߹ߤ readline ǤξԽޥɤϰʲ̤ǤDEL
˴ؤưϥƥ˰¸뤳ȤդƤGNU readline
饤֥ BSD libedit 饤֥˴ؤƤϡ켫ȤΥɥ
ȤƤ
@start table - ޤ÷ƥȷ
`Խ`:
^B 1 ʸ᤹
^F 1 ʸؿʤ
^A ԤƬ˰ư
^E ԤκǸ˰ư
^H ľʸ
DEL ߤʸ
^D ֤߰ʸԤʤ EOF
^K ֤߰ޤǺ
^L 줿ɽιԤɽ
^U Τκ
^W ľñ
^V μΥԽޥɤȸʤʤ
TAB ե̾䴰ư
``:
^P ذư
^N ذư
^R
#\begin{tabular}{|cl|} \hline
#\multicolumn{2}{|c|}{ޥɹԽޥ} \\ \hline \hline
#ʸ & ǽ \\ \hline
# & \multicolumn{1}{|c|}{Խ}\\ \cline{2-2}
#\verb~^B~ & 1 ʸ᤹\\
#\verb~^F~ & 1 ʸؿʤ\\
#\verb~^A~ & ԤƬذư\\
#\verb~^E~ & ԤκǸذư\\
#\verb~^H~ & ľʸ\\
#\verb~DEL~ & ߤʸ\\
#\verb~^D~ & ֤߰ʸԤʤ EOF\\
#\verb~^K~ & ֤߰ޤǺ\\
#\verb~^L~ & 줿ɽιԤɽ\\
#\verb~^U~ & Τκ\\
#\verb~^W~ & ľñ\\
#\verb~^V~ & μΥԽޥɤȸʤʤ\\
#\verb~TAB~ & ե̾䴰ư\\ \hline
# & \multicolumn{1}{|c|}{} \\ \cline{2-2}
#\verb~^P~ & ذư\\
#\verb~^N~ & ذư\\
#\verb~^R~ & \\
%c l .
%ʸ@ǽ
%_
%@Խ
%^B@1 ʸ᤹
%^F@1 ʸؿʤ
%^A@ԤƬ˰ư
%^E@ԤκǸ˰ư
%^H@ľʸ
%DEL@ߤʸ
%^D@֤߰ʸԤʤ EOF
%^K@֤߰ޤǺ
%^L@줿ɽιԤɽ
%^U@Τκ
%^W@ľñ
%_
%^V@μΥԽޥɤȸʤʤ
%TAB@ե̾䴰ư
%_
%@
%^P@ذư
%^N@ذư
%^R@
@end table
^<table align="center" border="1" rules="groups" frame="hsides" cellpadding="3">
^<colgroup>
^ <col align="center">
^ <col align="left">
^</colgroup>
^<thead>
^<tr> <th>ʸ</th> <th>ǽ</th></tr>
^</thead>
^<tbody>
^<tr> <td></td> <th>Խ</th></tr>
^<tr> <td><tt>^B</tt></td> <td>1 ʸ᤹</td></tr>
^<tr> <td><tt>^F</tt></td> <td>1 ʸؿʤ</td></tr>
^<tr> <td><tt>^A</tt></td> <td>ԤƬذư</td></tr>
^<tr> <td><tt>^E</tt></td> <td>ԤκǸذư</td></tr>
^<tr> <td><tt>^H</tt></td> <td>ľʸ</td></tr>
^<tr> <td><tt>DEL</tt></td> <td>ߤʸ</td></tr>
^<tr> <td><tt>^D</tt></td> <td>֤߰ʸԤʤ EOF</td></tr>
^<tr> <td><tt>^K</tt></td> <td>֤߰ޤǺ</td></tr>
^<tr> <td><tt>^L</tt></td> <td>줿ɽιԤɽ</td></tr>
^<tr> <td><tt>^U</tt></td> <td>Τκ</td></tr>
^<tr> <td><tt>^W</tt></td> <td>ľñ</td></tr>
^<tr> <td><tt>^V</tt></td> <td>μΥԽޥɤȸʤʤ</td></tr>
^<tr> <td><tt>TAB</tt></td> <td>ե̾䴰ư</td></tr>
^</tbody>
^<tbody>
^<tr> <th></th> <th></th></tr>
^<tr> <td><tt>^P</tt></td> <td>ذư</td></tr>
^<tr> <td><tt>^N</tt></td> <td>ذư</td></tr>
^<tr> <td><tt>^R</tt></td> <td></td></tr>
^</tbody>
^</table>
2 (Comments)
?comments
ȵ `#` ϡޥɹΤۤȤɤɤˤǤȤǤ
ΤȤ `gnuplot` ϡιԤλĤʬ̵뤷ޤ
`#` ϰǤϤθ̤ޤȹԤ '\' ǽä
硢ιԤ⥳ȤΰȤư뤳ȤդƤ
ǡեФ륳ʸλˤĤƤϡʲ:
`set datafile commentschars`
2 ɸ (Coordinates)
?coordinates
=axes
ޥ `set arrow`, `set key`, `set label`, `set object` ϥվ
Ǥդΰ֤Ǥޤΰ֤ϰʲνǻꤷޤ:
{<system>} <x>, {<system>} <y> {,{<system>} <z>}
ƺɸϻ <system> ˤϡ`first`, `second`, `polar`, `graph`,
`screen`, `character` Τ줫ޤ
`first` ϺȲμ x,y (3D ξ z ) κɸϤ
ޤ`second` x2, y2 (ȱμ) Ѥޤ`graph` ϥ
ΰŪ֤ꤷ 0,0 夬 1,1 (splot
ϥΰκ 0,0,0 ǡΰ֤ z ͤ
ޤʲ: `set xyplane`) Ȥʤޤ`screen` ɽϰ (
ΤǤꡢ`set size` ʬǤϤޤ) ꤷ
0,0 夬 1,1 Ȥʤޤ`character` ɸϼˤ
Τ˻ѤŪʰ֤ΤǤϤޤ`character` ο
ʿľϡѤƤեȤ˰¸ޤ
`polar` ϡǽ 2 Ĥͤx, y ǤϤʤ theta Ⱦ r Ǥ
Ȳᤷޤϡ㤨 2 ζ˺ɸ뤤 3 ɸ
Υդ˥٥֤ΤΩĤǤ礦
x κɸϤꤵƤʤ `first` Ȥޤy κɸϤ
ꤵƤʤ x ФɸϤѤޤ
ͿɸŪʰ֤ǤϤʤŪͤǤ⤢ޤ (㤨
`set arrow` ... `rto` 2 ܤο)ΤۤȤɤͿ줿
ͤǽΰ֤Ф뺹ȤƻȤޤͿ줿ɸпˤ
ϡŪͤΨȤƲᤵޤ㤨
set logscale x
set arrow 100,5 rto 10,2
ϡx п y μʤΤǡ100,5 ΰ֤ 1000,7 ΰ
֤ؤȤˤʤޤ
(뤤Ϥʾ) μּǤ硢`timefmt` νʸ
˽äơǰϤޤ줿ʸŬڤʺɸꤹɬפ
ʲ: `set xdata`, `set timefmt`ޤ`gnuplot` ɽ
ǧƤơξ礽 1970 ǯ 1 1 ÿȲᤵ
2 ʸǡ (Datastrings)
?datastrings
ǡեˤϡۥ磻ȥڡ (䥿) ޤޤʤǤդΰ
ǽʸ뤤 2 ŰǰϤޤ줿Ǥդʸ (ۥ磻ȥ
ޤޤƤɤ)Τ줫ηʤʸǡ뤳
ȤǽǤǡե˼Τ褦ʹԤޤޤƤ硢 4
Ĥޤߡ3 ܤƥʬǤȸʤޤ:
1.000 2.000 "Third column is all of this text" 4.00
ƥʬ 2 3 㤨аʲΤ褦˻Ѥޤ:
plot 'datafile' using 1:2:4 with labels
splot 'datafile' using 1:2:3:4 with labels
ƥʬǡ 1 ġޤʣ輴Υ٥Ȥ
ƻѤǤޤϡϥǡ 3 ܤ 4 ܤ (X,Y) ɸ
ƼФʬ褷ޤξ
gnuplot ϡx ˱äɸŪ˴֤ζ٥ΤĤ
ĤΤǤϤʤϥǡե 1 ܤ X ɸΰ֤ˡ
ߤʸ x ˱äƤĤƹԤޤ
set xtics
plot 'datafile' using 3:4:xticlabels(1) with linespoints
=columnheader
ϥǡκǽΥȥ (ʤθФ) ƥʬȲ
᤹⤦ĤΥץꡢϥƥʬ褷
Υǡ (key) ΥȥʬȤƻѤޤϡƬ
Ԥ 2 ܤʬܥåΥȥΤ˻Ѥ
2,4 ܤᤵ줿褹Τ˽ޤ:
plot 'datafile' using 1:(f($2)/$4) with lines title columnhead(2)
̤:
plot for [i=2:6] 'datafile' using i title "Results for ".columnhead(i)
ƬѤˡϡ`set datafile columnheaders`
`set key autotitle columnhead` ǼưǤޤʲ: `labels`,
`using xticlabels`, `plot title`, `using`, `key autotitle`
2 ĥʸ⡼ (Enhanced text mode)
?enhanced text
?enhanced
?text_markup
?markup
?bold
?italic
¿νϷĥʸ⡼ (enhanced text mode) ݡ
Ƥޤϡʸɲäνᤳߤޤ㤨 "x^2"
x μ̾桹դ 2 ĤǽФޤ
⡼ɤϡϷ˥ǥեȤȤޤθ
`set termoption [no]enhanced` ȤäƤεǽͭ/̵ˤǤޤ
`set label "x_2" noenhanced` Τ褦˸̤ʸФ̵ˤ
뤳ȤǤޤ
: TeX ١νϷ (㤨 cairolatex, pict2e, pslatex, tikz)
νϤǤϡ٤ƤΥƥʸˤϡ TeX/LaTeX ν
Ѥ٤Ǥʲ: `latex`
@start table - ޤ÷ƥȷ
浭
^ a^x դʸ
_ a_x դʸ
@ @x, a@^b_{cd} ܥå (ʤ)
& &{space} ꤷĹΥڡ
~ ~a{.8-} 'a' ξ '-' ߤΥեȥ
.8 ܻ夲֤˽Ťͽ
{/Times abc} Times եȡΥ abc
{/Times*2 abc} Times եȡܤΥ abc
{/Times:Italic abc} TImes եȡåΤ abc
{/Arial:Bold=20 abc} Arial եȡ 20 abc
\U+ \U+221E Unicode ɥݥ U+221E (̵)
#\begin{tabular}{|clll|} \hline
#\multicolumn{4}{|c|}{ĥʸ浭} \\ \hline
#浭 & & & \\ \hline
#\verb~^~ & \verb~a^x~ & $a^x$ & դʸ\\
#\verb~_~ & \verb~a_x~ & $a_x$ & դʸ\\
#\verb~@~ & \verb~a@^b_{cd}~ & $a^b_{cd}$ & ܥå (ʤ)\\
#\verb~&~ & \verb~d&{space}b~ & d\verb*+ +b & ꤷĹΥڡ\\
#\verb|~| & \verb|~a{.8-}| & $\tilde{a}$ & 'a' ξ '-' ߤΥեȥ\\
#\verb~ ~ & \verb~ ~ & ~ ~ & .8 ܻ夲֤˽Ťͽ\\
#\verb| | & \verb|{/Times abc}| & {\rm abc} & Times եȡΥ abc \\
#\verb| | & \verb|{/Times*2 abc}| & \Large{\rm abc} & Times եȡܤΥ abc\\
#\verb| | & \verb|{/Times:Italic abc}| & {\it abc} & Times եȡåΤ abc\\
#\verb| | & \verb|{/Arial:Bold=20 abc}| & \Large\textsf{\textbf{abc}} & Arial եȡ 20 abc\\
#\verb|\U+| & \verb|\U+221E| & $\infty$ & Unicode ɥݥ U+221E ̵\\
%c c l .
C ugly - doc2ms uses @ for column separator, but here we
C need @ in table, so end and restart the table !
%.TE
%.TS
%center box tab ($) ;
%c c l .
%浭$$
%_
%^$a^x$դʸ
%\&_$a\&_x$դʸ
% @ $ @x, a\&@^b\&_{cd}$ܥå (ʤ)
% & $ &{space}$ꤷĹΥڡ
% ~ $ ~a{.8-}$'a' ξ '-' ߤΥեȥ
% $ $ .8 ܻ夲֤˽Ťͽ
@end table
^<table align="center" border="1" rules="groups" frame="hsides" cellpadding="3">
^<colgroup>
^ <col align="center">
^ <col align="center">
^ <col align="left">
^</colgroup>
^<thead>
^<tr> <th>浭</th> <th></th> <th></th></tr>
^</thead>
^<tbody>
^<tr> <td><tt> ^ </tt></td> <td><tt>a^x</tt></td> <td>դʸ</td></tr>
^<tr> <td><tt> _ </tt></td> <td><tt>a_x</tt></td> <td>դʸ</td></tr>
^<tr> <td><tt> @ </tt></td> <td><tt> @x</tt>, <tt>a@^b_{cd}</tt></td> <td>ܥå (ʤ)</td></tr>
^<tr> <td><tt> &</tt></td> <td><tt> &{space}</tt></td> <td>ꤷĹΥڡ</td></tr>
^<tr> <td><tt> ~ </tt></td> <td><tt> ~a{.8-}</tt></td> <td>'a' ξ '-' ߤΥեȥ<br> .8 ܻ夲֤˽Ťͽ</td></tr>
^</tbody>
^</table>
ʸϡ³ 1 ʸޤ楫åǰϤޤ줿ΤŬ
ޤ楫åˤϡ㤨 2^{10} Τ褦ɲäνʸΤʤ
ʸޤϥեȤ°ѹɲʸ뤳Ȥ
ޤեȻϡ楫å '{' ľ³ '/' Τ˽
ʤС֤ޤסե̾˥ڡޤޤ硢ñ
졢ޤŰǰϤޤʤФޤ
: ǽϤ楫åҤƤơܡΤ A ˥
åΤβդź i ĤΤ⸽ߤΥեȤ
ޤ :Normal ȡդźϥܡΤǤĥ
åΤˤʤޤ2 ܤƱ 20 ݥȥ
"Times New Roman" եȤŬѤΤǤ
{/:Bold A_{/:Normal{/:Italic i}}}
{/"Times New Roman":Bold=20 A_{/:Normal{/:Italic i}}}
ܥå (phantom box) a@^b_c ξդʸȲդʸ·
ͭѤǤʸ˥ƥޡŤͤˤϤޤƯ
ޤŪΤˤϡȤ䤽¾Υƥ
Τʸĥ (㤨 utf8) ѤǤ
ʲ: `set encoding`ΥܥåϥڡԤʤʤ
Τǡܥå (Ĥޤ @ θ) ξդʸ䲼դʸû
ΤŬƤޤ
ʸƱĹΥڡʸ '&' ȤȤ뤳ȤǤ
ޤʤ
'abc&{def}ghi'
ϰʲޤ (abc ghi δ֤ 3 ʸʬζ):
'abc ghi'
ʸ '~' ϡʸޤϥåǰϤޤ줿ʸˡ³ʸ
ޤϥåǰϤޤ줿ʸŤͽޤ2 ܤʸϺǽʸ
ˤ碌ƿʿ˥ޤä '~a/' 'a' Ӥ
ʥå夬ޤ2 ܤʸϡ˿֤Ȥǿ
ľ˰ư뤳ȤǤޤοϸߤΥեȥФ
̣˽äʸ夬ä겼äꤷޤξ
ʸ 1 ʸĹʤΤǥåǰϤɬפޤŤ
ʸϤޤäƤϡľˤ餹ͤʸ
δ֤˥ڡƤ ('~{abc}{.5 000}')ʳϥڡ
פǤ ('~{abc}{.5---}')뤤ξΥեȤѹ뤳
ȤǤޤ ('~a{.5 /*.2 o}'; 'a' 1/5 礭 'o'ξ
ȥåδ֤ΥڡɬפǤ) ʸϤޤä
뤳ȤϤǤޤ줾ʸǡ¾üʽȤ
ǤޤʸϥפʤȤޤ: ե
åդ a (\U+00E2) ˤ '~a{.8\^}' Ȥޤ
ŰʸñʸȤϰۤʤäƲᤵ뤳Ȥ
դƤʰ㤤ϡŰʸǤϥХåå
2 ĽŤͤɬפ뤳ȤǤ
gnuplot ʪ /docs/psdoc ֥ǥ쥯ȥˤե
"ps_guide.ps" ˡĥ줿˴ؤ㤬ܤäƤޤƱͤΤΤ
ǥ
^ <a href="http://www.gnuplot.info/demo/enhanced_utf8.html">
`enhanced_utf8.dem`
^ </a>
ˤ⤢ޤ
3 ץ (escape sequences)
?escape sequences
?enhanced text escape sequences
?unicode
Хååʸ \ ϡ1 Хʸɡޤ Unicode ɥ
ȤפΤ˻Ȥޤ
\ooo η (ooo 8 ͤ 3 ʸ) ϡΥեȥ
ʸֹؤΤ˻Ȥޤ㤨СAdobe Symbol եȤϡ
̵ε 8 245 ֤Ǽ褦ʥ२ɤѤޤ
ϡĥʸȤƥե̾ʸɤ "{/Symbol \245}" Τ
˻ꤹ뤳ȤळȤǤޤϼ PostScript Ϸ
ͭѤǤ UTF-8 ǥνưפˤϹԤޤ
\U+hhhh η Unicode ΥɥݥȤʸꤹ뤳ȤǤ
hhhh 16 ͤ 4 ޤ 5 ʸǤ㤨С̵ε
ΥɥݥȤ \U+221E Ǥϡɬפʤнϻ UTF-8
ХѴޤUTF-8 ĶǤϡǽüʸ¾ʸ
ƱͤʸǽǤΤǡλȤߤɬפޤ
Ϸʸȯ (㤨Х٥ȥ̣뤿ʸξ
ʤ) ˤͭѤǤʲ: `set encoding`, `utf8`ޤ
^ <a href="http://www.gnuplot.info/demo_5.4/unicode.html">
饤˥ɥǥ
^ </a>
ȡ
2 Ķѿ (Environment)
?environment
`gnuplot` ¿ΥĶѿǧޤɬܤΤΤϤޤ
GNUTERM ϡ줬ƤСư "set term" Ϥޤ
ϡƥࡢޤϸĿŪʽեˤ (ʲ:
`startup`)䡢θŪ `set term` ޥɤˤ
ѹǤޤ
terminal ץ뤳ȤǤޤ:
bash$ export GNUTERM="postscript eps color size 5in, 3in"
GNUHELP ϡ줬ƤСإץե (gnuplot.gih) Υ
̾ꤷޤ
ưνˤϡե $HOME/.gnuplot
$XDG_CONFIG_HOME/gnuplot/gnuplotrc õޤMS-DOS, Windows, OS/2
Ǥ GNUPLOT USERPROFILE ǻꤵ줿եõޤܺ٤ˤĤ
Ƥϰʲ: `startup`
Unix ˤƤϡPAGER إץåνѤΥե륿ȤƻȤ
ޤ
Unix ǤϡSHELL `shell` ޥɤκݤ˻ȤޤMS-DOS, OS/2
COMSPEC Ȥޤ
FIT_SCRIPT ϡƤϤ (fit) Ǥ줿Ȥ˼¹Ԥ `gnuplot`
ޥɤλ˻Ȥޤʲ: `fit`FIT_LOG ƤϤˤ
եΥǥեȤΥե̾λ˻Ȥޤ
GNUPLOT_LIB ϡǡ䥳ޥɥեθǥ쥯ȥɲ
Τ˻ȤޤѿϡĤΥǥ쥯ȥ̾ޤʣΥǥ
ȥ̾ȤǤޤǥ쥯ȥζڤϥץåȥۡ
˰㤤ޤ㤨 Unix Ǥ ':' ǡMS-DOS, Windows, OS/2 Ǥ ';'
GNUPLOT_LIB ͤѿ `loadpath` ɲäޤ `save`
`save set` ޥɤǤ¸ޤ
ϥɥ饤Фˤ gd 饤֥ͳ TrueType եȤ
⤤Ĥޤ (ʲ: `fonts`)νϷǤϡ
GDFONTPATH GNUPLOT_DEFAULT_GDFONT եȤ˱ƶͿޤ
postscript ϥɥ饤ФϼʬǻäƤեȸѥȤޤ
ϡĶѿ GNUPLOT_FONTPATH Ǥޤ
PostScript ɥ饤Фϡ (Ȥ߹ޤƤʤ) եõ
˴Ķѿ GNUPLOT_PS_DIR ѤޤȡκȤˤꡢ
gnuplot ˤϤΥեΥԡȤ߹ޤƤ뤫ޤϥǥե
ȤΥѥޤƤޤѿϡpostscript Ϸǥǥ
ȤΥե˥ޥ prologue եѤ
ΤѤǤޤʲ: `postscript prologue`
2 (Expressions)
?expressions
?division
Ūˤ C, FORTRAN, Pascal, BASIC ˤѲǽʿɽ
Ǥޤ 黻Ҥ̤ͥ C λͤ˽ޤζʸ
ȥʸ̵뤵ޤ
gnuplot "¿" "" 黻 FORTRAN C Τ褦˰Ȥ
դƤ"1", "-10" ʤɤȸʤ졢"1.0", "-10.0",
"1e1", 3.5e-1 ʤɤϼ¿ȸʤޤ 2 ĤΤäȤפʰ
ϳ任Ǥγ任ڤΤƤޤ: 5/2 = 2¿ϤǤϤ
ޤ: 5.0/2.0 = 2.5餬ߤξ硢ϼ
"ĥ" ޤ: 5/2e0 = 2.5dz硢
ͤϥѥˤäѤޤ"print -5/2" ȤơʤΥ
बڤΤƤ (-5/2 -3 ˤʤ) Τޤ 0 ζ˴ݤ
(-5/2 -2 ˤʤ) ΤǧƤ
"1/0" "̤ (undefined)" ե饰ˤꤽ
̵뤷ޤ뤤ϡ餫Ƥ NaN ȤäƤƱ
ȤˤʤޤˤĤƤϡʲ: `using`
=NaN
gnuplot ʸФñʱ黻ʸѿѤǤޤ
м ("A" . "B" eq "AB") Ͽɾޤʸη
Ҥʸ黻Ҥ̣Ƥޤ
ȤƤͤޤʸϡ줬Ѥ줿ϡб
¿Ѵޤäơ("3" + "4" == 7) (6.78 == "6.78")
ɤˤʤޤϡ줬ʸ黻ҤǻȤ줿ʸ
Ѵޤ¿ʣǿϥǤŵŪϡե̾
¾ʸȤǤ礦: 㤨 ("file" . 4 eq "file4")
ϿǤ
ֻꤹϰϵһ [beg:end] ˤäơʬʸꤹ뤳Ȥ
Ǥޤ㤨С"ABCDEF"[3:4] == "CD" ǡ"ABCDEF"[4:*] == "DEF"
"string"[beg:end] ϡʸͤȤ߹ߴؿ
substr("strings",beg,end) Ƥ֤ȤȤۤƱǤؿƤӽФǤ
beg, end Ͼά뤳ȤϤǤޤ
3 ʣǿ (Complex values)
?complex values
?complex
α黻ҤȤۤȤɤȤ߹ߴؿʣǿλѤݡȤƤ
ޤʣϡ{<real>,<imag>} ɽ<real> <imag> ϡ
Ǥɬפޤäơ{0,1} 'i' ̣ޤ
ߤ gnuplot ϡ餫 I = {0,1} ѿȤƤơ¾
ѿʣǿͤΤ˻Ȥ褦ˤƤޤĤޤꡢ`x + y*I`
ʤΤǤ`{x,y}` ϤǤϤޤ
ʣǿ z μ¿ʬȵʬϡreal(z), imag(z) ȤƼФޤ
Ĺ abs(z) ǡгѤ arg(z) ޤ
Ffigure_E0
gnuplot 2 3 襹ϡ¿ͤꤷƤޤ
ä 0 Ǥʤʬʣǿʹؿ f(x) 褹ϡ¿
ʬʬ뤤ĹгѤ褵ʤФޤ
㤨ʣǰФؿ f(z) ʣǿͤĹгѤɽˤϡ
Ĺ̤ι⤵гѤɽȤ꤬ޤ
ξ硢HSV ֤Υ顼ѥåȤѤơ0 1 ϰϤ H ʬ
() arg(z) ֤гѤϰ [-:] ˳ơгѤ 1
鿧褦ˤǤ礦ǥեȤǤϡ H = 0
() Ϥޤޤ`set palette` `start` ɤȤäƤ
ϰ֤ѹH ¾ͤ 0 ˳Ƥ뤳ȤǽǤ
ʲϡH = 0.3 () 鳫Ϥ褦ˤƤޤʲ:
`set palette defined`, `arg`, `set angles`
set palette model HSV start 0.3 defined (0 0 1 1, 1 1 1 1)
set cbrange [-pi:pi]
set cbtics ("-" -pi, "" pi)
set pm3d corners2color c1
E0(z) = exp(-z)/z
I = {0,1}
splot '++' using 1:2:(abs(E0(x+I*y))):(arg(E0(x+I*y))) with pm3d
3 (Constants)
?constants
?expressions constants
?octal
?hexadecimal
?complex constants
ϡC strtoll() 饤֥롼ȤäƲᤷޤ
ϡ"0" ǻϤޤ 8 ʿȡޤ "0x" "0X" ǻϤޤ
16 ʿȤߤʤȤ̣ޤ
¿ (ư) ϡC atof() 饤֥롼ȤäƲᤷ
ʣǿ {<real>,<imag>} ɽޤ <real> <imag>
() ϿǤɬפޤ㤨С{0,1} 'i'
ɽ{3,2} 3 + 2i ɽޤˤŪ楫åȤɬ
פޤ gnuplot Ǥϡ餫 I = {0,1} ѿȤ
ơŪʷϤ빩פƤޤ㤨С`3 + 2*I`
`{3,2}` ƱǤϵʬѿȤȤ̤ͥ
ʤ`x + y*I` Ǥ`{x,y}` ϤǤϤޤ
ʸñ䤫ŰΤ줫ǰϤޤ줿Ǥդʸ¤
ʤΤǤñŰΰ㤤ϽפǤʲ:
`quotes`
:
1 -10 0xffaabb #
1.0 -10. 1e1 3.5e-1 # ¿
{1.2, -3.4} # ʣǿ
"Line 1\nLine 2" # ʸ (\n ϲԤŸ)
'123\na456' # ʸ (\ n ϤΤޤޤʸ)
#TeX \newpage
3 ؿ (Functions)
?expressions functions
äդʤС`gnuplot` οشؿΰ¿ʣǿ
뤳ȤǤޤѤͤȤؿ (㤨 sin(x)) ϡ
ͤ饸Ȥưޤϥޥ `set angles` ˤä
٤ѹǤޤ
^<table align="center" border="1" rules="groups" frame="hsides" cellpadding="3" width="90%">
^<colgroup>
^ <col align="center">
^ <col align="center">
^ <col align="left">
^</colgroup>
^<thead>
^<tr> <th colspan="3"> إ饤֥ꡢȤ߹ߴؿ </th></tr>
^<tr> <th>ؿ</th> <th></th> <th></th></tr>
^</thead>
^<tbody>
^<tr> <td>abs(x)</td> <td>ޤϼ¿</td> <td>|<i>x</i>|, <i>x</i> ; Ʊ</td></tr>
^<tr> <td>abs(x)</td> <td>ʣǿ</td> <td><i>x</i> Ĺ, √( Re(<i>x</i>)<sup>2</sup> + Im(<i>x</i>)<sup>2</sup> )</td></tr>
^<tr> <td>acos(x)</td> <td>Ǥ</td> <td>cos<sup>-1</sup> <i>x</i> ()</td></tr>
^<tr> <td>acosh(x)</td> <td>Ǥ</td> <td>cosh<sup>-1</sup> <i>x</i> (ж;)</td></tr>
^<tr> <td>airy(x)</td> <td>¿</td> <td>¿ x Ф륨 (Airy) ؿ Ai(<i>x</i>)</td></tr>
^<tr> <td>arg(x)</td> <td>ʣǿ</td> <td><i>x</i> г</td></tr>
^<tr> <td>asin(x)</td> <td>Ǥ</td> <td>sin<sup>-1</sup> <i>x</i> ()</td></tr>
^<tr> <td>asinh(x)</td> <td>Ǥ</td> <td>sinh<sup>-1</sup> <i>x</i> (ж)</td></tr>
^<tr> <td>atan(x)</td> <td>Ǥ</td> <td>tan<sup>-1</sup> <i>x</i> ()</td></tr>
^<tr> <td>atan2(y,x)</td> <td>ޤϼ¿</td> <td>tan<sup>-1</sup>(<i>y/x</i>) ()</td></tr>
^<tr> <td>atanh(x)</td> <td>Ǥ</td> <td>tanh<sup>-1</sup> <i>x</i> (ж)</td></tr>
^<tr> <td>besj0(x)</td> <td>¿</td> <td>饸Ǥ <i>J</i><sub>0</sub> ٥åؿ (0 ٥åؿ)</td></tr>
^<tr> <td>besj1(x)</td> <td>¿</td> <td>饸Ǥ <i>J</i><sub>1</sub> ٥åؿ (1 ٥åؿ)</td></tr>
^<tr> <td>besjn(n,x)</td> <td>, ¿</td> <td>饸Ǥ <i>J</i><sub>n</sub> ٥åؿ (n ٥åؿ)</td></tr>
^<tr> <td>besy0(x)</td> <td>¿</td> <td>饸Ǥ <i>Y</i><sub>0</sub> ٥åؿ (0 Υޥؿ)</td></tr>
^<tr> <td>besy1(x)</td> <td>¿</td> <td>饸Ǥ <i>Y</i><sub>1</sub> ٥åؿ (1 Υޥؿ)</td></tr>
^<tr> <td>besyn(n,x)</td> <td>, ¿</td> <td>饸Ǥ <i>Y</i><sub>n</sub> ٥åؿ (n Υޥؿ)</td></tr>
^<tr> <td>besi0(x)</td> <td>¿</td> <td>饸Ǥ <i>I</i><sub>0</sub> ѷ٥åؿ (0 ѷ٥åؿ</td></tr>
^<tr> <td>besi1(x)</td> <td>¿</td> <td>饸Ǥ <i>I</i><sub>1</sub> ѷ٥åؿ (1 ѷ٥åؿ</td></tr>
^<tr> <td>besin(n,x)</td> <td>, ¿</td> <td>饸Ǥ <i>I</i><sub>n</sub> ѷ٥åؿ (n ѷ٥åؿ</td></tr>
^<tr> <td>cbrt(x)</td> <td>¿</td> <td>x λ躬Ͱ϶˼¿</td></tr>
^<tr> <td>ceil(x)</td> <td>Ǥ</td> <td>⌈<i>x</i>⌉, <i>x</i> (μ) ʾκǾ</td></tr>
^<tr> <td>conj(x)</td> <td>ʣǿ</td> <td><i>x</i> ʣǶ</td></tr>
^<tr> <td>cos(x)</td> <td>radians</td> <td>cos <i>x</i>, <i>x</i> Υ</td></tr>
^<tr> <td>cosh(x)</td> <td>Ǥ</td> <td>cosh <i>x</i>, 饸Ǥ <i>x</i> Υϥѥܥå</td></tr>
^<tr> <td>EllipticK(k)</td> <td>(-1:1) μ¿ k</td> <td><i>K(k)</i> 1 ﴰʱʬ</td></tr>
^<tr> <td>EllipticE(k)</td> <td>[-1:1] μ¿ k</td> <td><i>E(k)</i> 2 ﴰʱʬ</td></tr>
^<tr> <td>EllipticPi(n,k)</td> <td>¿ n<1, (-1:1) μ¿ k</td> <td> Π(<i>n,k</i>) 3 ﴰʱʬ</td></tr>
^<tr> <td>erf(x)</td> <td>Ǥ</td> <td>erf(Re(<i>x</i>)), <i>x</i> μθؿ</td></tr>
^<tr> <td>erfc(x)</td> <td>Ǥ</td> <td>erfc(Re(<i>x</i>)), 1.0 - (<i>x</i> μθؿ)</td></tr>
^<tr> <td>exp(x)</td> <td>Ǥ</td> <td><i>e<sup>x</sup></i>, <i>x</i> λؿؿ</td></tr>
^<tr> <td>expint(n,x)</td> <td>Ǥ</td> <td><i>E<sub>n</sub></i>(<i>x</i>), <i>x</i> λؿʬ</td></tr>
^<tr> <td>floor(x)</td> <td>Ǥ</td> <td>⌊<i>x</i>⌋, <i>x</i> (μ) ʲκ</td></tr>
^<tr> <td>gamma(x)</td> <td>Ǥ</td> <td>Γ(Re(<i>x</i>)), <i>x</i> μΥؿ</td></tr>
^<tr> <td>ibeta(p,q,x)</td> <td>Ǥ</td> <td>ibeta(Re(<i>p,q,x</i>)), <i>p</i>,<i>q</i>,<i>x</i> μԴ١ؿ</td></tr>
^<tr> <td>inverf(x)</td> <td>Ǥ</td> <td><i>x</i> μεոؿ</td></tr>
^<tr> <td>igamma(a,z)</td> <td>ʣǿ</td> <td>igamma(<i>a>0,z</i>), ʣǿ <a>a>0</a>,<i>z</i> Դؿ</td></tr>
^<tr> <td>imag(x)</td> <td>ʣǿ</td> <td>Im(<i>x</i>), <i>x</i> εʬ (¿)</td></tr>
^<tr> <td>int(x)</td> <td>¿</td> <td><i>x</i> ʬ (0 ˸äƴݤ)</td></tr>
^<tr> <td>invibeta(a,b,p)</td> <td>0<p<1</td> <td>Դ١ؿ</td></tr>
^<tr> <td>invigamma(a,p)</td> <td>0<p<1</td> <td>Դؿ</td></tr>
^<tr> <td>invnorm(x)</td> <td>Ǥ</td> <td><i>x</i> μεʬ۴ؿ</td></tr>
^<tr> <td>LambertW(z,k)</td> <td>ʣǿ, </td> <td>ʣ Lambert W ؿ k ʬ</td></tr>
^<tr> <td>lambertw(x)</td> <td>¿</td> <td>Lambert <i>W</i> ؿμ ( 0 ʬ)</td></tr>
^<tr> <td>lgamma(x)</td> <td>¿</td> <td>lgamma(Re(<i>x</i>)), <i>x</i> μΥпؿ</td></tr>
^<tr> <td>lnGamma(x)</td> <td>ʣǿ</td> <td>ʣʿΤ lnGamma(x)</td></tr>
^<tr> <td>log(x)</td> <td>Ǥ</td> <td>ln <i>x</i>, <i>x</i> μп ( <i>e</i>)</td></tr>
^<tr> <td>log10(x)</td> <td>Ǥ</td> <td>log<sub>10</sub> <i>x</i>, <i>x</i> п ( 10)</td></tr>
^<tr> <td>norm(x)</td> <td>Ǥ</td> <td>norm(<i>x</i>), <i>x</i> μʬ۴ؿ</td></tr>
^<tr> <td>rand(x)</td> <td></td> <td> (0:1) ε</td></tr>
^<tr> <td>real(x)</td> <td>Ǥ</td> <td>Re(<i>x</i>), <i>x</i> μ¿ʬ</td></tr>
^<tr> <td>sgn(x)</td> <td>Ǥ</td> <td><i>x</i> > 0 ʤ 1, <i>x</i> < 0 ʤ -1, <i>x</i> = 0 ʤ 0. <i>x</i> ε̵</td></tr>
^<tr> <td>Sign(x)</td> <td>ʣǿ</td> <td><i>x</i> = 0 ʤ 0ʳ <i>x</i>/|<i>x</i>|</td></tr>
^<tr> <td>sin(x)</td> <td>Ǥ</td> <td>sin <i>x</i>, <i>x</i> Υ</td></tr>
^<tr> <td>sinh(x)</td> <td>Ǥ</td> <td>sinh <i>x</i>,饸Ǥ <i>x</i> Υϥѥܥå</td></tr>
^<tr> <td>sqrt(x)</td> <td>Ǥ</td> <td>√<i>x</i>, <i>x</i> ʿ</td></tr>
^<tr> <td>SynchrotronF(x)</td> <td>¿</td> <td>( 1) ȥؿ F</td></tr>
^<tr> <td>tan(x)</td> <td>Ǥ</td> <td>tan <i>x</i>, <i>x</i> Υ</td></tr>
^<tr> <td>tanh(x)</td> <td>Ǥ</td> <td>tanh <i>x</i>, 饸Ǥ <i>x</i> Υϥѥܥå</td></tr>
^<tr> <td>uigamma(a,x)</td> <td>¿</td> <td>uigamma(<i>a,x</i>), Դؿ <a>a>0</a>,<i>x</i></td></tr>
^<tr> <td>voigt(x,y)</td> <td>¿</td> <td>ؿȥĴؿξߤ</td></tr>
^<tr> <td>zeta(s)</td> <td>Ǥ</td> <td>ޥؿ </td></tr>
^</tbody>
^</table>
^<p> </p>
^<table align="center" border="1" rules="groups" frame="hsides" cellpadding="3" width="90%">
^<colgroup>
^ <col align="center">
^ <col align="center">
^ <col align="left">
^</colgroup>
^<thead>
^<tr> <th colspan="3">libcerf (ѲǽʾΤ) ˤüؿ</th></tr>
^<tr> <th>ؿ</th> <th></th> <th></th></tr>
^</thead>
^<tbody>
^<tr> <td>cerf(z)</td> <td>ʣǿ</td> <td>ʣǸؿ</td></tr>
^<tr> <td>cdawson(z)</td> <td>ʣǿ</td> <td>ʣ Dawson ʬ</td></tr>
^<tr> <td>faddeeva(z)</td> <td>ʣǿ</td> <td>ƥ벽ʣǸؿ <i>w</i>(<i>z</i>) = exp(-<i>z</i><sup>2</sup>) erfc(-i<i>z</i>)</td></tr>
^<tr> <td>erfi(x)</td> <td>¿</td> <td>ؿ erfi(<i>x</i>) = -i erf(i<i>x</i>)</td></tr>
^<tr> <td>FresnelC(x)</td> <td>¿</td> <td>եͥʬΥ (¿) ʬ</td></tr>
^<tr> <td>FresnelS(x)</td> <td>¿</td> <td>եͥʬΥ () ʬ</td></tr>
^<tr> <td>VP(x,sigma,gamma)</td> <td>¿</td> <td>Voigt ץե</td></tr>
^<tr> <td>VP_fwhm(sigma,gamma)</td> <td>¿</td> <td>Voigt ץեȾ (FWHM)</td></tr>
^</tbody>
^</table>
^<p> </p>
^<table align="center" border="1" rules="groups" frame="hsides" cellpadding="3" width="90%">
^<colgroup>
^ <col align="center">
^ <col align="center">
^ <col align="left">
^</colgroup>
^<thead>
^<tr> <th colspan="3"> ʸؿ </th></tr>
^<tr> <th>ؿ</th> <th></th> <th></th></tr>
^</thead>
^<tbody>
^<tr> <td>gprintf("format",x,...)</td> <td>Ǥ</td> <td>gnuplot νϴŬѤ̤ʸ</td></tr>
^<tr> <td>sprintf("format",x,...)</td> <td>ʣ</td> <td>C sprintf ֤ʸ</td></tr>
^<tr> <td>strlen("string")</td> <td>ʸ</td> <td>ʸʸ</td></tr>
^<tr> <td>strstrt("string","key")</td> <td>ʸ</td> <td>ʬʸ "key" Ƭ</td></tr>
^<tr> <td>substr("string",beg,end)</td> <td>ʣ</td> <td>ʸ "string"[beg:end]</td></tr>
^<tr> <td>split("string","separator")</td> <td>ʸ</td> <td>ʸθġΥեɤ</td></tr>
^<tr> <td>join(array,"separator")</td> <td>, ʸ</td> <td>Ǥʸ˷</td></tr>
^<tr> <td>strftime("timeformat",t)</td> <td>Ǥ</td> <td>gnuplot ˤϷ̤ʸ</td></tr>
^<tr> <td>strptime("timeformat",s)</td> <td>ʸ</td> <td>ʸ s Ѵ 1970 ǯÿ</td></tr>
^<tr> <td>system("command")</td> <td>ʸ</td> <td>륳ޥɤνϤʸ</td></tr>
^<tr> <td>trim(" string ")</td> <td>ʸ</td> <td>ˤĤʸ</td></tr>
^<tr> <td>word("string",n)</td> <td>ʸ, </td> <td>ʸ "string" n ܤñ</td></tr>
^<tr> <td>words("string")</td> <td>ʸ</td> <td>ʸ "string" ñ</td></tr>
^</tbody>
^</table>
^<p> </p>
^<table align="center" border="1" rules="groups" frame="hsides" cellpadding="3" width="90%">
^<colgroup>
^ <col align="center">
^ <col align="center">
^ <col align="left">
^</colgroup>
^<thead>
^<tr> <th colspan="3"> ؿ </th></tr>
^<tr> <th>ؿ</th> <th></th> <th></th></tr>
^</thead>
^<tbody>
^<tr> <td>time(x)</td> <td>Ǥ</td> <td>ߤΥƥ</td></tr>
^<tr> <td>timecolumn(N,format)</td> <td>, ʸ</td> <td> ϥǡ <i>N</i> ܤνǡ</td></tr>
^<tr> <td>tm_hour(t)</td> <td>ÿˤ</td> <td></td></tr>
^<tr> <td>tm_mday(t)</td> <td>ÿˤ</td> <td> (η)</td></tr>
^<tr> <td>tm_min(t)</td> <td>ÿˤ</td> <td>ʬ</td></tr>
^<tr> <td>tm_mon(t)</td> <td>ÿˤ</td> <td></td></tr>
^<tr> <td>tm_sec(t)</td> <td>ÿˤ</td> <td></td></tr>
^<tr> <td>tm_wday(t)</td> <td>ÿˤ</td> <td>νβ</td></tr>
^<tr> <td>tm_week(t)</td> <td>ÿˤ</td> <td>ǯνֹ (ISO 8601)</td></tr>
^<tr> <td>tm_yday(t)</td> <td>ÿˤ</td> <td>ǯβ</td></tr>
^<tr> <td>tm_year(t)</td> <td>ÿˤ</td> <td></td></tr>
^<tr> <td>weekdate_iso(year,week,day)</td> <td></td> <td> ISO 8601 §Ǥνб</td></tr>
^<tr> <td>weekdate_cdc(year,week,day)</td> <td></td> <td> CDC ˤֳŪб</td></tr>
^</tbody>
^</table>
^<p> </p>
^<table align="center" border="1" rules="groups" frame="hsides" cellpadding="3" width="90%">
^<colgroup>
^ <col align="center">
^ <col align="center">
^ <col align="left">
^</colgroup>
^<thead>
^<tr> <th colspan="3"> ¾ gnuplot δؿ </th></tr>
^<tr> <th>ؿ</th> <th></th> <th></th></tr>
^</thead>
^<tbody>
^<tr> <td>column(x)</td> <td>ʸ</td> <td> ϥǡ <i>x</i> ܤ</td></tr>
^<tr> <td>columnhead(x)</td> <td></td> <td> ǡեκǽ <i>x</i> ʸ</td></tr>
^<tr> <td>exists("X")</td> <td>ʸ</td> <td> ѿ̾ X Ƥ 1, Ǥʤ 0</td></tr>
^<tr> <td>hsv2rgb(h,s,v)</td> <td>[0:1] μ¿ h,s,v</td> <td> HSV 24ӥåȤ RGB Ѵ</td></tr>
^<tr> <td>index(A,x)</td> <td>, Ǥ</td> <td> A[i] x i</td></tr>
^<tr> <td>palette(z)</td> <td>¿</td> <td> z ˳Ƥ줿 24 ӥå RGB ѥåȿ</td></tr>
^<tr> <td>rgbcolor("name")</td> <td>ʸ</td> <td> ̾ 32 ӥå ARGB </td></tr>
^<tr> <td>stringcolumn(x)</td> <td></td> <td> ʸȤƤ <i>x</i> ܤ</td></tr>
^<tr> <td>valid(x)</td> <td></td> <td> ǡ <i>x</i> </td></tr>
^<tr> <td>value("name")</td> <td>ʸ</td> <td> ̾ name ѿθߤ</td></tr>
^</tbody>
^</table>
C TeX troff Ϥ˴ؤƤɽϰʲΥإץ֤ޤ
C HTML إפ˴ؤƤɽȥξɬפʤΤǡʲΥޥå
C ޡ doc2html ؤΤΥʥȤƻѤޤ
^<!-- INCLUDE_NEXT_TABLE -->
@start table
#\begin{longtable}{@{\extracolsep{\fill}}|lcrl|@{}} \hline
#\multicolumn{4}{|c|}{إ饤֥ꡢȤ߹ߴؿ} \\ \hline \hline
#ؿ & & ~ & ({\gpCX } ʣǿ) \\ \hline
#\endhead \hline \endfoot
%c c l .
%ؿ@@
%_
4 abs
?expressions functions abs
?abs
#abs(x) & ޤϼ¿ & ~ & $x$ , $|x|$ \\
#abs(x) & ʣǿ & ~ & $x$ Ĺ, $\sqrt{{\mbox{real}(x)^{2} +
#\mbox{imag}(x)^{2}}}$ \\
%abs(x)@ޤϼ¿@$x$ , $|x|$
%abs(x)@ʣǿ@$x$ Ĺ, $sqrt{roman real (x) sup 2 + roman imag (x) sup 2}$
ؿ `abs(x)` ֤ͤޤ֤ͤηϰƱǤ
=norm
=modulus
ʣǿΰФƤ, abs(x) ʣʿ̤ˤ x Ĺ
ޤ [ʤ sqrt(real(x)**2 + imag(x)**2) ] x ΥΥ
(norm)ޤ x ʣ (modulus) ȤƤФޤ
4 acos
?expressions functions acos
?acos
#acos(x) & ~~ & \gpCX & $\cos^{-1} x$ () \\
%acos(x)@ ~~ @$cos sup -1 x$ ()
ؿ `acos(x)` ϰΥ (;) ֤ޤ`acos`
ͤ饸ñ̤ޤ٤Ǥ뤫 `set angles` ޤ
4 acosh
?expressions functions acosh
?acosh
#acosh(x) & ~~ & \gpCX & $\cosh^{-1} x$ (ж;) \\
%acosh(x)@ ~~ @$cosh sup -1 x$ (ж;)
ؿ `acosh(x)` ϵեϥѥܥå (ж;) ͤ
`set angles` ˽äƥ饸٤֤ޤ
4 airy
?expressions functions airy
?airy
#airy(x) & ¿ & ~ & ¿ x Ф륨ؿ Ai(x)\\
%airy(x)@ ¿ @¿ x Ф륨ؿ Ai(x)
ؿ `airy(x)` ϡ (Airy) ؿ Ai(x) ֤ͤޤؿ
Ai(x) ϡʬ y'' - x y = 0 Ρ¿ΤͭʲǤ
ʣǿξ硢εʬ̵뤵ޤ
4 arg
?expressions functions arg
?arg
#arg(x) & ʣǿ & ~ & $x$ г, $-\pi\leq$arg($x$)$\leq\pi$ \\
%arg(x)@ʣǿ@$x$ г
ؿ `arg(x)` ʣǿгѤ`set angles` ˤäƥ饸
ޤ٤֤ޤ
4 asin
?expressions functions asin
?asin
#asin(x) & ~~ & \gpCX & $\sin^{-1} x$ () \\
%asin(x)@ ~~ @$sin sup -1 x$ ()
ؿ `asin(x)` ϰΥ () ֤ޤ`asin` ֤
ͤ `set angles` ˤäƥ饸ñ̤ޤ٤ˤʤޤ
4 asinh
?expressions functions asinh
?asinh
#asinh(x) & ~~ & \gpCX & $\sinh^{-1} x$ (ж)\\
%asinh(x)@ ~~ @$sinh sup -1 x$ (ж)
ؿ `asinh(x)` ϵեϥѥܥå (ж) ͤ
`set angles` ˽äƥ饸٤֤ޤ
4 atan
?expressions functions atan
?atan
#atan(x) & ~~ & \gpCX & $\tan^{-1} x$ () \\
%atan(x)@ ~~ @$tan sup -1 x$ ()
ؿ `atan(x)` ϰΥ () ֤ͤޤ
`atan` ֤ͤ `set angles` ˤäƥ饸ñ̤ޤ٤
ʤޤ
4 atan2
?expressions functions atan2
?atan2
#atan2(y,x) & ޤϼ¿ & ~ & $\tan^{-1} (y/x)$ () \\
%atan2(y,x)@ޤϼ¿@$tan sup -1 (y/x)$ ()
ؿ `atan2(y,x)` ϰμ¿ʬΥ ()
֤ͤޤ`atan2` `set angles` ˤäƥ饸ñ̤٤
ʤ롢Ŭڤʻʬߤˤ֤ͤޤ
4 atanh
?expressions functions atanh
?atanh
#atanh(x) & ~~ & \gpCX & $\tanh^{-1} x$ (ж)\\
%atanh(x)@ ~~ @$tanh sup -1 x$ (ж)
ؿ `atanh(x)` ϵեϥѥܥå (ж) ͤ
`set angles` ˽äƥ饸٤֤ޤ
4 besj0
?expressions functions besj0
?besj0
# besj0(x) & ¿ & ~ & $x$ 饸 $J_{0}$ ٥åؿ (0 ٥åؿ)\\
%besj0(x)@¿@$x$ 饸 $J sub 0$ ٥åؿ (0 ٥åؿ)
ؿ `besj0(x)` ϰ J0 ٥åؿ (0 1 ؿ J00
٥åؿ) ֤ͤޤ`besj0` ˤϰϥ饸Ϳޤ
4 besj1
?expressions functions besj1
?besj1
# besj1(x) & ¿ & ~ & $x$ 饸 $J_{1}$ ٥åؿ (1 ٥åؿ)\\
%besj1(x)@¿@$x$ 饸 $J sub 1$ ٥åؿ (1 ٥åؿ)
ؿ `besj1(x)` ϰ J1 ٥åؿ (1 1 ؿ J11
٥åؿ) ֤ͤޤ`besj1` ˤϰϥ饸Ϳޤ
4 besjn
?expressions functions besjn
?besjn
# besjn(n,x) & , ¿ & ~ & $x$ 饸 $J_{n}$ ٥åؿ (n ٥åؿ)\\
%besjn(n,x)@, ¿@$x$ 饸 $J sub n$ ٥åؿ (n ٥åؿ)
ؿ `besjn(n,x)` ϰ Jn ٥åؿ (n 1 ؿ Jn
n ٥åؿ) ֤ͤޤ x ϥ饸Ϳޤ
4 besy0
?expressions functions besy0
?besy0
# besy0(x) & ¿ & ~ & $x$ 饸 $Y_{0}$ ٥åؿ (0 Υޥؿ)\\
%besy0(x)@¿@$x$ 饸 $Y sub 0$ ٥åؿ (0 Υޥؿ)
ؿ `besy0(x)` ϰ Y0 ٥åؿ (0 2 ؿ Y00
Υޥؿ) ֤ͤޤ`besy0` ˤϰϥ饸Ϳޤ
4 besy1
?expressions functions besy1
?besy1
# besy1(x) & ¿ & ~ & $x$ 饸 $Y_{1}$ ٥åؿ (1 Υޥؿ)\\
%besy1(x)@¿@$x$ 饸 $Y sub 1$ ٥åؿ (1 Υޥؿ)
ؿ `besy1(x)` ϰ Y1 ٥åؿ (1 2 ؿ Y11
Υޥؿ) ֤ͤޤ`besy1` ˤϰϥ饸Ϳޤ
4 besyn
?expressions functions besyn
?besyn
# besyn(n,x) & , ¿ & ~ & $x$ 饸 $Y_{n}$ ٥åؿ (n Υޥؿ)\\
%besyn(n,x)@, ¿@$x$ 饸 $Y sub n$ ٥åؿ (n Υޥؿ)
ؿ `besyn(n,x)` ϰ Yn ٥åؿ (n 2 ؿ Yn
n Υޥؿ) ֤ͤޤ x ϥ饸Ϳޤ
4 besi0
?expressions functions besi0
?besi0
# besi0(x) & ¿ & ~ & $x$ 饸 $I_{0}$ (0 ) ѷ٥åؿ\\
%besi0(x)@¿@$x$ 饸 $I sub 0$ (0 ) ѷ٥åؿ
ؿ `besi0(x)` 0 ѷ٥åؿǤ`besi0` ΰñ̤
饸Ǥ
4 besi1
?expressions functions besi1
?besi1
# besi1(x) & ¿ & ~ & $x$ 饸 $I_{1}$ (1 ) ѷ٥åؿ\\
%besi1(x)@¿@$x$ 饸 $I sub 1$ (1 ) ѷ٥åؿ
ؿ `besi1(x)` 1 ѷ٥åؿǤ`besi1` ΰñ̤
饸Ǥ
4 besin
?expressions functions besin
?besin
# besin(n,x) &, ¿& ~ & $x$ 饸 $I_{n}$ (n ) ѷ٥åؿ\\
%besin(x)@, ¿l@$x$ 饸 $I sub n$ (n ) ѷ٥åؿ
ؿ `besin(n,x)` n ѷ٥åؿǤ x ñ̤ϥ饸
Ǥ
4 cbrt
?expressions functions cbrt
?cbrt
#cbrt(x) & ¿ & ~ & $x$ λ躬 (衢Ͱ϶˼¿˸) \\
%cbrt(x)@ ¿ @ x λ躬 (衢Ͱ϶˼¿˸)
ؿ `cbrt(x)` x λ躬֤ޤx ¿Ǥʤ硢NaN ֤
ޤ
??
C C 4 ceil
C ?expressions functions ceil
#ceil(x) & ~~ & ~ & $\lceil x \rceil$, $x$ μʾκǾ\\
%ceil(x)@ ~~ @$left ceiling x right ceiling$, $x$ (μ) ʾκǾ
`ceil(x)` x μʾκǾ֤ޤ
|x|<2^52 ϰϳξ硢ceil(x) NaN ֤ޤ
4 conj
?expressions functions conj
?conj
#conj(x) & ʣǿ & \gpCX & $x$ ʣǶ \\
%conj(x)@ʣǿ@$x$ ʣǶ
ؿ `conj(x)` ϡx ʣǶ֤ޤconj( {r, i} ) = {r, -i}
4 cos
?expressions functions cos
?cos
#cos(x) & ~~ & \gpCX & $x$ Υ $\cos x$\\
%cos(x)@饸@$x$ Υ $cos~x$
ؿ `cos(x)` ϰΥ (;) ֤ͤޤ`cos`
`set angles` ˤäơ饸ޤ٤ΰդޤ
4 cosh
?expressions functions cosh
?cosh
#cosh(x) & ~~ & \gpCX & $\cosh x$, $x$ 饸Υϥѥܥå \\
%cosh(x)@ ~~ @$cosh~x$, $x$ 饸Υϥѥܥå
ؿ `cosh(x)` ϰΥϥѥܥå֤ͤޤ`cosh`
ϥ饸Ϳޤ
?expressions functions EllipticK
?EllipticK
4 EllipticK
#EllipticK(k) & ¿ k $\in$ (-1:1) & ~ & $K(k)$ 1 ﴰʱʬ\\
%EllipticK(k)@(-1:1) μ¿ k@$K ( k )$ 1 ﴰʱʬ
ؿ `EllipticK(k)` ϡ 1 ﴰʱʬ֤ͤޤܺ٤ϡ
: `elliptic integrals`
?expressions functions EllipticE
?EllipticE
4 EllipticE
#EllipticE(k) & ¿ k $\in$ [-1:1] & ~ & $E(k)$ 2 ﴰʱʬ\\
%EllipticE(k)@[-1:1] μ¿ k@ $E ( k )$ 2 ﴰʱʬ
ؿ `EllipticE(k)` ϡ 2 ﴰʱʬ֤ͤޤܺ٤ϡ
: `elliptic integrals`
?expressions functions EllipticPi
?EllipticPi
4 EllipticPi
#EllipticPi(n,k) & ¿ n$<$1, ¿ k $\in$ (-1:1) & ~ & $\Pi(n,k)$ 3 ﴰʱʬ\\
%EllipticPi(n,k)@ ¿ n<1, (-1:1) μ¿ k@ $Pi ( n,k )$ 3 ﴰʱʬ
ؿ `EllipticPi(n,k)` ϡ 3 ﴰʱʬ֤ͤޤܺ٤ϡ
ʲ: `elliptic integrals`
4 erf
?expressions functions erf
?erf
#erf(x) & ~~ & ~ & $\mbox{erf}(\mbox{real}(x))$, $x$ θؿ\\
%erf(x)@ ~~ @$erf ( roman real (x))$, $x$ μθؿ
ؿ `erf(x)` ϰμθؿ֤ͤޤʣǿξ
ϵ̵뤵ޤʲ: `cerf`, `erfc`, `inverf`, `norm`
4 erfc
?expressions functions erfc
?erfc
#erfc(x) & ~~ & ~ & $\mbox{erfc}(\mbox{real}(x))$, 1.0 - ($x$ μθؿ) \\
%erfc(x)@ ~~ @$erfc ( roman real (x))$, 1.0 - ($x$ μθؿ)
ؿ `erfc(x)` 1.0 顢μθؿͤΤ֤
ޤʣǿξϵ̵뤵ޤʲ: `cerf`, `erf`,
`inverf`, `norm`
4 exp
?expressions functions exp
?exp
#exp(x) & ~~ & \gpCX & $e^{x}$, $x$ λؿؿ\\
%exp(x)@ ~~ @$e sup x$, $x$ λؿؿ
ؿ `exp(x)` ϡ`e` x ֤ͤޤx Ǥ⡢¿Ǥ
ʣǿǤޤ
??
C C 4 expint
#expint(n,x) & $n\ge0$, ¿ $x\ge0$ & ~ & $E_n(x)=\int_1^\infty t^{-n} e^{-xt}\,dt$, $x$ λؿʬ \\
%expint(n,x)@ ~~ @$E sub n (x)$, $x$ λؿʬ
??
C C 4 floor
C ?expressions functions floor
#floor(x) & ~~ & ~ & $\lfloor x \rfloor$, $x$ μʲκ\\
%floor(x)@ ~~ @$left floor x right floor$, $x$ μʲκ
`floor(x)` x μʲκ֤ޤ
|x|<2^52 ϰϳξ硢floor(x) NaN ֤ޤ
4 gamma
?expressions functions gamma
#gamma(x) & ~~ & ~ & $\Gamma(x)$, $x$ μΥؿ\\
%gamma(x)@ ~~ @$GAMMA ( roman real (x))$, $x$ μΥؿ
ؿ `gamma(x)` ϰμΥؿ֤ͤޤ n Ф
Ƥ gamma(n+1) = n! Ǥʣǿξ硢ʬ̵뤵ޤ
ʣǰ˴ؤƤϡʲ: `lnGamma`
??
C C 4 ibeta
#ibeta(a,b,x) & $a,b>0$, $x \in [0:1]$ & ~ & $B(a,b,x)=\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\intop_{0}^{x}t^{a-1}(1-t)^{b-1}dt$, Դ١ؿ \\
%ibeta(a,b,x)@ ~~ @$ibeta ( roman real (a,b,x))$, $a$,$b$,$x$ μԴ١ؿ
4 inverf
?expressions functions inverf
?inverf
#inverf(x) & ~~ & ~ & $x$ μεոؿ \\
%inverf(x)@ ~~ @$x$ μεոؿ
ؿ `inverf(x)` ϰμεոؿ֤ͤޤʲ:
`erf`, `invnorm`
??
C C 4 igamma
#igamma(a,z) & ʣǿ, $\Re(a)>0$ & \gpCX & Դؿ $P(a,z)=\frac{1}{\Gamma(z)}\intop_{0}^{z}t^{a-1}e^{-t}dt$ \\
%igamma(a,z)@ ~~ @$igamma (a,z)$, ($a$,$z$) βԴؿ
4 imag
?expressions functions imag
?imag
#imag(x) & ʣǿ & ~ & $x$ εʬ (¿) \\
%imag(x)@ʣǿ@$x$ εʬ (¿)
ؿ `imag(x)` ϰεʬ¿Ȥ֤ޤ
??
C C 4 int
C ?expressions functions int
#int(x) & ¿ & ~ & $x$ 0 ˸äƴݤʬ\\
%int(x)@¿@$x$ 0 ˸äƴݤʬ
`int(x)` ϡ 0 ˸äƴݤʬ֤ޤ
4 invnorm
?expressions functions invnorm
?invnorm
#invnorm(x) & ~~ & ~ & $x$ μεʬ۴ؿ \\
%invnorm(x)@ ~~ @$x$ μεʬ۴ؿ
ؿ `invnorm(x)` ϰμФ롢ʬ (ʬ) ʬ
۴ؿεմؿ֤ͤޤʲ: `norm`
??
C C 4 invibeta
#invibeta(a,b,p) & ¿ & ~ & () Դ١ؿ \\
%invibeta(a,b,p)@ ¿ @ () Դ١ؿ
??
C C 4 invigamma
#invigamma(a,p) & ¿ & ~ & () Դؿ \\
%invigamma(a,p)@ ¿ @ () Դؿ
#LambertW(z,k) & ʣǿ, & \gpCX & ʣ Lambert W ؿ k ʬ \\
%LambertW(z,k) & ʣǿ, & ʣ Lambert W ؿ $k$ ʬ
4 lambertw
?expressions functions lambertw
?lambertw
#lambertw(x) & ¿ & ~ & Lambert W ؿμ ( 0 ʬ) \\
%lambertw(x)@¿@Lambert W ؿμ ( 0 ʬ)
ؿ `lambertw(x)` Lambert W ؿμ ( 0 ʬ) ֤ޤ
W ؿϡ (W(x)*exp(W(x))=x ˤäޤ
x ϡx >= -exp(-1) ¿ǤʤФޤ
4 lgamma
?expressions functions lgamma
?lgamma
#lgamma(x) & ¿ & ~ & ¿ $x$ Ф $\ln\Gamma(x)$ (пؿ) \\
%lgamma(x)@¿@¿ $x$ Ф lgamma ؿ (пؿ)
ؿ `lgamma(x)` ϰμΥؿͤμп֤ͤޤ
ʣǿξ硢̵뤵ޤʣǿˤ lnGamma(z) Ѥ
Ƥ
4 lngamma
#lnGamma(x) & ʣǿ & \gpCX & ʣʿΤ $\ln\Gamma(x)$ \\
%lnGamma(x)@ʣǿ@ʣʿΤ lgamma ؿ
ؿ `lnGamma(x)` ϡؿμп֤ͤޤμϡʣ
ʿΤ Lanczos ѤƤޤͤεʬϡ
μ¼ʬΤϢ³ʶ̤褦餷Ƥޤ
4 log
?expressions functions log
?log
#log(x) & ~~ & \gpCX & $\log_{e} x$, $x$ μп ( $e$) \\
%log(x)@ ~~ @$ln~x$, $x$ μп ( $e$)
ؿ `log(x)` ϰμп ( `e`) ֤ͤޤʲ:
`log10`
4 log10
?expressions functions log10
?log10
#log10(x) & ~~ & \gpCX & $\log_{10} x$, $x$ п ( $10$) \\
%log10(x)@ ~~ @${log sub 10}~x$, $x$ п ( $10$)
ؿ `log10(x)` ϰп ( 10) ֤ޤ
4 norm
?expressions functions norm
?norm
#norm(x) & ~~ & ~ & $x$ μʬ (ʬ) ؿ \\
%norm(x)@ ~~ @$norm(x)$, $x$ μʬ (ʬ) ؿ
ؿ `norm(x)` ϡμФ롢ʬ (ʬ) ʬ
۴ؿ֤ͤޤʲ: `invnorm`, `erf`, `erfc`
4 rand
?expressions functions rand
?rand
#rand(x) & & ~ & (0:1) ε \\
%rand(x)@@ (0:1) ε
ؿ `rand(x)` ϡ (0:1) ε֤ޤܤϰʲ
: `random`
4 real
?expressions functions real
?real
#real(x) & ~~ & ~ & $x$ μ \\
%real(x)@ ~~ @$x$ μ
ؿ `real(x)` ϰμ֤ޤ
??
C C 4 round
C ?expressions functions round
#round(x) & ~~ & ~ & $\lfloor x \rceil$, $x$ μ˰ֶᤤ\\
%round(x)@ ~~ @ $x$ μ˰ֶᤤ
`round(x)` ϡx μ˰ֶᤤ֤ޤ
|x|<2^52 ϰϳξ硢round(x) NaN ֤ޤ
4 sgn
?expressions functions sgn
?sgn
#sgn(x) & ~~ & ~ & $x>0$ ʤ 1, $x<0$ ʤ -1, $x=0$ ʤ 0 (̵) \\
%sgn(x)@ ~~ @$x>0$ ʤ 1, $x<0$ ʤ -1, $x=0$ ʤ 0 (̵)
ؿ `sgn(x)` ϰʤ 1 ʤ -1 0 ʤ 0 ֤ޤ
ʣǿξ̵뤵ޤ
4 Sign
#Sign(x) & ʣǿ & \gpCX & $x = 0$ ʤ 0ʳ $x/|x|$ \\
%Sign(x)@ʣǿ@$x = 0$ ʤ 0ʳ $x/|x|$
ؿ `Sign(x)` ϡ 0 ʤ 0 ֤ʳξʣǿ
Sign(x) = x/|x| ֤ޤ
4 sin
?expressions functions sin
?sin
#sin(x) & ~~ & \gpCX & $\sin x$, $x$ Υ \\
%sin(x)@ ~~ @$sin~x$, $x$ Υ
ؿ `sin(x)` ϰΥ () ֤ͤޤ`sin`
`set angles` ˤäơ饸ޤ٤ΰդޤ
4 sinh
?expressions functions sinh
?sinh
#sinh(x) & ~~ & \gpCX & $\sinh x$, $x$ 饸Υϥѥܥå \\
%sinh(x)@ ~~ @$sinh~x$, $x$ 饸Υϥѥܥå
ؿ `sinh(x)` ϰΥϥѥܥå֤ͤޤ`sinh`
ϥ饸Ϳޤ
4 sqrt
?expressions functions sqrt
?sqrt
#sqrt(x) & ~~ & \gpCX & $\sqrt{x}$, $x$ ʿ\\
%sqrt(x)@ ~~ @$sqrt x $, $x$ ʿ
ؿ `sqrt(x)` ϰʿ֤ͤޤx ʣǿξ硢
μĺ֤ޤ
??
C C 4 SynchrotronF
C ?expressions functions SynchrotronF
#SynchrotronF(x) & ¿ & ~ & $F(x) = x\intop_{x}^{\infty}K_{\frac{5}{3}}(\nu)~d\nu$ \\
%SynchrotronF(x)@ ~~ @ ( 1) ȥؿ F%
4 tan
?expressions functions tan
?tan
#tan(x) & ~~ & \gpCX & $\tan x$, $x$ Υ \\
%tan(x)@ ~~ @$tan~x$, $x$ Υ
ؿ `tan(x)` ϰΥ () ֤ͤޤ`tan`
`set angles` ˤäơ饸ޤ٤ΰդޤ
4 tanh
?expressions functions tanh
?tanh
#tanh(x) & ~~ & \gpCX & $\tanh x$, $x$ 饸Υϥѥܥå\\
%tanh(x)@ ~~ @$tanh~x$, $x$ 饸Υϥѥܥå
ؿ `tanh(x)` ϰΥϥѥܥåȤ֤ͤޤ
`tanh` ΰϥ饸Ϳޤ
??
C C 4 uigamma
#uigamma(a,x) & ¿, ¿ & & Դؿ $Q(a,x)=\frac{1}{\Gamma(x)}\intop_{x}^{\infty}t^{a-1}e^{-t}dt$ \\
%uigamma(a,x)@ ~~ @$uigamma (a,x)$, ($a$,$x$) ξԴؿ
4 voigt
?expressions functions voigt
?voigt
#voigt(x,y) & ¿ & ~ & Voigt/Faddeeva ؿ $\frac{y}{\pi} \int{\frac{exp(-t^2)}{(x-t)^2+y^2}}dt$ \\
# & & ~ & : voigt$(x,y)$ = $real($faddeeva$(x+iy))$ \\
%voigt(x,y)@¿@ؿȥĴؿξߤ
ؿ `voigt(x,y)` ϡڥȥϤǻѤ Voigt/Faddeeva ؿ
֤ޤθ 1/10^4 Ǥlibcerf 饤֥꤬Ѳ
ǽʤСΤͤ뤿 re_w_of_z() 롼Ȥޤ
voigt(x,y) = real(faddeeva( x + y*{0,1} )) դƤ
??
C C 4 zeta
#zeta(s) & ʣǿ & \gpCX & ޥؿ $\zeta(s) = \Sigma^{\infty}_{k=1} k^{-s}$\\
%zeta(s)@ʣǿ@ޥؿ
#\hline \end{longtable}
#%% @end ɬפȤ뤿ᡢߡ tabular γ
#\begin{tabular}{|lcl|}
@end table
^<!-- INCLUDE_NEXT_TABLE -->
@start table
#\setlength\LTleft{0pt}
#\setlength\LTright{0pt}
#\begin{longtable}{@{\extracolsep{\fill}}|lcrl|@{}} \hline
#\multicolumn{4}{|c|}{libcerf (ѲǽʾΤ) ˤüؿ} \\ \hline \hline
#ؿ ~~~~~~~~~~~~~~~~~ & & ~ & ({\gpCX } ʣǿ)\\ \hline
#\endhead \hline \endfoot
%c c l .
%ؿ@@
%_
# ~ & ~ & ~ & \hspace{9cm} \\
4 cerf
?expressions functions cerf
?cerf
#cerf(z) & ʣǿ & \gpCX & ʣǸؿ $cerf(z)={\frac{\sqrt{\pi}}{2}}{\int^{z}_{0}{e^{-t^2}dt}} $ \\
%cerf(z)@ʣǿ@ʣǸؿ
`cerf(z)` ϸؿ erf(x) ʣǥСǤ
饤֥ libcerf ɬפǤ
4 cdawson
?expressions functions cdawson
?cdawson
=Dawson's integral
?Dawson's integral
%cdawson(z)@ʣǿ@ʣ Dawson ʬ
#cdawson(z)&ʣǿ& \gpCX &Dawson ʬ $D(z)={\frac{\sqrt{\pi}}{2}e^{-z^2} erfi(z)}$ ʣdzĥ \\
`cdawson(z)` ʣǰФ Dawson ʬ֤ͤޤ
cdawson(z) = sqrt(pi)/2 * exp(-z^2) * erfi(z)
饤֥ libcerf ɬפǤ
4 faddeeva
?expressions functions faddeeva
?faddeeva
%faddeeva(z)@ʣǿ@벽ʣؿ w(z) = exp(-z^2) * erfc(-i*z)
#faddeeva(z)&ʣǿ& \gpCX &벽ʣؿ $w(z) = e^{-z^2}~ erfc(-iz) $ \\
`faddeeva(z)` ϥ벽ʣؿǤ
faddeeva(z) = exp(-z^2) * erfc(-i*z)
ϡAbramowitz-Stegun μ 7.1.3, 7.1.4 бޤ
饤֥ libcerf ɬפǤ
4 erfi
?expressions functions erfi
?erfi
%erfi(x)@¿@ؿ erfi(x) = -i * erf(ix)
#erfi(x)&¿&~&ؿ $erf(x) = -i * erf(ix)$ \\
ؿ erfi(x) = -i * erf(ix)
饤֥ libcerf ɬפǤ
??
C C 4 FresnelC
%FresnelC(x)@¿@ C(x) = integral[0;x] cos(pi/2 t^2)dt
#FresnelC(x)&¿&~&եͥʬ $C(x)=\int^{x}_{0}\cos(\frac{\pi}{2}t^2)dt$ \\
??
C C 4 FresnelS
%FresnelS(x)@¿@ S(x) = integral[0;x] sin(pi/2 t^2)dt
#FresnelS(x)&¿&~&եͥʬ $S(x)=\int^{x}_{0}\sin(\frac{\pi}{2}t^2)dt$ \\
4 Voigt Profile
?expressions functions VP
?expressions functions VP_fwhm
?VP
?VP_fwhm
%VP(x,sigma,gamma)@¿@Voigt ץե
%VP_fwhm(sigma,gamma)@¿@Voigt ץեȾ (FWHM)
#VP(x,$\sigma$,$\gamma$)&¿& ~ & Voigt ץե $ VP(x,\sigma,\gamma) = {\int^{\infty}_{-\infty}{G(x^\prime;\sigma) L(x-x^\prime;\gamma) dx^\prime }} $ \\
#VP\_fwhm($\sigma$,$\gamma$)&¿& ~ & Voigt ץեȾ (FWHM)\\
`VP(x,sigma,gamma)` ϥ̩ٴؿ G(x;sigma) ȥ̩ٴؿ
L(x;gamma) ξ߹ߤ Voigt ץե (̩ٴؿ)
ޤ
`VP_fwhm(sigma,gamma)` ϡδؿȾ (FWHM) Ϳޤ
#\hline \end{longtable}
#%% @end ɬפȤ뤿ᡢߡ tabular γ
#\begin{tabular}{|lcl|}
@end table
^<!-- INCLUDE_NEXT_TABLE -->
@start table
#\setlength\LTleft{0pt}
#\setlength\LTright{0pt}
#\begin{longtable}{@{\extracolsep{\fill}}|lcrl|@{}} \hline
#\multicolumn{4}{|c|}{Amos 饤֥ (ѲǽʾΤ) ˤʣüؿ} \\ \hline \hline
#ؿ ~~~~~~~~~~~~~~~~~ & & ~ & ({\gpCX } ʣǿ)\\ \hline
#\endhead \hline \endfoot
%c c l .
%ؿ@@
%_
# ~ & ~ & ~ & \hspace{7cm} \\
#Ai(z) & ʣǿ & \gpCX & ʣǥؿ $Ai(z)$\\
%Ai(z)@ʣǿ@ʣǥؿ Ai(z)
#Bi(z) & ʣǿ & \gpCX & ʣǥؿ $Bi(z)$\\
%Bi(z)@ʣǿ@ʣǥؿ Bi(z)
#BesselH1(nu,z) & ¿, ʣǿ & \gpCX & $H^{(1)}_{\nu}(z)$ 1 ϥؿ\\
%BesselH1(nu,z) @ ¿, ʣǿ @ 1 ϥؿ H1_nu
#BesselH2(nu,z) & ¿, ʣǿ & \gpCX & $H^{(2)}_{\nu}(z)$ 2 ϥؿ\\
%BesselH2(nu,z) @ ¿, ʣǿ @ 2 ϥؿ H2_nu
#BesselJ(nu,z) & ¿, ʣǿ & \gpCX & $J_{\nu}(z)$ 1 ٥åؿ\\
%BesselJ(nu,z) @ ¿, ʣǿ @ 1 ٥åؿ J_nu
#BesselY(nu,z) & ¿, ʣǿ & \gpCX & $Y_{\nu}(z)$ 2 ٥åؿ\\
%BesselY(nu,z) @ ¿, ʣǿ @ 2 ٥åؿ Y_nu
#BesselI(nu,z) & ¿, ʣǿ & \gpCX & $I_{\nu}(z)$ 1 ѷ٥åؿ\\
%BesselI(nu,z) @ ¿, ʣǿ @ 1 ѷ٥åؿ I_nu
#BesselK(nu,z) & ¿, ʣǿ & \gpCX & $K_{\nu}(z)$ 2 ѷ٥åؿ\\
%BesselK(nu,z) @ ¿, ʣǿ @ 2 ѷ٥åؿ K_nu
#expint(n,z) & $n\geq0$, ʣǿ $z$ & \gpCX & $E_n(z)=\int_1^\infty t^{-n} e^{-zt}\,dt$, ؿʬ\\
%expint(n,z)@ n>=0, ʣǿ @$E sub n (z)$, ʣǻؿʬؿ
#\hline \end{longtable}
#%% @end ɬפȤ뤿ᡢߡ tabular γ
#\begin{tabular}{|lcl|}
@end table
^<!-- INCLUDE_NEXT_TABLE -->
@start table
#\begin{longtable}{@{\extracolsep{\fill}}|lcl|@{}} \hline
#\multicolumn{3}{|c|}{ʸؿ} \\ \hline \hline
#ؿ & & \\ \hline
%c c l .
%ؿ@@
%_
4 gprintf
?expressions functions gprintf
#gprintf("format",x,...) & Ǥ & gnuplot νϴŬѤ̤ʸ \\
%gprintf("format",x,...)@Ǥ@gnuplot νϴŬѤ̤ʸ \\
`gprintf("format",x)` ϡgnuplot ȼνҤ˰Ĥѿ x Ŭ
Ѥη̤ʸ֤ޤɸŪ C ҤȤ
ϡ `sprintf("format",x)` Ȥɬפޤ
ʲ: `format specifiers`
4 sprintf
?expressions functions sprintf
?sprintf
#sprintf("format",x,...) & ʣ & C sprintf ֤ʸ \\
%sprintf("format",x,...)@ʣ@C sprintf ֤ʸ \\
`sprintf("format",var1,var2,...)` ɸŪ C νҤʣ
ĤΰŬѤη̤ʸ֤ޤgnuplot ȼν
Ȥϡ `gprintf()` Ѥɬפޤ
sprintf νҤ˴ؤܤˤĤƤϡɸŪ C
ܤunix sprintf man ڡȤƤ
4 strlen
?expressions functions strlen
?strlen
#strlen("string") & ʸ & ʸʸ\\
%strlen("string")@ʸ@ʸʸ
`strlen("string")` ϡߤΥǥθʸʸ
֤ޤߤΥǥ¿Хʸ (SJIS UTF8)
ݡȤƤСͤϡʸΥХȿ⾮ʤǤ礦
ʸ¿Х UTF8 ʸޤޤƤơߤΥǥ
UTF8 ʳ̤ΤΤꤵƤȡstrlen("utf8ʸ") ϡ
ºݤʸ礭֤ͤǤ礦
4 strstrt
?expressions functions strstrt
?strstrt
#strstrt("string","key") & ʸ & ʬʸ "key" Ƭ\\
%strstrt("string","key")@ʸ@ʬʸ "key" Ƭ
`strstrt("string","key")` ϡʸ "key" "string" õ
줬Ƭ֤֤ޤ"key" Ĥʤä 0 ֤
ޤC 饤֥ strstr ؿ˻ƤޤʸؤΥݥ
strstr Ȥϰ㤤Ǥΰ֤֤ޤ㤨С
strstrt("hayneedlestack","needle") = 4 Ȥʤޤ
δؿϡUTF-8 ǥǧޤΤǡstrstr("¦","")
2 ֤ޤ (: UTF-8 ǥͿ)
4 substr
?expressions functions substr
?substr
=substring
#substr("string",beg,end) & ʣ & ʸ "string"[beg:end] \\
%substr("string",beg,end)@ʣ@ʸ "string"[beg:end]
`substr("string",beg,end)` ϡʸ beg end ܤޤǤʸ
ʤʸ֤ޤϡ"string"[beg:end] ȤȤۤƱ
Ǥϥץ beg, end άǤޤ
4 split
?
#split("string","sep") & ʸ & ʬʸʤ \\
%split("string","sep")@ʸ@ʬʸʤ
`split("string", "sep")` ϡ"sep" ʸեɤζڤȤ
Ѥʸ "string" ȤġΥեɤڤʬޤϡ
ǤʸΥեɤˤ줾бʸ֤
2 ܤΥѥ "sep" ϥץǡ"sep" ά硢
϶ʸĤǤϡեʸǤոĤΥۥ磻ȥڡ
(ڡ֡ڡԡ) ڤʬޤʳξ
ϡڤ "sep" δʸ˥ޥåɬפޤ
㤨Сʲ: `counting_words`
4 join
?
`join(array, "sep")` ϡʸǤ"sep" ʸǶڤ
եɤȤưĤʸϢ뤷ޤʸǤʤǤϡ
Υեɤޤ
㤨Сʲ: `counting_words`
#join(array,"sep") & , ʸ & ǤĤʸ˷\\
%join(array,"sep") @,ʸ@ǤĤʸ˷
4 strftime
?expressions functions strftime
?strftime
#strftime("timeformat",t) & Ǥ & gnuplot ˤϷ̤ʸ \\
%strftime("timeformat",t)@Ǥ@gnuplot ˤϷ̤ʸ
`strftime("timeformat",t)` ϡ1970 ǯÿˤ t ˡ
timeformat ŬѤޤ
ʲ: `time_specifiers`, `strptime`
4 strptime
?expressions functions strptime
?strptime
#strptime("timeformat",s) & ʸ & ʸ s Ѵ 1970 ǯÿ \\
%strptime("timeformat",s)@ʸ@ʸ s Ѵ 1970 ǯÿ
`strptime("timeformat",s)` timeformat Ȥäʸ s
ɤ߹ǡ 1970 ǯÿѴޤ
ʲ: `time_specifiers`, `strftime`
4 system
?expressions functions system
=system
#system("command") & ʸ & 륳ޥɤνϤʸ\\
%system("command")@ʸ@륳ޥɤνϤʸ
`system("command")` ϡɸŪʥѤ "command" ¹Ԥ
ɸϤؤʸʸѿȤ֤ޤֺǸβĤ̵
뤵ޤ
ϡ'f(x) = real(system(sprintf("somecommand %f", x)))' Τ褦ˤ
ơؿνϤ gnuplot ץ˼ΤѤǤޤ
4 trim
=trim
?expressions functions trim
#trim(" string ") & ʸ & ˤĤʸ \\
%trim(" string ")@ʸ@ˤĤʸ
`trim(" padded string ")` ϡʸˤĤۥ磻ȥڡ
ʸ֤ޤϡϥǡΡ;פʶ
ߤʸӤݤͭѤǤ:
plot FOO using 1:( trim(strcol(3)) eq "A" ? $2 : NaN )
4 word
?
=word
#word("string",n) & ʸ, & ʸ "string" n ܤñ \\
%word("string",n)@ʸ, @ʸ "string" n ܤñ
`word("string",n)` ʸ string n ܤñʸ֤ޤ
`word("one two three",2)` ʸ "two" ֤ޤ
4 words
=words
#words("string") & ʸ & ʸ "string" ñ \\
%words("string")@ʸ@ʸ "string" ñ
`words("string")` ʸ string ñ֤ޤ㤨
`words(" a b c d")` 4 ֤ޤ
#\hline \end{longtable}
#%% @end ɬפȤ뤿ᡢߡ tabular γ
#\begin{tabular}{|lcl|}
@end table
^<!-- INCLUDE_NEXT_TABLE -->
@start table
#\begin{tabular}{|lcl|} \hline
#\multicolumn{3}{|c|}{ؿ} \\ \hline \hline
#ؿ & & \\ \hline
%c c l .
%ؿ@@
%_
??
C C 4 time
C ?expressions functions time
#time(x) & Ǥ & ߤΥƥ (ñ) \\
%time(x)@Ǥ@ߤΥƥ (ñ)
??
C C 4 timecolumn
C ?expressions functions timecolumn
#timecolumn(N,"timeformat") & , ʸ & ϥǡ $N$ ܤνǡ \\
%timecolumn(N,"timeformat")@, ʸ@ϥǡ $N$ ܤνǡ
??
C C 4 tm_hour
?expressions functions tm_hour
?tm_hour
#tm\_hour(t) & ÿˤ & (0..23)\\
%tm_hour(t)@ÿˤ@ (0..23)
ؿ `tm_hour(t)` ϰ 1970 ǯ 1 1 ÿȲᤷ줬
β (0--23 ϰϤ) Ǥ뤫¿Ȥ֤ޤ
??
C C 4 tm_mday
?expressions functions tm_mday
?tm_mday
#tm\_mday(t) & ÿˤ & (1..31)\\
%tm_mday(t)@ÿˤ@ (1..31)
ؿ `tm_mday(t)` ϰ 1970 ǯ 1 1 ÿȲᤷ줬
ηβ (1--31 ϰϤ) Ǥ뤫¿Ȥ֤ޤ
??
C C 4 tm_min
?expressions functions tm_min
?tm_min
#tm\_min(t) & ÿˤ & ʬ (0..59)\\
%tm_min(t)@ÿˤ@ʬ (0..59)
ؿ `tm_min(t)` ϰ 1970 ǯ 1 1 ÿȲᤷ줬
βʬ (0--59 ϰϤ) Ǥ뤫¿Ȥ֤ޤ
??
C C 4 tm_mon
?expressions functions tm_mon
?tm_mon
#tm\_mon(t) & ÿˤ & (0..11)\\
%tm_mon(t)@ÿˤ@ (0..11)
ؿ `tm_mon(t)` ϰ 1970 ǯ 1 1 ÿȲᤷ줬
(0--11 ϰϤ) Ǥ뤫¿Ȥ֤ޤ
??
C C 4 tm_sec
?expressions functions tm_sec
?tm_sec
#tm\_sec(t) & ÿˤ & (0..59)\\
%tm_sec(t)@ÿˤ@ (0..59)
ؿ `tm_sec(t)` ϰ 1970 ǯ 1 1 ÿȲᤷ줬
β (0--59 ϰϤ) Ǥ뤫¿Ȥ֤ޤ
??
C C 4 tm_wday
?expressions functions tm_wday
?tm_wday
#tm\_wday(t) & ÿˤ & (ڤ 0..6 )\\
%tm_wday(t)@ÿˤ@ (ڤ 0..6 )
ؿ `tm_wday(t)` ϰ 1970 ǯ 1 1 ÿȲᤷ줬
Ǥ뤫ˤˤ 0 6 Ȥ֤ޤ
??
C C 4 tm_week
#tm\_week(t) & ÿˤ & ISO 8601 §Ǥνֹ (1..53)\\
%tm_week(t)@ÿˤ@ISO 8601 §Ǥνֹ (1..53)
??
C C 4 tm_yday
?expressions functions tm_yday
?tm_yday
#tm\_yday(t) & ÿˤ & ǯβ (0..365)\\
%tm_yday(t)@ÿˤ@ǯβ (0..365)
ؿ `tm_yday(t)` ϰ 1970 ǯ 1 1 ÿȲᤷ줬
ǯβ (0--365 ϰϤ) Ǥ뤫¿Ȥ֤ޤ
??
C C 4 tm_year
?expressions functions tm_year
?tm_year
#tm\_year(t) & ÿˤ & \\
%tm_year(t)@ÿˤ@
ؿ `tm_year(t)` ϰ 1970 ǯ 1 1 ÿȲᤷ줬
ǯ () Ǥ뤫¿Ȥ֤ޤ
??
C C 4 weekdata_iso
#weekdate\_iso(year,week,day) & & ISO 8601 §Ǥνб\\
%weekdate_iso(year,week,day)@@ ISO 8601 §Ǥνб
??
C C 4 weekdata_cdc
#weekdate\_cdc(year,week,day) & & CDC ˤֳŪб\\
%weekdate_cdc(year,week,day)@@ CDC ˤֳŪб\\
@end table
^<!-- INCLUDE_NEXT_TABLE -->
@start table
#\begin{tabular}{|lcl|} \hline
#\multicolumn{3}{|c|}{¾ {\bf gnuplot} δؿ} \\ \hline \hline
#ؿ & & \\ \hline
%c c l .
%ؿ@@
%_
??
#column(x) & ʸ & ǡ $x$ ܤο \\
%column(x)@ʸ@ǡ $x$ ܤο
??
#columnhead(x) & & ǡեκǽ $x$ ʸ \\
%columnhead(x)@@ǡեκǽ $x$ ʸ
??
4 exists
?expressions functions exists
?exists
#exists("X") & ʸ & ѿ̾ X Ƥ 1, Ǥʤ 0\\
%exists("X")@ʸ@ѿ̾ X Ƥ 1, Ǥʤ 0
`exists()` ΰʸޤʸѿǤʸ
Ƥѿ̾äƤ 1 Ǥʤ 0 ֤ޤ
4 hsv2rgb
?expressions functions hsv2rgb
?hsv2rgb
?hsv
#hsv2rgb(h,s,v) & h,s,v $\in$ [0:1] & 24 ӥå RGB \\
%hsv2rgb(h,s,v)@[0:1] h,s,v@24 ӥå RGB
ؿ `hsv2rgb(h,s,v)` ϡHSV ((Hue)/(Saturation)/(Value))
3 ȤƱ RGB ͤѴޤ
??
#index(A,x) & , Ǥ & A[i] = x Ȥʤ iʤ 0\\
%index(A,x)@, Ǥ@A[i] = x Ȥʤ iʤ 0
4 palette
?expressions functions palette
?palette
#palette(z) & ¿ & z ˳Ƥ줿 24 ӥå RGB ѥåȿ \\
%palette(z)@¿@z ˳Ƥ줿 24 ӥå RGB ѥåȿ
`palette(z)` cbrange θߤϰϤ z ˳Ƥѥåȿ
24 ӥå RGB ɽ֤ޤ
4 rgbcolor
?expressions functions rgbcolor
?rgbcolor
=alpha channel
#rgbcolor("name") & ʸ & ̾ʸɽο 32 ӥå ARGB \\
%rgbcolor("name")@ʸ@̾ʸɽο 32 ӥå ARGB
`rgbcolor("name")` ϡ̾"0xAARRGGBB" "#AARRGGBB" ηʸ
Ф롢ե + RGB ɽ 32 ӥå֤ͤޤʸ
ɽǤǧʤСδؿ 0 ֤ޤ
ȤСǡե뤫鿧̾ɤꡢ̾ο˥եͤ
ХȤɲä֤ͤͤȤǤޤʲ: `colorspec`
??
#stringcolumn(x) & ʸ & ʸȤƤ $x$ ܤ \\
%stringcolumn(x)@ʸ@ʸȤƤ $x$ ܤ
??
#valid(x) & & ǡ $x$ ܤ\\
%valid(x)@@ǡ $x$ ܤ
??
#value("name") & ʸ & ̾ name ѿθߤ\\
%value("name")@ʸ@̾ name ѿθߤ
4 voxel
?expressions functions voxel
?voxel
#voxel(x,y,z) & ¿ & (x,y,z) ޤͭܥ\\
%voxel(x,y,z)@¿@ (x,y,z) ޤͭܥ
ؿ voxel(x,y,z) ϡͭʳʻҤΡ (x,y,z) ޤܥ
֤ޤϡκդ֤ơܥͤꤹΤˤ
Ȥޤ: voxel(x,y,z) = 0.0
ʲ: `splot voxel-grids`, `vgrid`
@end table
4 Ѵؿ (int floor ceil round) (integer conversion functions)
?integer conversion
?integer
?precision
gnuplot ѿͤϡѴĶС64 ӥåȤ٤¸ޤ
gnuplot ʣǿѿ͡¿ѿͤϡۤȤɤλѴĶ IEEE754
binary64 (double) ư¸ޤ٤ϡ53 ӥåȤ
¤졢ͭϤ褽 16 Ǥ
äơͤ 2^53 礭ϡưѿǰդɽ
ȤϤǤޤĤޤꡢ礭 N Ф int(real(N)) Ȥ
N ˶ᤤɤ N Ȥϰۤʤ֤ǽޤ
ˡưͤڤΤƤˤͤѴؿϡͼȤ
Ƥ⡢16 ʾ٤˰¸ǤϴԤͤʤ
ǽޤ㤨Сint(log10(0.1)) ϡ-1 Ǥʤ 0 ֤ޤ
Ϥưɽ -0.999999999999999... Ǥ
ʲ⻲: `overflow`
?expressions functions int
?int
`int(x)` ϡ 0 ڤΤƤʬ֤ޤ
|x| > 2^63ʤͤȤ礭 NaN ֤ޤ
|x| > 2^52 ξϡ֤ͤϤζ˵ˤޤޤư
٤¤Τˤ̤Ǥޤ
ʲ: `integer conversion`
?expressions functions floor
?floor
`floor(x)` ϡx μ¿ʬʲκ֤ޤ
|x| > 2^52 ξ硢ͤϰդ˷ǤޤΤǡξ NaN
֤ޤʲ: `integer conversion`
?expressions functions ceil
?ceil
`ceil(x)` ϡx μ¿ʬʾκǾ֤ޤ
|x| > 2^52 ξ硢ͤϰդ˷ǤޤΤǡξ NaN
֤ޤʲ: `integer conversion`
?expressions functions round
?round
`round(x)` ϡx μ¿ʬ˰ֶᤤ֤ޤ
|x| > 2^52 ξ硢ͤϰդ˷ǤޤΤǡξ NaN
֤ޤʲ: `integer conversion`
4 ʱʬ (elliptic integrals)
?elliptic integrals
?elliptic
=elliptic integrals
ؿ `EllipticK(k)` ϡ 1 ﴰʱʬʤؿ
`(1 - k^2*sin^2())^(-0.5)` 0 /2 ޤǤϰϤιʬͤ
֤ޤ`k` -1 1 Ǥ (ξüϴޤޤʤ)
#TeX \quad\quad EllipticK$(k)=\int_0^{\pi/2} {\sqrt{1-k^2\sin^2\theta}~}^{-1}~d\theta$
ؿ `EllipticE(k)` ϡ 2 ﴰʱʬʤؿ
`(1 - k^2*sin^2())^(-0.5)` 0 /2 ޤǤϰϤιʬͤ
֤ޤ`k` -1 1 Ǥ (ξüޤ)
#TeX \quad\quad EllipticE$(k)=\int_0^{\pi/2} {\sqrt{1-k^2\sin^2\theta}}~d\theta$
ؿ `EllipticPi(n,k)` ϡ 3 ﴰʱʬʤؿ
`(1 - k^2*sin^2())^(-0.5) / (1 - n*sin^2())` 0 /2 ޤǤ
ϰϤιʬ֤ͤޤѥ `n` 1 꾮`k`
-1 1 δ (ξüϴޤޤʤ) ǤʤФޤꡢ٤Ƥ
`k` Ф EllipticPi(0,k) == EllipticK(k) Ǥ뤳ȤդƤ
#TeX \quad\quad EllipticPi$(n,k)=\int_0^{\pi/2} {\big[(1-n\sin^2\theta)\sqrt{1-k^2\sin^2\theta}~\big]}^{-1}d\theta$
ʱʬΥ르ꥺ: B.C.Carlson 1995, Numerical Algorithms 10:13-26.
4 ʣǥؿ (Complex Airy functions)
?expressions functions Ai
?Ai
?expressions functions Bi
?Bi
`Ai(z)` `Bi(z)` ϡʣǰ z Υؿǡѷ٥åؿ K
I ѤƷޤ
Donald E. Amos, Sandia National Laboratories, SAND85-1018 (1985) ˤ
롼ޤ饤֥ˤäƥݡȤƤޤ
#TeX \quad\quad Ai$(z) = \frac{1}{\pi}\sqrt{\frac{z}{3}} K_{\nicefrac{1}{3}}(\zeta)$
#TeX \quad\quad\quad $\zeta = \frac{2}{3}z^{\nicefrac{3}{2}}$
#TeX \quad\quad Bi$(z) = \sqrt{\frac{z}{3}} {\big[I_{\nicefrac{-1}{3}}(\zeta) + I_{\nicefrac{1}{3}}(\zeta)]}$
4 ʣǥ٥åؿ (Complex Bessel functions)
?expressions functions BesselJ
?BesselJ
`BesselJ(nu,z)` ϡ° nu ʣǰ z Ф 1 ٥å
ؿ J_nu Ǥ
Donald E. Amos, Sandia National Laboratories, SAND85-1018 (1985) ˤ
롼ޤ饤֥ˤäƥݡȤƤޤ
?expressions functions BesselY
?BesselY
`BesselY(nu,z)` ϡ° nu ʣǰ z Ф 2 ٥å
ؿ Y_nu Ǥ
Donald E. Amos, Sandia National Laboratories, SAND85-1018 (1985) ˤ
롼ޤ饤֥ˤäƥݡȤƤޤ
?expressions functions BesselI
?BesselI
`BesselI(nu,z)` ϡ° nu ʣǰ z Ф 1 ѷ٥
ؿ I_nu Ǥ
Donald E. Amos, Sandia National Laboratories, SAND85-1018 (1985) ˤ
롼ޤ饤֥ˤäƥݡȤƤޤ
?expressions functions BesselK
?BesselK
`BesselK(nu,z)` ϡ° nu ʣǰ z Ф 2 ѷ٥
ؿ K_nu Ǥ
Donald E. Amos, Sandia National Laboratories, SAND85-1018 (1985) ˤ
롼ޤ饤֥ˤäƥݡȤƤޤ
?expressions functions BesselH1
?expressions functions BesselH2
?expressions functions Hankel
?BesselH1
?BesselH2
?Hankel
`BesselH1(nu,z)` `BesselH2(nu,z)` ϡ줾° nu ʣǰ
z Ф 1 2 ΥϥؿǤ
H1(nu,z) = J(nu,z) + iY(nu,z)
H2(nu,z) = J(nu,z) - iY(nu,z)
Donald E. Amos, Sandia National Laboratories, SAND85-1018 (1985) ˤ
롼ޤ饤֥ˤäƥݡȤƤޤ
4 Expint
?expressions functions expint
?expint
`expint(n,z)` ϡ0 ʾ n Фơ n λؿʬ֤ޤ
ϡt^(-n) e^(-tz) dt 1 ޤǤʬͤǤ
#TeX \quad\quad $E_n(x)=\int_1^\infty t^{-n} e^{-xt}\,dt$
ʤȤäƤ gnuplot Amos 饤֥ˤʣǴؿΥݡ
դǥӥɤ줿ΤǤСn>0 Фơɾˤ Amos 롼
cexint Ѥޤ [Amos 1990 Algorithm 683, ACM Trans Math
Software 16:178]ξ硢z -pi < arg(z) <= pi ǤդʣǿȤ
ޤexpint(0,z) ϡexp(-z)/z ȷޤ
Amos 饤֥ΥݡȤʤСz 0 ʾμ¿ͤ¤ޤ
4 եͥʬ (Fresnel integrals FresnelC(x) and FresnelS(x))
?expressions functions FresnelC
?expressions functions FresnelS
?FresnelC
?FresnelS
ȥΥեͥʬϡʣǸؿ erf(z) ȤδطѤ
ޤerf(z) ˰¸뤿ᡢʬ libcerf 饤֥
ݡȤˤΤѤǤޤ
#TeX \quad\quad $C(x) = \int^{x}_{0}\cos(\frac{\pi}{2} t^2)dt$ \quad $S(x) = \int^{x}_{0}\sin(\frac{\pi}{2} t^2)dt$
#TeX \quad\quad $C(x)+iS(x)=\frac{1+i}{2} erf(z)$$z = \frac{\sqrt{\pi}}{2}(1-i)x$
4 Gamma
?gamma
`gamma(x)` ϡΰμ¿ʬΥؿ֤ͤޤ n
Ƥ gamma(n+1) = n! Ǥʣǿξ硢εʬ̵뤷
ޤʣǿФƤϡʲ: `lnGamma`
4 Igamma
?expressions functions igamma
?igamma
`igamma(a, z)` ϡ () Դؿ P(a, z) ֤ޤ
[Abramowitz and Stegun (6.5.1); NIST DLMF 8.2.4]ʣǴؿݡȤ
Сa z real(a) > 0 ʣǿͤޤ
դˡԴؿ˴ؤƤϡʲ: `uigamma`
#TeX \quad\quad igamma$(a,z)=P(a,z) = z^a\gamma^*(a,z)$
#TeX $=\frac{1}{\Gamma(z)}\intop_{0}^{z}t^{a-1}e^{-t}dt$
a, z ͤ˰¸ơʲ 4 ĤΥ르ꥺѤޤ
#TeX \\
(1) a 礭 (>100) (z-a)/a (<0.2) 硢
Numerical Recipes 3 6.2 (2007) ˤ뷸Ǥ Gauss-Legendre
ʬѤޤ
#TeX \\
(2) z > 1 z > (a+2) ξ硢Shea (1988) J. Royal Stat. Soc.
Series C (Applied Statistics) 37:466-473 ϢʬѤޤ
#TeX \\
(3) z < 0 a < 75 imag(a) == 0 ξϡAbramowitz &
Stegun (6.5.29) οѤޤ
#TeX \\
(4) ¾ξϡPeason εŸѤޤ
ʿ̤ǤϡΰǤμ«ɤʤȤդƤ
르ꥺ 1.E-14 ϰϤǼ«ʤСؿ NaN ֤
ɽޤ
ʣǴؿݡȤʤϡϼ¿ΰ a > 0, z >= 0
¤ޤ
4 Invigamma
?expressions functions invigamma
?invigamma
Դؿ `invigamma(a,p)` ϡp = igamma(a,z) Ȥʤ z
֤ޤp (0;1] ¤졢a μ¿ǤʤФޤ
gnuplot Ǥμϡa<1 Ф 1.e-16 顢a = 1.e10 Ф 5.e-6
ޤǤ٤ޤ
4 Ibeta
?expressions functions ibeta
?ibeta
`ibeta(a,b,x)` ϡ¿ a,b > 0, [0;1] x Ф롢
Դ١ʬ֤ͤޤ
#TeX \quad\quad ibeta$(a,b,x)=\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\intop_{0}^{x}t^{a-1}(1-t)^{b-1}dt$
ʣǿξ硢ʬ̵뤷ޤgnuplot ǤμϡCephes
饤֥ [Moshier 1989, "Methods and Programs for Mathematical
Functions", Prentice-Hall] ΥɤѤƤޤ
4 Invibeta
?expressions functions invibeta
?invibeta
Դ١ؿ `invibeta(a,b,p)` ϡp = ibeta(a,b,z) Ȥʤ z
֤ͤޤa, b μ¿ˡp [0,1] ͤ¤Ƥޤ
a, b 0 ˶ŤȤ
#TeX ($\lessapprox 0.05$)
invibeta() 1.0 ˶ŤΤǡ٤ư٤¤
ȤդƤ
4 LambertW
?expressions functions LambertW
?LambertW
ʣʣͰ Lambert W ؿǤ
LambertW( z, k ) ϡ W(z) * exp(z) = z ؿ W
k ʬ֤ޤ
ʣǿͤϡCorless et al [1996], Adv. Comp. Math 5:329 ˵ܤ
Ƥ Halley ˡȤäƵޤ
ܾ̾٤ 1.E-13 ǤϢ³ʤʬζǤϼ«
ޤ
4 lnGamma
?expressions functions lnGamma
?lnGamma
lnGamma(z) ϡʣʣͰġؿμпͤ
ޤ Lanczos [1964], SIAM JNA 1:86-96 ˤ 14 ˤ
̤εʬϡμ¼ʬΤϢ³ʶ̤褦
餷Ƥޤ
4 (random)
?expressions random
?random
=rand
ؿ `rand()` 0 1 δ֤εޤϰʲ
르ꥺѤƤޤ: P. L'Ecuyer and S. Cote, "Implementing a
random number package with splitting facilities", ACM Transactions on
Mathematical Software, 17:98-111 (1991).
rand(0) ˻ 2 Ĥ 32bit μ (seed) θߤͤ
볫 (0:1) ε֤ͤ
rand(-1) 2 Ĥμͤɸ᤹ͤ
rand(x) 0 < x < 2^31-1 ʤξ x ꤹ
rand({x,y}) 0 < x,y < 2^31-1 ʤ seed1 x seed2 y
ꤹ
4 ʣǰüؿ (Special functions with complex arguments)
?expressions functions special
?expressions functions complex
?special_functions
?libcerf
?Amos
?libopenspecfun
ʣĤĤüؿ饤֥̤ޤ
ʤȤäƤ gnuplot Υ饤֥ؤΥʤǥӥ
Ƥϡ褬¿ξΤߥݡȤ뤫ޤϴؿ
ʤȤʤǤ礦
libcerf (http://apps.jcns.fz-juelich.de/libcerf) ɬפȤؿϡ
ӥɻꥪץ `--with-libcerf` ˰¸줬ǥեȤ
ʲ: `cerf`, `cdawson`, `faddeeva`, `erfi`, `VP`, `VP_fwhm`
¿ nu ʣǰʣǥ٥å롢ϥؿϡDouglas
E. Amos, Sandia National Laboratories, SAND85-1018 (1985) ˤäƼ
줿롼ޤ饤֥ɬפȤޤΥ롼ϡ
netlib (http://netlib.sandia.gov) 䡢libopenspecfun
(https://github.com/JuliaLang/openspecfun) ˤޤб
ӥɻꥪץ `--with-amos=<library directory>` Ǥ
ʲ: `Ai`, `Bi`, `BesselJ`, `BesselY`, `BesselI`, `BesselK`,
`Hankel`
ʣǻؿʬϡnetlib, libamos ǤƤޤlibopenspecfun
ˤϤޤʲ: `expint`
4 Synchrotron function
?expressions functions SynchrotronF
?SynchrotronF
( 1) ȥؿ SynchrotronF(x) ϡȥͤΥѥ
ʬۥڥȥ׳եȥͥ륮 (׳ȿ vc) ñ̤Ϳ
x δؿȤƵҤΤǤ
#TeX \quad\quad $F(x) = x\intop_{x}^{\infty}K_{\nicefrac{5}{3}}(\nu)~d\nu$
#TeX ǡ$K_{\nicefrac{5}{3}}$ 2 ѷ٥åؿ
1.E-15 ޤΤʶ Chebyshev ϡMacLead (2000)
NuclInstMethPhysRes A443:540-545 ѤƤޤ
4 ؿ (Time functions)
5 time
?expressions functions time
?time
ؿ `time(x)` ϸߤΥƥ֤ޤͤ `strftime`
ʸѴǤޤ`timecolumn` Ȥ߹碌Ū
դΤˤȤޤηϤ줬֤Τꤷޤ
ξ time() ϸߤλ 1970 ǯ 1 1
֤¿ (ޤʣǿ) ʤƱͤͤ¿Ȥ֤ޤ
ʸʤСʸǤȤߤʤ줿ʸ
褦 `strftime` Ϥޤ
ʲ: `time_specifiers`, `timefmt`
5 timecolumn
?expressions functions timecolumn
?timecolumn
`timecolumn(N,"timeformat")` ϡN ܤϤޤʸǡ
ͤȤɤߡ"timeformat" Ѥơ "Unix ݥå (1970
ǯ 1 1 ) ÿ" Ȥƥߥ٤Dzᤷޤѥ
λ꤬ʤ硢ǥեȤ `set timefmt` ˤʸȤޤ
δؿϡplot stats ޥɤǤ `using` ǤΤͭǤ
: `plot datafile using`
5 tm_structure
?epoch
gnuplot ϡǤϻUnix ݥå 1970 ǯ 1 1 ÿ
ɽ 64 bit ưͤȤݻƤޤդȤ
᤹뤿ˡ POSIX ɸι¤ `struct_tm` Ѵޤ
1 ̤ÿϡɤʾǤ tm_sec() ϼǤʤȤ
ƤǤˤϡʲδؿѤƸ̤˥Ǥޤ
#start
#b `tm_hour(t)` 0--23 ϰϤλ
#b `tm_mday(t)` 1--31 ϰϤΤη
#b `tm_min(t)` 0--59 ϰϤʬ
#b `tm_mon(t)` 0--11 ϰϤΤǯη
#b `tm_sec(t)` 0--59 ϰϤ
#b `tm_wday(t)` 0()-- 6() ϰϤ
#b `tm_yday(t)` 0--365 ϰϤΤǯ
#b `tm_year(t)`
#end
5 tm_week
?expressions functions tm_week
?time_specifiers tm_week
?tm_week
?epidemiological week
=epidemiological week
ؿ `tm_week(t, standard)` ϡΰ 1970 ǯ 1 1 ÿ
ǤλȤߤʤޤʤؿ̾ POSIX tm ¤ΤΥФȻ
⤷ޤǤϤޤ
standard = 0 ξ硢 ISO 8601 §Ǥνֹ֤ޤ
ϡgnuplot λ %W бޤ
standard = 1 ξ硢 CDC (ꥫͽɴ) ֳŪ
§ (ֱֳŪ) Ǥνֹ֤ޤ
ϡgnuplot λ %U бޤ
б롢饫ѴմؿˤĤƤϡ
ʲ: `weekdate_iso`, `weekdate_cdc`
: ISO YYYY ǯ 1 ֤νϡYYYY ǯ 1 1 ˰ֶᤤ
Ϥޤޤϡǯˤʤǽ⤢ޤ㤨С2008 ǯ 12
30 ϡISO νǤ 2009-W01-2 (2009 ǯνֹ 1
2 ) Ȥʤޤդˡ1 1 3 ޤǤϡISO νֹ 1
ˤˤʤ뤳Ȥꤨޤξ硢ϡǯκǸ
νֹν˴ޤޤ뤳Ȥˤʤޤ㤨С2021 ǯ 1 1
ϡISO νǤ 2020-W53-5 Ǥ
ꥫͽɴ (CDC) ֳŪϡƱͤν
§ǤISO §Ȥϡ˳ϤǤϤʤ˳ϤǤȤ㤤
5 weekdate_iso
?expressions functions weekdate_iso
?time_specifiers weekdate_iso
?weekdate_iso
:
time = weekdate_iso( year, week [, day] )
δؿϡISO 8601 Ǥ year(), week(ֹ), day(ֹ)
ǤUnix ݥå 1970 ǯ 1 1 ÿǤΥ
ѴޤϤǤܾ̾ǯ (year) ϡǤǯɬ
פʤȤդƤֹ week 1 53 δ
Ǥֹ day ϥץǡ줬 0 ޤϾά
νγϻ֤Ǥʤ day 1 () 7 ()
ޤǤǤ
ISO §ǤνֹѴմؿ˴ؤˤĤ
ϡʲ: `tm_week`
:
# 1 ܤ ISO ֹĥե뤫Υǡ
# ˴
# 2020-05 432 1
calendar_date(w) = weekdate_iso( int(w[1:4]), int(w[6:7]) )
set xtics time format "%b\n%Y"
plot FILE using (calendar_date(strcol(1))) : 2 title columnhead
5 weekdate_cdc
?expressions functions weekdate_cdc
?time_specifiers weekdate_cdc
?weekdate_cdc
=epidemiological week
:
time = weekdate_cdc( year, week [, day] )
δؿϡCDC/MMWR (ꥫͽɴ/ֳؽ) αֳŪ
Ǥ year(), week(ֹ), day(ֹ) ǤUnix ݥ
1970 ǯ 1 1 ÿǤΥѴޤCDC
§ϡISO §Ȥϡ 1 = ˤ 7 = ˤޤǡ
˰㤤ޤ3 ܤΥѥ 0 ޤϾάϡ
νγϻ郎֤ޤ
ʲ: `tm_week`, `weekdate_iso`
4 uigamma
?expressions functions uigamma
?uigamma
`uigamma(a, x)` ϡ () Դؿ Q(a, x) ֤ޤ
[NIST DLMF eq 8.2.4]
դˡԴؿ P(a,x) ФƤϡʲ: `igamma`
#TeX \\
Q(a, x) + P(a, x) = 1 Ǥ
#TeX \quad\quad uigamma$(a,z)=Q(a,x) = 1-P(a,x)$
#TeX $=\frac{1}{\Gamma(z)}\intop_{x}^{\infty}t^{a-1}e^{-t}dt$
ߤμϡCephes library (Moshier 2000) ˤΤǤϡ
¿ a>0, ¿ x>=0 ¤Ƥޤ
4 using Ѵؿ (using specifier functions)
?
ʲδؿϡǡϻΤͭǤ̾綠ϡ`plot`, `splot`,
`fit`, `stats` Τ줫Υޥɾ `using` Ѥ
ǻѤޤδؿŬϰϤϡºݤ plot ޥʸ
ΤǤꡢ㤨Хեȥκ `columnhead` λѤޤޤ
ޤ
5 column
?expressions functions column
?column
ؿ `column(x)` ϡplot, splot, stats ޥɤΰȤƤΤȤ
ϡ$x$ ܤƤͤȤɾޤ
ʸĤȻפξϡ stringcolumn(x)
timecolumn(x, "timeformat") ѤƤ
ʲ: `plot datafile using`, `stringcolumn`, `timecolumn`
5 columnhead
?expressions functions columnhead
?columnhead
ؿ `columnhead(x)` ϡplot, splot, stats ޥɤΰȤƤΤ
ޤϡǡեκǽιԤ $x$ ܤƤʸȤ
ɾޤŵŪˤϡƬԤեȥȤŸ
˻Ѥޤ
ʲ: `plot datafile using`
:
set datafile columnheader
plot for [i=2:4] DATA using 1:i title columnhead(i)
5 stringcolumn
?expressions functions stringcolumn
?stringcolumn
?expressions functions strcol
?strcol
ؿ `stringcolumn(x)` ϡǡ褫 fit ˤ `using` Ǥ
Ȥޤ $x$ ܤƤʸȤ֤ޤ`strcol(x)`
ϡ`stringcolumn(x)` ξάǤ
ʸ֤դǧϡ
timecolumn(x, "timeformat") ѤƤʲ:
`plot datafile using`
5 valid
?expressions functions valid
?valid
ؿ `valid(x)` ϡǡ褫 fit ˤ `using` μǤ
Ȥޤϡ餫 NaN ͤ䡢ͽ̥ߤ
ꡢ¿ʬǥե֤ͤꡢNaN ȤäƤ˷뤳
ȤꤹΤ˻Ȥޤ» ("missing") NaN () ǡ
ͤϤɤǧޤʲϽפǤgnuplot
˷»ͤǤǧ뤫ޤϷ»ͥե饰ޤǤǧ
硢valid() ѤƤӽФˡϹԤϼΤƤ
ƤޤȤȤդƤ
ʲ: `plot datafile using`, `missing`
:
# ȢΤǧǤʤ̵ͤ뤹ˡͤǤ
# prior ȤơȢΤ˴Ϳ褦˰
plot DATA using 1 : (valid(2) ? $2 : prior) smooth unique
4 value
?expressions functions value
?value
A 桼ѿ̾ǤСB = value("A") ϻ¾ B = A
ƱǤϡѿ̾Ȥʸѿ˼Ƥͭ
ѤǤʲ: `user-defined variables`ϡѿ̾ǡե
뤫ɤ뤳ȤǽˤޤǤ硢value() Ϥ
ο֤ͤޤʸǡƤѿб
ʤ硢value() NaN ֤ޤ
4 ñμФñ (word, words)
?counting_words
?expressions functions word
?expressions functions words
?words
?word
`word("string",n)` ϡʸ (string) n ܤñ֤ޤ㤨
`word("one two three",2)` ʸ "two" ֤ޤ
`words("string")` ϡʸ (string) ñ֤ޤ㤨С
`words(" a b c d")` 4 ֤ޤ
ñϡڤǤʤФޤ⤷¾ʸǶڤ줿ʸ
ġΥեɤФʤ顢 `split` Ѥ
ؿ `word` `words` ϡñ䡢ŰǰϤޤ줿ʸ⡢
ŪǤݡȤƤޤ:
print words("\"double quotes\" or 'single quotes'") # 3
ϰϡڡޤʸƬǤʤФޤ
ϡñ⡢뤤ñ콪ˤĤݥȥե (') ϡ
ñǤǤȸʤ뤳Ȥ̣ޤ:
print words("Alexis' phone doesn't work") # 4
ʸΥפϥݡȤƤޤΤǡݻ
ϡ줾̤μΰǰϤޤʤФޤ:
s = "Keep \"'single quotes'\" or '\"double quotes\"'"
print word(s, 2) # 'single quotes'
print word(s, 4) # "double quotes"
ǸǤϡΥפʸΤߤɬפǤ뤳Ȥ
դƤ
=split
?split
?expressions functions split
`split("string", "sep")` ϡ
`split("string", "sep")` ϡ"sep" ʸեɤζڤȤ
Ѥʸ "string" ȤġΥեɤڤʬޤϡ
ǤʸΥեɤˤ줾бʸ֤
2 ܤΥѥ "sep" ϥץǡ"sep" ά硢
϶ʸĤǤϡեʸǤոĤΥۥ磻ȥڡ
(ڡ֡ڡԡ) ڤʬޤʳξ
ϡڤ "sep" δʸ˥ޥåɬפޤ
ʲ 3 Ĥϡ [ "A", "B", "C", "D" ] ޤ
t1 = split( "A B C D" )
t2 = split( "A B C D", " ")
t3 = split( "A;B;C;D", ";")
ʲΥޥ
t4 = split( "A;B; C;D", "; " )
ϡ2 ĤʸΤߤ [ "A;B", "C;D" ] ޤϡ
2 ʸΥեɶڤʸ "; " 1 ĤĤʤǤ
: ʸ1 ʸĤ¸뤿ˡڤȤƶʸ
ꤹ뤳ȤϡߤϼƤޤϡ 1 ʸ
ʬʸȤȤǼ¸Ǥޤ: Array[i] = "string"[i:i]
=join
?join
?expressions functions join
`join(array, "sep")` ϡʸǤ"sep" ʸǶڤ
եɤȤưĤʸϢ뤷ޤʸǤʤǤϡ
Υեɤޤεդ `split` ؿϰĤʸʣ
ΥեɤڤʬưĤޤ
:
array A = ["A", "B", , 7, "E"]
print join(A,";")
A;B;;;E
=trim
?trim
`trim(" padded string ")` ϡʸˤʬ
ʸ֤ޤϡ;פʶϥǡʸ
ƱΤӤݤͭѤǤ:
plot FOO using 1:( trim(strcol(3)) eq "A" ? $2 : NaN )
4 zeta
?expressions functions zeta
?zeta
?Riemann
zeta(s) ϡʣѿʣǿͤΥޥؿǤ
#TeX \quad\quad $\zeta(s) = \Sigma^{\infty}_{k=1}k^{-s}$
μϡP. Borwein [2000] Canadian Mathematical Society Conference
Proceedings ǥ르ꥺ 3 ȤƵҤƤ¿༰Ѥ
ޤܾ̾٤ϡʣʿ̾ 1.e-16 Ǥϡ
ؿμǤʤ 0 ɾ뤳ȤݾڤϤޤ
3 黻 (operators)
?expressions operators
?operators
`gnuplot` α黻ҤϡC α黻ҤȤۤƱǤäդʤ
Ƥα黻Ҥ¿ʣǿΰ뤳ȤǤޤޤ
FORTRAN ǻȤ ** (߾) 黻Ҥ⥵ݡȤƤޤ
黻Ҥ̤ͥ Fortran C ƱǤθƱ͡黻ɾ
Ѥ뤿ˤäȤޤä -2**2 = -4 ǡ
(-2)**2 = 4 Ǥ
4 ñ黻 (Unary)
?expressions operators unary
?operators unary
?unary
ʲϡñ黻ҤΰǤ:
@start table - ޤ÷ƥȷ
- -a ޥʥ
+ +a ץ饹 (⤷ʤ)
~ ~a * 1 (ӥåȿž)
! !a * Ū
! a! *
$ $3 * `using` Υǡ
|| |A| A ǿ
=factorial
=negation
=one's complement
=operator precedence
=cardinality
#\begin{tabular}{|lcl|} \hline
#\multicolumn{3}{|c|}{ñ黻}\\ \hline \hline
# & & \\ \hline
#\verb@-@ & \verb@-a@ & ޥʥ \\
#\verb@+@ & \verb@+a@ & ץ饹 (⤷ʤ) \\
#\verb@~@ & \verb@~a@ & * 1 (ӥåȿž) \\
#\verb@!@ & \verb@!a@ & * Ū \\
#\verb@!@ & \verb@a!@ & * \\
#\verb@$@ & \verb@$3@ & * `using` Υǡ \\
#\verb@|@ & \verb@|A|@ & A ǿ \\
C ugly hack: doc2ms uses $ as delimiter for eqn's so it doesn't seem to
C be able to print them. So we have to typeset this table without using
C eqn (at least that's the only solution I found, without any real docs
C on *roff and eqn
C First, terminate the table doc2ms.c already started:
%c c l .
%.TE
C ... then turn off eqn delimiters:
%.EQ
%delim off
%.EN
C ... and restart the table:
%.TS
%center box tab (@) ;
%c c l .
%@@
%_
%-@-a@ޥʥ
%+@+a@ץ饹 (⤷ʤ)
%~@~a@* 1 (ӥåȿž)
%!@!a@* Ū
%!@a!@*
%$@$3@* `using` Υǡ
%|@|A|@ A ǿ
@end table
^<table align="center" border="1" rules="groups" frame="hsides" cellpadding="3">
^<colgroup>
^ <col align="center">
^ <col align="center">
^ <col align="left">
^</colgroup>
^<thead>
^<tr> <th></th> <th></th> <th></th></tr>
^</thead>
^<tbody>
^<tr> <td><tt>-</tt></td> <td><tt>-a</tt></td> <td>ޥʥ</td></tr>
^<tr> <td><tt>+</tt></td> <td><tt>+a</tt></td> <td>ץ饹 (⤷ʤ)</td></tr>
^<tr> <td><tt>~</tt></td> <td><tt>~a</tt></td> <td>* 1 (ӥåȿž)</td></tr>
^<tr> <td><tt>!</tt></td> <td><tt>!a</tt></td> <td>* Ū</td></tr>
^<tr> <td><tt>!</tt></td> <td><tt>a!</tt></td> <td>* </td></tr>
^<tr> <td><tt>$</tt></td> <td><tt>$3</tt></td> <td>* `using` Υǡ</td></tr>
^<tr> <td><tt>|</tt></td> <td><tt>|A|</tt></td> <td> A ǿ</td></tr>
^</tbody>
^</table>
(*) ΤĤ黻ҤΰǤʤФʤޤ
黻ҤϡN! ʬ (64 ӥåǤ N <= 20)
礭 N ͤФƤϼ¿Ǥζ֤ͤޤ
?cardinality
ڥ졼 |...| ϡ A ǿ |A| ֤ޤǡ֥
$DATA ŬѤϡ|$DATA| ϥǡԿ֤ޤ
4 黻 (Binary)
?expressions operators binary
?operators binary
ʲϡ黻ҤΰǤ:
@start table - ޤ÷ƥȷ
** a**b ߾
* a*b
/ a/b
% a%b * ;
+ a+b
- a-b
== a==b
!= a!=b ʤ
< a<b 꾮
<= a<=b ʲ
> a>b 礭
>= a>=b ʾ
<< 0xff<<1 ʤե
>> 0xff>>2 ʤե
& a&b * ӥå (AND)
^ a^b * ӥå¾ (XOR)
| a|b * ӥå (OR)
&& a&&b * Ū AND
|| a||b * Ū OR
= a = b
, (a,b) ɾ
. A.B ʸϢ
eq A eq B ʸ
ne A ne B ʸʤ
=bitwise operators
=string operators
=modulo
=exponentiation
#\begin{tabular}{|lcl|} \hline
#\multicolumn{3}{|c|}{黻} \\ \hline \hline
# & & \\ \hline
#\verb~**~ & \verb~a**b~ & ߾\\
#\verb~*~ & \verb~a*b~ & \\
#\verb~/~ & \verb~a/b~ & \\
#\verb~%~ & \verb~a%b~ & * ;\\
#\verb~+~ & \verb~a+b~ & \\
#\verb~-~ & \verb~a-b~ & \\
#\verb~==~ & \verb~a==b~ & \\
#\verb~!=~ & \verb~a!=b~ & ʤ\\
#\verb~<~ & \verb~a<b~ & 꾮\\
#\verb~<=~ & \verb~a<=b~ & ʲ\\
#\verb~>~ & \verb~a>b~ & 礭\\
#\verb~>=~ & \verb~a>=b~ & ʾ\\
#\verb~<<~ & \verb~0xff<<1~ & ʤե\\
#\verb~>>~ & \verb~0xff>>1~ & ʤե\\
#\verb~&~ & \verb~a&b~ & * ӥå (AND)\\
#\verb~^~ & \verb~a^b~ & * ӥå¾Ū (XOR)\\
#\verb~|~ & \verb~a|b~ & * ӥå (OR)\\
#\verb~&&~ & \verb~a&&b~ & * Ū AND\\
#\verb~||~ & \verb~a||b~ & * Ū OR\\
#\verb~=~ & \verb~a = b~ & \\
#\verb~,~ & \verb~(a,b)~ & ɾ\\
#\verb~.~ & \verb~A.B~ & ʸϢ\\
#\verb~eq~ & \verb~A eq B~ & ʸ\\
#\verb~ne~ & \verb~A ne B~ & ʸʤ\\
%c c l .
%@@
%_
%**@a**b@߾
%*@a*b@
%/@a/b@
%%@a%b@* ;
%+@a+b@
%-@a-b@
%==@a==b@
%!=@a!=b@ʤ
%<@a<b@꾮
%<=@a<=b@ʲ
%>@a>b@礭
%>=@a>=b@ʾ
%<<@0xff<<1@ʤե
%>>@0xff>>1@ʤե
%&@a&b@* ӥå (AND)
%^@a^b@* ӥå¾Ū (XOR)
%|@a|b@* ӥå (OR)
%&&@a&&b@* Ū AND
%||@a||b@* Ū OR
%\&=@a = b@
%,@(a,b)@ɾ
%.@a.b@ʸϢ
%eq@A eq B@ʸ
%ne@A ne B@ʸʤ
@end table
^<table align="center" border="1" rules="groups" frame="hsides" cellpadding="3">
^<colgroup>
^ <col align="center">
^ <col align="center">
^ <col align="left">
^</colgroup>
^<thead>
^<tr> <th></th> <th></th> <th></th></tr>
^</thead>
^<tbody>
^<tr> <td><tt>**</tt></td> <td><tt>a**b</tt></td> <td>߾</td></tr>
^<tr> <td><tt>*</tt></td> <td><tt>a*b</tt></td> <td></td></tr>
^<tr> <td><tt>/</tt></td> <td><tt>a/b</tt></td> <td></td></tr>
^<tr> <td><tt>%</tt></td> <td><tt>a%b</tt></td> <td>* ;</td></tr>
^<tr> <td><tt>+</tt></td> <td><tt>a+b</tt></td> <td></td></tr>
^<tr> <td><tt>-</tt></td> <td><tt>a-b</tt></td> <td></td></tr>
^<tr> <td><tt>==</tt></td> <td><tt>a==b</tt></td> <td></td></tr>
^<tr> <td><tt>!=</tt></td> <td><tt>a!=b</tt></td> <td>ʤ</td></tr>
^<tr> <td><tt><</tt></td> <td><tt>a<b</tt></td> <td>꾮</td></tr>
^<tr> <td><tt><=</tt></td> <td><tt>a<=b</tt></td> <td>ʲ</td></tr>
^<tr> <td><tt>></tt></td> <td><tt>a>b</tt></td> <td>礭</td></tr>
^<tr> <td><tt>>=</tt></td> <td><tt>a>=b</tt></td> <td>ʾ</td></tr>
^<tr> <td><tt><<</tt></td> <td><tt>0xff<<1</tt></td> <td>ʤե</td></tr>
^<tr> <td><tt>>></tt></td> <td><tt>0xff>>1</tt></td> <td>ʤե</td></tr>
^<tr> <td><tt>&</tt></td> <td><tt>a&b</tt></td> <td>* ӥå (AND)</td></tr>
^<tr> <td><tt>^</tt></td> <td><tt>a^b</tt></td> <td>* ӥå¾Ū (XOR)</td></tr>
^<tr> <td><tt>|</tt></td> <td><tt>a|b</tt></td> <td>* ӥå (OR)</td></tr>
^<tr> <td><tt>&&</tt></td> <td><tt>a&&b</tt></td> <td>* Ū AND</td></tr>
^<tr> <td><tt>||</tt></td> <td><tt>a||b</tt></td> <td>* Ū OR</td></tr>
^<tr> <td><tt>=</tt></td> <td><tt>a = b</tt></td> <td></td></tr>
^<tr> <td><tt>,</tt></td> <td><tt>(a,b)</tt></td> <td>ɾ</td></tr>
^<tr> <td><tt>.</tt></td> <td><tt>a.b</tt></td> <td>ʸϢ</td></tr>
^<tr> <td><tt>eq</tt></td> <td><tt>A eq B</tt></td> <td>ʸ</td></tr>
^<tr> <td><tt>ne</tt></td> <td><tt>A ne B</tt></td> <td>ʸʤ</td></tr>
^</tbody>
^</table>
(*) ΤĤ黻ҤΰǤʤФʤޤ
ʸ A,B ϱ黻Ҥʸ᤹뤳Ȥ̣ޤ
黻Ҥ AND (&&) OR (||) C ƱͤɬǾ¤ɾ
ޤʤ`&&` 2 ϡ 1 ʤɾޤ
`||` 2 ϡ 1 ʤɾޤ
ɾ (,) ϡåǤΤɾ졢鱦ؽ˼¹Ԥ뤳
ݾڤ졢Ǥⱦμ֤ͤޤ
4 黻 (Ternary)
?expressions operators ternary
?operators ternary
?ternary
Ĥ黻Ҥޤ:
@start table - ޤ÷ƥȷ
?: a?b:c 黻
#\begin{tabular}{|lcl|} \hline
#\multicolumn{3}{|c|}{黻} \\ \hline \hline
# & & \\ \hline
#\verb~?:~ & \verb~a?b:c~ & 黻\\
%c c l .
%@@
%_
%?:@a?b:c@黻
@end table
^<table align="center" border="1" rules="groups" frame="hsides" cellpadding="3">
^<colgroup>
^ <col align="center">
^ <col align="center">
^ <col align="left">
^</colgroup>
^<thead>
^<tr> <th></th> <th></th> <th></th></tr>
^</thead>
^<tbody>
^<tr> <td><tt>?:</tt></td> <td><tt>a?b:c</tt></td> <td>* 黻</td></tr>
^</tbody>
^</table>
黻Ҥ C ΤΤƱƯޤǽΰ (a) Ǥʤ
Фޤͤɾ졢줬 (Ǥʤ) ʤ 2 ܤ
(b) ɾ줽֤ͤ졢Ǥʤ 3 ܤΰ (c)
ɾ졢֤ͤޤ
黻ҤϡʬŪ줿ؿ䡢郎줿ˤΤ
褹롢ȤäȤԤʤͭѤǤ
:
0 <= x < 1 Ǥ sin(x) ˡ1 <= x < 2 Ǥ 1/x ơʳ
x Ǥʤؿ:
f(x) = 0<=x && x<1 ? sin(x) : 1<=x && x<2 ? 1/x : 1/0
plot f(x)
`gnuplot` ̤ͤФƤϲɽˤ̵뤹Τǡ
Ǹξδؿ (1/0) ϤʤȤդƤ
δؿ襹뤬 lines () ξ硢Ϣ³ (x=1)
νϢ³ؿȤФ뤳ȤˤդƤϢ
³ˤʤ褦ˤˤϡؿ 2 Ĥʬ줾ʬƤ
ե 'file' Υǡǡ4 ܤΥǡǤʤȤ1 ܤ
ǡ˴ؤ 2 ܤ 3 ܤΥǡʿͤ:
plot 'file' using 1:( $4<0 ? 1/0 : ($2+$3)/2 )
`using` ν˴ؤƤϡʲ: `plot datafile using`
3 (summation)
?expressions operators summation
?operators summation
?summation
¤μϡʲηɽޤ:
sum [<var> = <start> : <end>] <expression>
<var> ϡ<start> <end> ޤǤͤ˼ѿȤ
ưޤγͤФơ <expression> ͤͤɲä졢
ǽŪʹͤ¤μͤȤʤޤ
:
print sum [i=1:10] i
55.
# ʲ plot 'data' using 1:($2+$3+$4+$5+$6+...) Ʊ
plot 'data' using 1 : (sum [col=2:MAXCOL] column(col))
<expression> ϡɬѿ <var> ޤɬפϤޤ<start>
<end> ѿͤǻǤޤͤưŪѹ뤳
ϤǤޤǤʤѤޤ<end> <start>
ϡ¤ͤ 0 Ȥʤޤ
3 Ѥѿ (Gnuplot-defined variables)
?expressions gnuplot-defined
?gnuplot-defined
?gnuplot-defined variables
?GPVAL
?gpval
gnuplot ϡץθߤ֤ľȿǤ褦ɤ
ФѤѿĤäƤޤѿ̾ϡ㤨
GPVAL_TERM, GPVAL_X_MIN, GPVAL_X_MAX, GPVAL_Y_MIN Τ褦 "GPVAL_"
Ϥޤޤ餹٤ƤΰȤͤˤϡ`show variables all`
ϤƤΥѥ˴Ϣ (ϰϡп
뤫) ϡ `set` ΤǤϤʤǸ褵줿Τ
ޤ
: [X,Y] ΥǤκɸˡ
GRAPH_X = (X - GPVAL_X_MIN) / (GPVAL_X_MAX - GPVAL_X_MIN)
GRAPH_Y = (Y - GPVAL_Y_MIN) / (GPVAL_Y_MAX - GPVAL_Y_MIN)
SCREEN_X = GPVAL_TERM_XMIN + GRAPH_X * (GPVAL_TERM_XMAX - GPVAL_TERM_XMIN)
SCREEN_Y = GPVAL_TERM_YMIN + GRAPH_Y * (GPVAL_TERM_YMAX - GPVAL_TERM_YMIN)
FRAC_X = SCREEN_X * GPVAL_TERM_SCALE / GPVAL_TERM_XSIZE
FRAC_Y = SCREEN_Y * GPVAL_TERM_SCALE / GPVAL_TERM_YSIZE
=errors
=error state
ɤ߽Фѿ GPVAL_ERRNO ϡǤդ gnuplot ޥɤ륨顼
äƤޤä 0 Ǥʤͤ˥åȤ졢ľΥ顼
åʸѿ GPVAL_ERRMSG ¸ޤGPVAL_ERRNO
GPVAL_ERRMSG ϡޥ `reset errors` ȤäƥꥢǤޤ
`mouse` ǽȤ÷Ϸϡ"MOUSE_" ǻϤޤɤ߽Ф
ѿĤäƤޤܺ٤ϡʲ: `mouse variables`
`fit` ǽϡ"FIT_" ǻϤޤ뤤ĤѿѤޤΤǡΤ褦
̾ȤΤ٤Ǥ礦`set fit errorvariables` Ѥ
ȡƤϤѿΥ顼ϡΥѥ̾ "_err" ɲä
¸ޤܺ٤ϡʲ: `fit`
ʲ⻲: `user-defined variables`, `reset errors`,
`mouse variables`, `fit`
3 桼ѿȴؿ (User-defined)
?expressions user-defined
?functions user-defined
?user-defined variables
?user-defined
?variables
ʥ桼ѿ 1 Ĥ 12 ĤޤǤΰĥ桼ؿ
ǤդξȤäꤹ뤳ȤǤޤ `plot` ޥ
ɾǤǽǤ
桼ؿ:
<func-name>( <dummy1> {,<dummy2>} ... {,<dummy12>} ) = <expression>
<expression> ϡѿ <dummy1> <dummy12> ɽ
Ǥηδؿϡ1 ԤǤλѤ¤Ƥޤʣ
ʣԤʤؿϡؿ֥åλȤߤȤǤޤ (С
Ǥοǽ)ʲ: `function blocks`
桼ѿ:
<variable-name> = <constant-expression>
:
w = 2
q = floor(tan(pi/2 - 0.1))
f(x) = sin(w*x)
sinc(x) = sin(pi*x)/(pi*x)
delta(t) = (t == 0)
ramp(t) = (t > 0) ? t : 0
min(a,b) = (a < b) ? a : b
comb(n,k) = n!/(k!*(n-k)!)
len3d(x,y,z) = sqrt(x*x+y*y+z*z)
plot f(x) = sin(x*a), a = 0.2, f(x), a = 0.4, f(x)
file = "mydata.inp"
file(n) = sprintf("run_%d.dat",n)
Ǹ 2 Ԥϡ桼ʸѿȡ桼ʸؿ̣
Ƥޤ
=NaN
=pi
ѿ `pi` (3.14159...) `NaN` (IEEE ("Not a Number")) Ϥ餫
Ƥޤ餬ɬפʤС¾ΤΤ˺뤳Ȥ
ǽǤʲΤ褦ˤƸͤ뤳ȤǤޤ:
NaN = GPVAL_NaN
pi = GPVAL_pi
¾ˤ⤤Ĥѿ㤨÷ϷǤΥޥƤϤ
(fit) ʤɤ gnuplot ư֤˱ޤܺ٤
ʲ: `gnuplot-defined variables`
ѿ V Ƥ뤫ɤϡ exists("V") ǥå
ޤ:
a = 10
if (exists("a")) print "a is defined"
if (!exists("b")) print "b is not defined"
ѿ̾ؿ̾̿̾§ϡΥץߥƱǡƬϥ
ե٥åȤǡθʸϥե٥åȡ"_" Ȥޤ
ƴؿϡ'GPFUN_' ȤƬ̤ʸѿȤ
ѤǤޤ
:
set label GPFUN_sinc at graph .05,.95
ʲ: `show functions`, `functions`, `gnuplot-defined variables`,
`macros`, `value`
3 (arrays)
?arrays
=cardinality
ϡ桼ѿźդꥹȤȤƼƤޤĤ
ǤϡĤѿˤϸꤵƤޤϡȤŪ
˺ƤʤФޤǡΥѹ
뤳ȤϤǤޤǤϡƤʤ¤ꡢǽ̤
(undefined) ǤۤȤɤξ̤ǡ̾դ桼ѿ
ǤѤǤޤ
A ǿϡ |A| ǼǤޤ
:
array A[6]
A[1] = 1
A[2] = 2.0
A[3] = {3.0, 3.0}
A[4] = "four"
A[6] = A[2]**3
array B[6] = [ 1, 2.0, A[3], "four", , B[2]**3 ]
array C = split("A B C D E F")
do for [i=1:6] { print A[i], B[i] }
1 1
2.0 2.0
{3.0, 3.0} {3.0, 3.0}
four four
<undefined> <undefined>
8.0 8.0
: ѿϡƱ֤̾ͭޤ㤨С餫 FOO
Ȥ̾硢FOO Ȥ̾ѿʸƤ
˲ޤ
̾ `plot`, `splot`, `fit`, `stats` ޥɤͿ뤳Ȥ
ޤξ硢źե 1 ܤͤ (1 size
) A[i] μ¿ʬ real(A[i]) ե 2 ܡʬ
imag(A[i]) ե 3 ܤǤ褦ʥǡեͿȤ
Ʊˤʤޤ
:
array A[200]
do for [i=1:200] { A[i] = sin(i * pi/100.) }
plot A title "sin(x) in centiradians"
plot ʣǿεʬ褷硢ͤ
imag(A[$1]) ޤ $3 ȤƻȤǤޤäưʲ 2 ĤΥޥ
ɤƱǤ
plot A using (real(A[$1])) : (imag(A[$1]))
plot A using 2:3
4 ؿ (array functions)
?arrays functions
?arrays slice
?slice
=split
gnuplot С 6 ꡢؿϤȤ⡢֤ͤˤ뤳
Ǥ褦ˤʤޤ㤨С2 ĤΥƱΥɥå
() ϰʲΤ褦Ǥޤ
dot(A,B) = (|A| != |B|) ? NaN : sum [i=1:|A|] A[i] * B[i]
ȤꤹȤ߹ߴؿˤϡʬ array[min:max] ź
ؿ index(Array,value) ޤ
T = split("A B C D E F")
U = T[3:4]
print T
[ "A", "B", "C", "D", "E", "F" ]
print U
[ "C", "D" ]
print index( T, "D" )
4
T U ϡ줬ˤɤΤ褦Ƥɤ˴ؤ
餺λǤˤʤ뤳ȤդƤ
4 źդ (Array indexing)
?arrays indexing
=index
Ǥ N Ĥ (array) źϡ1 N ޤǤȤʤޤ
A i ܤǤϡA[i] ȻȤޤ
Ȥ߹ߴؿ `index(Array, <value>)` ϡA[i] <value> 褦
i ֤ޤǡ<value> Ͽ (¿ޤʣǿ)
ɾǤդο뤤ʸǤǤȤϷͤξ
פɬפޤĤʤϡ0 ֤ޤ
array A = [ 4.0, 4, "4" ]
print index( A, 4 )
2
print index( A, 2.+2. )
1
print index( A, "D4"[2:2] )
3
2 ե
?fonts
gnuplot 켫ȤˤϤɤʥեȤޤޤƤϤ餺եȽ
äƤǡκᤷȤ˽Ϸ˰ۤʤޤ
ǤϡʣνϷŬѤեȵˤĤޤ
夲ΰʳνϷǤΥեȤλѤ˴ؤƤϡνϷΥ
ȤȤƤ
Ūˡ㤨 Adobe Symbol եȤΤ褦̤ʥեȤڤؤ
뤳Ȥǥե٥åȤǤϤʤ뤳ȤǽǤߤϡ
UTF-8 ǥѤơ¾ʸƱͤˤεΤ
ɤˡǤ礦¾ˡɬפʵ Unicode ɥݥȤ
ĥʸ⡼ǥץȤƻꤹ⤢ޤ
ʲ: `encoding`, `unicode`, `locale`, `escape sequences`
3 cairo (pdfcairo, pngcairo, epscairo, wxt Ϸ)
?fonts cairo
?fontconfig
?fonts fontconfig
=fonts
=pdf
=png
=wxt
Ϸˤ (㤨 cairo ϤνϷ٤)fontconfig ƥ
饤֥ȤäƥեȤ˥ޤ
^ <a href="http://fontconfig.org/fontconfig-user.html">
fontconfig 桼ޥ˥奢
^ </a>
ȤƤϡgnuplot ǰŪ̾䥵ǥեȤ
᤹뤳Ȥǽˤɬפʤ fontconfig ƱΥեȤѤ
뤳ȤǤΤǡ̾ϤǽʬǤ礦ʲϡ¿ʬⵡ
ǽޤ:
set term pdfcairo font "sans,12"
set term pdfcairo font "Times,12"
set term pdfcairo font "Times-New-Roman,12"
3 gd (png, gif, jpeg, sixel terminals)
?gd
?fonts gd
=fonts
=png
=jpeg
=gif
=sixel
png, gif, jpeg, sixelgd ϷΥեȽϡ饤֥ libgd
ԤޤϡǤ `tiny`, `small`, `medium`, `large`,
`giant` 5 δܥեȤޤϿ̤ž
ϤǤޤΰĤѤݤϡ`font` ɤ
˾Υɤꤷޤ:
set term png tiny
¿Υƥǡlibgd ϡfontconfig ġ뤬Ūʥե
ȽѤǤޤʲ: `fontconfig`
fontconfig ΤʤƥǤϡ Adobe ե (*.pfa)
TrueType ե (*.ttf) ؤΥƤޤξե
ȼȤ̾ǤϤʤեȥե̾"<face> {,<size>}"
ͿʤФޤ
ǡ<face> ϥեȥեΥեѥ̾ޤϴĶѿ
GDFONTPATH ǻؼǥ쥯ȥΰĤΥե̾Ƭʬ
Τ줫Ǥäơ'set term png font "Face"' ϡ
<ǥ쥯ȥ>/Face.ttf <ǥ쥯ȥ>/Face.pfa Ȥե
̾ΥեȤõȤޤ㤨СGDFONTPATH
`/usr/local/fonts/ttf:/usr/local/fonts/pfa` ޤޤƤϡʲ
Υޥɤ 2 ĤĤϤƱȤˤʤޤ:
set term png font "arial"
set term png font "/usr/local/fonts/ttf/arial.ttf"
set term png font "Helvetica"
set term png font "/usr/local/fonts/pfa/Helvetica.pfa"
ǥեȤΥեȥƱ˻ꤹˤ:
set term png font "arial,11"
"set term" ޥɤǥեȤꤷʤä硢gnuplot ϴĶѿ
GNUPLOT_DEFAULT_GDFONT Ȥޤ
3 postscript (ץ벽 postscript *.eps )
?fonts postscript
=fonts
=postscript
=eps
PostScript եȽϡץɽեȤԤޤ⤷
Υԥ塼˥եȤڤʤƤ⡢gnuplot PostScript
ե롢ޤϥץ벽 PostScript (*.eps) եǤޤ
gnuplot ñ˽ϥե˥եȤ̾Ȥǡץ
ɽեȤ̾եȤĤ뤫뤳Ȥꤷ
ޤ
PostScript ץɽեȤϤ٤ơɸŪ Adobe եȥå
`Times-Roman`, `Helvetica`, `Courier`, `Symbol` ΤäƤϤǤ
¿ʬ¾ˤ¿ΥեȤȤ褦ˤʤäƤȻפޤ
ΥեȥåȤϤʤΥƥץ˰¸ޤ
gnuplot ϡΤޤˤ⤷ޤgnuplot *.ps
*.eps Ϥϡʤᤷե̾ñ˻äƤǤ
äơ
set term postscript eps font "Times-Roman,12"
ϡ٤ƤΥץɽեȤŬڤʽϤޤ
set term postscript eps font "Garamond-Premier-Pro-Italic"
ϡ PostScript ϥեޤ̤ѥե
ȤȤƤΤǡᤵ줿ΥեȤϰΥץ
ɽեȤǤɽǤʤǤ礦ξ̤ʥեȤѤ
ޤ
ꤷեȤϥեǡɤʥץ
⤽Ȥ褦ˤ뤳ȤǽǤˤϡʤΥƥŬ
ʥեȵҥե뤬뤳ȤɬפȤʤޤˡǥեȤ
硢Υ饤ɬפȤʤեȥե⤢뤳Ȥ
դƤܺ٤ˤĤƤϡʲ:
`postscript fontfile`
2 إפѸ (Glossary)
?glossary
=terminal
=screen
=record
=block
`gnuplot` 30 ǯʾ夫ƳȯƤΤǡޥɤ䤳ʸǻ
ƤѸΰ̣ϡߤ̤ˡȤϰäƤ뤫⤷ޤ
Ǥϡ`gnuplot` ǤϤѸΤĤɤΤ褦˻ȤäƤ
뤫ޤ
Ѹ "Ϸ (terminal)" ϡϥ⡼ɤΤȤ̣ʤ
ܡϤ (ߥʥ) ؤƤΤǤϤޤ㤨С
ޥ `set terminal pdf` ϡθ襳ޥɤ PDF Ϥ
뤳Ȥ̣ޤ̾ϡ PDF ϤФꤹ륳
ޥ `set output "filename"` ˻ȤɬפǤ礦
"ڡ (page)""ɽ (screen)""Х (canvas)" ϡ
`gnuplot` ǽΰΤؤޤǥȥåפǤϤϥ
ɥΤؤץåǤϡλΤؤޤ
ǡե˴ؤǤϡѸ " (record)" ϡեΰ
ʸʤʸʸƱΤ˶ޤ줿ʸؤޤ
" (point)" ϡԤФĤΥǡǤǡ
"֥å (block)" ϡԤǶڤ줿Ϣ³ʣιԤʤ뽸
ǡեε "line" Ȥϡϥ֥
ʬؤޤ"ǡΥ֥å (data block)" Ȥդϡ
饤ǡ̾դ֥åؤΤˤȤƤޤʲ:
`datablocks`
2 饤ǡȥǡ֥å (inline data and datablocks)
?inline data
?inline
?data inline
?datablocks
?data datablocks
gnuplot ΥޥϤ˥ǡȤߤ 2 Ѱդ
ޤޤüե̾ '-' plot ޥͿȡ
plot ޥɰʲ³Ԥ饤ǡȲᤵޤʲ:
`special-filenames`ˡǡϡ plot ޥ
ǰ٤ѤǤޤ
⤦ĤϡҥɥȤȤ̾դΥǡ֥å
ˡǤ̾դΥǡϻĤΤǡʣ plot ޥɤǻȤǤ
ޤ:
$Mydata << EOD
11 22 33 first line of data
44 55 66 second line of data
# ǡեƱͥȤⵡǽ
77 88 99
EOD
stats $Mydata using 1:3
plot $Mydata using 1:3 with points, $Mydata using 1:2 with impulses
ǡ֥å̾ϡ¾ѿȶ̤뤿ˡǽʸ $ ˤɬ
פޤǡνζڤ (Ǥ EOD) ϡǤդΥ
٥åȡʤʸǹޤ
ǡ̾դ֥å¸뤫ˡ¹Բǽޥɤ¸
ƱͤλȤߤˤĤƤϡʲ: `function blocks`
ޥ `undefine` ȤС¸̾դǡ֥åǤ
ޤ`undefine $*` ϡ٤Ƥ̾դǡ֥åؿ֥å
٤˺ޤ
2 ֤ (iteration)
?iteration
?iterate
Ffigure_newsyntax
gnuplot ϡ֤ (iteration) ޥɤ֥å¤
if/else/while/do ݡȤƤޤʲ: `if`, `while`, `do`
ޥ `plot`, `set` ñʷ֤ǽǤʲ:
`plot for`ʣΥޥɤޤŪʷ֤ϡǾҲ𤹤
å¤Ѥ뤳ȤǹԤޤ
Ϣ뿷ǽǤΰʲ⻲: `summation`
ʲϡοʸǽĤѤǤ:
set multiplot layout 2,2
fourier(k, x) = sin(3./2*k)/k * 2./3*cos(k*x)
do for [power = 0:3] {
TERMS = 10**power
set title sprintf("%g term Fourier series",TERMS)
plot 0.5 + sum [k=1:TERMS] fourier(k,x) notitle
}
unset multiplot
=iteration-specifier
֤ϡʲΤ褦ʽˤ뷫֤椷ޤ
for [<var> in "string of N elements"]
ޤ
for [<var> = <start> : <end> { : <increment> }]
ǽνǤ <var> ʸѿǡθ˻ꤷʸ˴ޤޤ
1 ܤ N ܤޤǤñʸͤȤƼޤ
2 ܤνǤϡ<start>, <end>, <increment> ޤͤ
Ǥ
=scope
֤ѿͭϰ (scope) ϡη֤Ǥʲ:
`scope`֤ѿͤμ¹ԥ֥åDZ³Ūѹ뤳
ϤǤޤ֤ѿ֤ͤäƤȤ顢
ͤϷ֤νλݻޤޤ
㤨СʲΥޥɤϡ1 2 3 4 5 6 7 8 9 10 A Ϥޤ
i = "A"
do for [i=1:10] { print i; i=10; }
print i
2 (linetypes)
?linetypes
?colors
ȤƤŤǤ gnuplot ǤϡƽϷ " (linetype)"
ѰդƤơϿ/ΥѥޤϿ/
ȹ礻ǰ㤤ɽƤޤο/Υѥϡ
ϷۤƱΤˤʤȤݾڤϲ⤢ޤǤ¿
Ʊ////忧/ѤƤޤθŤưϡ
`set colorsequence classic` Ǥޤߤ gnuplot Υ
եȤϡϷ̵ط˶̤ 8 Ѥޤ
(linetype) °¤ӤϡŪեΤ줫ˤ
Ƥ˥ޥǽǤʲ: `set linetype`ۥѥå
˽եΥץ뤬ĤѰդƤޤ
νϷФ°θߤξ֤ϡνϷꤷ
Ȥ `test` ޥɤ¹Ԥ뤳ȤdzǧǤޤ
Ĥ襳ޥǤδؿǡեϢ³¤Ӥˤϡߤ
ǥեȤ郎֤˳Ƥޤġδؿǡ
ե롢ޤϤ¾ǤФϡ襳ޥɾ
Ū°ꤹ뤳ȤǾǤޤ
:
plot "foo", "bar" # 1, 2 2 ե
plot sin(x) linetype 4 # 4
̤ˡλϡ̾RGB (֡С) ʬHSV (ꡢ
١) ʬߤ pm3d ѥåȤ˱äɸǹԤޤ
`linecolor` ϡ`lc` ȾάǤޤ
:
plot sin(x) lc rgb "violet" # gnuplot ο̾ΰĤ
plot sin(x) lc rgb "#FF00FF" # Ū 16 RGB 3
plot sin(x) lc palette cb -45 # ߤΥѥåȤ cbrange
# -45 б뿧
plot sin(x) lc palette frac 0.3 # ѥåȤб뾮
ʲ: `colorspec`, `show colornames`, `hsv`, `set palette`,
`cbrange`ʲ⻲: `monochrome`
(linetype) ˤϡ/ΥѥӤĤƤޤ
٤ƤνϷǤ줬Ȥ櫓ǤϤޤȤΩ/
ѥǤޤʲ: `dashtype`
3 (colorspec)
?colorspec
=colors
?lc
?linecolor
?tc
?textcolor
=fillcolor
¿ΥޥɤǡŪʿλȤʤäꤹ뤳ȤǤ
ޤ
:
... {linecolor | lc} {"colorname" | <colorspec> | <n>}
... {textcolor | tc} {<colorspec> | {linetype | lt} <n>}
... {fillcolor | fc} {<colorspec> | linetype <n> | linestyle <n>}
<colorspec> ϰʲηΤ줫Ǥ:
rgbcolor "colorname" # : "blue"
rgbcolor "0xRRGGBB" # 16 ʿͤʸ
rgbcolor "0xAARRGGBB" # 16 ʿͤʸ
rgbcolor "#RRGGBB" # x11 16 ʿʸ
rgbcolor "#AARRGGBB" # x11 16 ʿʸ
rgbcolor <integer val> # AARRGGBB ɽ
rgbcolor variable # ϥե뤫ͤɤ߹
palette frac <val> # <val> 0 1
palette cb <value> # <val> cbrange ϰϤ
palette z
palette <colormap> # ̾դ顼ޥåפ
variable # ϥե뤫鿧ֹɤ߹
bgnd # طʿ
black
<n> ϡ (linetype) ֹ椬Ȥ̣ޤʲ:
`test`
"colorname" gnuplot ˻äƤ뿧̾ΤΰĤꤷ
ޤͭ̾ΰ˴ؤƤϡʲ: `show colornames`
16 ϡդ "#RRGGBB" "0xRRGGBB" ηͿ뤳Ȥ
ޤRRGGBB ϡ֡СĤʬ̣줾 00 FF
ޤǤϰǤʤФޤ㤨Сޥ () ϡǤ뤤
+ Ǥ뤤ġʤΤ "0xFF00FF" ɽ졢 16 ʿ
(255 << 16) + (0 << 8) + (255) ̣Ƥޤ
"#AARRGGBB" ϡRGB ξ̥ӥåȤ˥ե (Ʃ) ĤƤ뤳
Ȥ̣ޤե 0 ϴƩǤ뤳Ȥ̣
"#00RRGGBB" "#RRGGBB" Ʊˤʤޤեͤ 255 (FF)
ƩǤ뤳Ȥ̣ޤ
Ǥդη顢 32 ӥåɽؤѴԤΤѤ
ؿˤĤƤϡʲ: `expressions functions rgbcolor`
顼ѥåȤȤϡʥǡǡñοͤο
餫бŤޤˤΤ褦 2 ĤбդϤޤ
`palette frac` 0 1 ޤǤξͤ顼ѥåȤϰϤ
դΤǡ`palette cb` ϡϰϤƱ顼ѥåȤس
ƤΤǤʲ: `set cbrange`, `set colorbox`б
դΤɤ餫ȤäơߤΥѥåȤӽФȤǤ
"palette z" ϡʬǤ z ͤѥåȤбŤ
Ƥ cbrange ϰϤбŤޤˤꡢ3 ζ
˱äƿ餫Ѳ뤳ȤǤޤϡ2 ǡ
åͤɲäǡɤ߹ޤƿդΤˤȤޤ (
Ƥ 2 襹뤬ɲǧ櫓ǤϤޤ)
=bgnd
=black
üʿ꤬ 2 Ĥޤطʿ `bgnd` ȡ`black` Ǥ
4 background color
?background
?bgnd
¿νϷǥդطʿŪǤޤ̤
(linetype) `bgnd` Ϥο褷ޤ `bgnd` ϿȤƤǧ
ޤ
:
# ʲϥХΰʬطʿǾ뤳ȤǾõޤ
set term wxt background rgb "gray75"
set object 1 rectangle from x0,y0 to x1,y1 fillstyle solid fillcolor bgnd
# y=0 ˡָʤβΤΤ٤ƾäޤ
plot 0 lt bgnd
4 linecolor variable
?linecolor variable
?lc variable
?textcolor variable
?tc variable
?variable linecolor
`lc variable` ϡϥǡΰĤɤͤ (linetype)
ֹȤƻȤ°뿧Ȥ褦ץ˻ؼޤ
äƤϡ`using` ҤбλɲäɬפȤޤʸ
οƱͤˡ`tc variable` ǻǤޤ
:
# ǡ 3 ܤġ˿ƤΤ˻
plot 'data' using 1:2:3 with points lc variable
# ĤΥǡեˤʣΥǡ뤳Ȥǽǡ
# 2 ԤζԤʬΥƤޤġΥǡˤ
# index ͤƤƤ (ʲ: `index`)using
# column(-2) ǼǤޤʲ: `pseudocolumns`ʲ
# -2 column ͤȤäơġΥǡۤʤ
# ޤ
plot 'data' using 1:2:(column(-2)) with lines lc variable
4 palette
?colorspec palette
... {lc|fc|tc} palette {z}
... {lc|fc|tc} palette frac <fraction>
... {lc|fc|tc} palette cb <fixed z-value>
... fc palette <colormap>
ѥåȤϡ0 1 ޤǤγͤǡϰϤΤǤ
`palette frac <fraction>` ϡ <fraction> Ǥοޤ
`palette cb <z>` ϡͤ (z - cbmin) / (cbmax - cbmin) Ǥ뿧
ޤ
`palette` `palette z` ϤɤǤ z ɸߤΥѥåȤ
˼ޤz cbrange ϰϳʤСϥǥեȤǤ
palette fraction 0 palette fraction 1 ˤʤޤץ
`set pm3d noclipcb` åȤƤ硢z ɸϰϳˤ pm3d
դ շϲʤʤޤ
`fillcolor palette <colormap>` ϡǤ z ɸߤΥѥå
ѤΤǤϤʤ¸̾դ顼ޥåפ˼ޤ
ʲ: `set colormap`
顼ޥåפѤθ̤ϰϤäƤ硢cbrange ɸѥ
Ȥ˼Τ˻ȤΤƱͤˡz ͤΤˤϰϤѤ
4 rgbcolor variable
?rgbcolor variable
?lc rgbcolor variable
?tc rgbcolor variable
?variable rgbcolor
?variable textcolor
դγƥǡʬޤϳƥ٥ˤ줾ۤʤ뿧
뤳ȤǤޤ`lc rgbcolor variable` ϡǡեγƹԤ
RGB ξɤ߹褦ץ˻ؼޤäƤϡ
`using` ҤˤбλɲäɬפȤ 24-bit
RGB 3 ȤǤȤߤʤޤͤǡե뤫ľ
ͿϡϺǤñʷ 16 ͤͿޤ (ʲ:
`rgbcolor`)ǡʲΤ褦 24-bit RGB Ȥɾ
ʿ `using` Ҥ뤳ȤǤޤʸοƱͤˡ
`tc rgbcolor variable` ǻǤޤ
:
# 3 ǡ x,y,z ɸб֡СĤʬĿ
# ΤĤ
rgb(r,g,b) = 65536 * int(r) + 256 * int(g) + int(b)
splot "data" using 1:2:3:(rgb($1,$2,$3)) with points lc rgb variable
3 / (dashtype)
?dashtype
=dashtype
`linecolor` `linewidth` Ʊͤˡ/ѥ (`dashtype`)
ƶ°ȤΩޤΤ褦ʡνϷ
̤ʥ⡼ɤȤƻꤹɬפϤޤʤ
`set term <termname> {solid|dashed}` Τ褦ʸŤޥɤϸߤ̵
ޤ
٤Ƥϡۤ˻ꤷʤС`dashtype solid` Ȥ°
ޤΥǥեͤޥ `set linetype` ѹ
θΥޥɤǻȤ褦ˤǤޤޤϡ`plot` ¾Υޥ
ΰʬȤƻѤ/ηǤޤ
:
dashtype N # Ѥ/ֹǸƤӽФ
dashtype "pattern" # (.) (-) (_) ȶȤ߹
# ʸˤ
dashtype (s1,e1,s2,e2,s3,e3,s4,e4) # 1~4 Ĥ <Ĺ>,<Ĺ>
# Ȥˤ/ѥ
:
# 2 Ĥδؿ 1 Ȥ dashtype Ƕ
plot f1(x) with lines lt 1 dt solid, f2(x) with lines lt 1 dt 3
ĤνϷϡ줬Ѥ/ѥˡ桼
ѥɲä뤳ȤݡȤƤޤ
:
plot f(x) dt 3 # Ϸλĥѥ 3
plot f(x) dt ".. " # Ūʥѥ
plot f(x) dt (2,5,2,15) # Ʊѥͤɽ
set dashtype 11 (2,4,4,7) # ѥֹǸƤӽФ褦
plot f(x) dt 11 # ѥȤä
/ѥʸǻꤷ硢gnuplot Ϥ <Ĺ>,
<Ĺ> ȤѴޤɥå "." (2,5) ˡå "-"
(10,10) ˡ "_" (20,10) ˡޤ " " ľ <Ĺ>
ͤ 10 ɲäޤξ硢ޥ `show dashtype` ϡʸ
Ѵοͤξɽޤ
3 linestyles linetypes
?linestyles vs linetypes
`linestyle` ϡ° linecolor, linewidth, dashtype, pointtype ΰ
ŪȤ߹碌ǡϥޥ `set style line` ޤ
linestyle ȡ1 plot ޥɾǤȤäơ1 ġ
Ϥ¿ǤθܤǤޤС
linetype ³ΡȸȤǤǤ礦
`linetypes` ϱ³Ū (ŪˤޤǤݻ) Ǥ
`linestyles` ϡΥեåξ֤ꥻåȤޤǤδ֤
ݻޤ
:
# 饤Ϸ˰¸ʤ cyan 3
# 6 (ݤ)
set style line 5 lt rgb "cyan" lw 3 pt 6
plot sin(x) with linespoints ls 5 # 5
3 ̤ (special linetypes)
?linetypes special linetypes
?special_linetypes
?nodraw
=bgnd
=background
=black
̤ (ͤǤϤʤ) (linetype) ĤѰդƤޤ
`lt black` ϡ̣ޤ
`lt bgnd` ϡߤνϷطʿμ̣ޤʲ:
`background`
`lt nodraw` ϡζΤåפޤϡ襹
`linespoints` Ȥ߹碌ƻȤǤʤ襹
Τߤͭʬ°ĤĤġʬ뤳Ȥǽˤ
ޤ㤨С
plot f(x) with linespoints lt nodraw pointinterval -3
ϡ3 ֤褷βطʿξʱߤ֤ȤǸΩޤ
ʲ: `linespoints``lt nodraw` ϡưŪʬ̤
ΤˤȤޤ㤨СΤ٥
`nodraw` ꤹ뤳ȤǡǤޤ
2 쥤䡼 (layers)
?layers
?behind
?front
?back
gnuplot ΥդϡǤꤵ줿֤夲ƤȤǹ
Ƥޤν֤ϡ `behind`, `back`, `front`
äǤγؤƤ뤳ȤѹǤޤ㤨Сΰ
طʿѹˤϡΤĤŰ `behind` Ф
櫓Ǥ
set object 1 rectangle from graph 0,0 to graph 1,1 fc rgb "gray" behind
ν֤ϰʲ̤Ǥ:
behind
back
ռ
դɽ (`key`)
front
ƳǤϡǤϰʲν֤Ǥ:
ʻ (grid, axis, border elements)
ֹΥԥޥåײ (pixmaps)
ֹΥ֥ (rectangle, circle, ellipse, polygon)
ֹΥ٥ (label)
ֹ (arrow)
1 ڡʣΥդ (multiplot ⡼)νϡʣ
դΤȤŬѤΤǤϤʤǤ̡ŬѤޤ
Ф㳰ϡTeX ϤνϷ (㤨 pslatex cairolatex )
ǡϰĤνϤˤ٤ƤʸǤѤ߽Ť͡Ǥ̤
ϤѤ߽Ťͤޤ̤ˤξ硢ʸǤդ˽
Ƥޤդդ֤ƤޤΤɤ餫ˤʤޤ
2 ޥ (mouse input)
?mouse input
¿νϷǡߤ˥ޥȤäƺѤ뤳Ȥǽˤʤ
ƤޤΤĤϥۥåȥ⥵ݡȤƤơޥ
뤬ͭ襦ɥˤȤˡ륭ȤǤ餫
ؿ¹Ԥ뤳ȤǤޤޥϤ `batch`
ɥץȤȤ߹碌뤳Ȥǽǡ㤨 `pause mouse` Ȥơ
θ˥ޥåˤäƥѥȤ֤äޥѿ
θΥץưȿǤ뤳ȤǤޤʲ: `bind`,
`mouse variables`ޤʲ⻲: `set mouse`
3 bind
?commands bind
?hotkey
?hotkeys
?bind
:
bind {allwindows} [<key-sequence>] ["<gnuplot commands>"]
bind <key-sequence> ""
reset bind
`bind` ϡۥåȥ˻ѤޤۥåȥȤϡ
뤬ɥ饤ФΥɥˤȤˡ륭ޤʣΥ
Ȥǡgnuplot Υޥ¹Ԥ뵡ǽΤȤޤ
`bind` ϡgnuplot `mouse` ݡȤ褦˥ѥ뤵Ƥ
ĥޥͭʽϷǻȤƤˤΤͭǤ뤳Ȥ
Ƥ桼Υ (binding) ϡȤ߹ (builtin)
֤ޤ<space> 'q' ̾ϺϤǤޤ
ͣ㳰ˤĤƤϡʲ: `bind space`
ޥܥƤϡ2 ǤΤͭǤ
ۥåȥΰˤ `show bind`, ޤ `bind` ȥפ뤫
եɥǥۥåȥ 'h' ϤƤ
ϡ`reset bind` ǥǥեȤξ֤Ǥޤ
ޤʣΥϰǰϤɬפ뤳ȤդƤ
ɸǤϥۥåȥϸߤ襦ɥϥ뤬Τ
ǧޤ`bind allwindows <key> ...` (`bind all <key> ...` Ⱦά
) ϡ<key> γ줬ߤͭʤΤݤ˴ؤ餺٤
gnuplot 襦ɥDzǽˤޤξ硢gnuplot ѿ
MOUSE_KEY_WINDOW ˤ줬Ԥʤ줿ɥ ID ¸ΤǤ
˳ƤޥɤǻѤ뤳ȤǤޤ
:
- :
bind a "replot"
bind "ctrl-a" "plot x*x"
bind "ctrl-alt-a" 'print "great"'
bind Home "set view 60,30; replot"
bind all Home 'print "This is window ",MOUSE_KEY_WINDOW'
- ɽ:
bind "ctrl-a" # ctrl-a Ф륭ɽ
bind # ƤΥɽ
show bind # ƤΥɽ
- :
bind "ctrl-alt-a" "" # ctrl-alt-a Υ
(Ȥ߹ߥϺޤ)
reset bind # ǥե (Ȥ߹) ΥƳ
- ȥ륹å˥:
v=0
bind "ctrl-r" "v=v+1;if(v%2)set term x11 noraise; else set term x11 raise"
(ctrl / alt) ʸʸζ̤ϤޤϤ
Ϥޤ:
ctrl-alt-a == CtRl-alT-a
ctrl-alt-a != ctrl-alt-A
(alt == meta) ΰ:
ctrl, alt, shift (ܥ 1, ܥ 2, ܥ 3 ǤΤͭ)
ݡȤƤü쥭ΰ:
"BackSpace", "Tab", "Linefeed", "Clear", "Return", "Pause", "Scroll_Lock",
"Sys_Req", "Escape", "Delete", "Home", "Left", "Up", "Right", "Down",
"PageUp", "PageDown", "End", "Begin",
"KP_Space", "KP_Tab", "KP_Enter", "KP_F1", "KP_F2", "KP_F3", "KP_F4",
"KP_Home", "KP_Left", "KP_Up", "KP_Right", "KP_Down", "KP_PageUp",
"KP_PageDown", "KP_End", "KP_Begin", "KP_Insert", "KP_Delete", "KP_Equal",
"KP_Multiply", "KP_Add", "KP_Separator", "KP_Subtract", "KP_Decimal",
"KP_Divide",
"KP_1" - "KP_9", "F1" - "F12"
ʲϡºݤΥǤϤʤɥ˴ؤ륤٥ȤǤ:
"Button1" "Button2" "Button3" "Close"
ʲ⻲: `mouse`
4 bind space
?commands bind space
?bind space
gnuplot configure ˥ץ --enable-rase-console Ĥƥ
ȡ뤵줿ϡ襦ɥ <space> פ
gnuplot Υޥɥɥ̤˽Фޤ¿ʬºݤˤϡ϶
ƥ˰¸ޤΥۥåȥϡ'gnuplot -ctrlq' Τ褦ˤ
gnuplot ư뤫ޤ X 'gnuplot*ctrlq' ꤹ뤳
Ȥ ctrl-space ѹǤޤ
3 ޥѤѿ (Mouse variables)
?mouse variables
`mousing` (ޥǽ) ͭʾ硢ߤΥɥǤΥޥ
åˤä gnuplot Υޥɥ饤ǻȤȤǤ뿧ʥ桼
ѿꤵޤåΥޥκɸѿ MOUSE_X, MOUSE_Y,
MOUSE_X2, MOUSE_Y2 ޤå줿ܥ䡢ΤȤ
ξ֤ MOUSE_BUTTON, MOUSE_SHIFT, MOUSE_ALT, MOUSE_CTRL
ޤѿǤդγϻˤ̤ǡͭ襦
ɥǤΥޥå٥Ȥˤäƽޤͭ
襦ɥǥޥ˥å줿ɤץȤĴ
٤ˤϡѿΤΤɤ줫ĤƤ뤫ɤ
åнʬǤ
plot 'something'
pause mouse
if (exists("MOUSE_BUTTON")) call 'something_else'; \
else print "No mouse click."
襦ɥǤΰϢΥϤפ뤳Ȥ⡢ޥɤȤ
ȤDzǽȤʤޤ
plot 'something'
pause mouse keypress
print "Keystroke ", MOUSE_KEY, " at ", MOUSE_X, " ", MOUSE_Y
`pause mouse keypress` Ϥǽλ MOUSE_KEY ˤϲ
줿 ASCII ɤ¸ޤMOUSE_CHAR ˤϤʸȤʸ
ͤȤ¸ޤpause ޥɤ (㤨 ctrl-C 襦
ɥĤʤɤ) ۾ェλ MOUSE_KEY -1
ˤʤޤ
ޥˤθοϰϤϡGPVAL_X_MIN, GPVAL_X_MAX,
GPVAL_Y_MIN, GPVAL_Y_MAX ǻȤǤ뤳ȤդƤ
ʲ: `gnuplot-defined variables`
2 α (Persist)
?persist
gnuplot ¿νϷ (aqua, pm, qt, x11, windows, wxt, ...)
˥դɽѤΥɥ̤˳ޤ
ץ `persist` ϡ礿ץबλȤˤ⡢Υ
ɥĤ褦 gnuplot ˻ؼޤ
ϡ÷ϷϤǤϲ⤷ޤ
㤨СʲΥޥɤ¹Ԥ
gnuplot -persist -e 'plot sinh(x)'
gnuplot ϡɽɥ˥դƽλ
ɽɥϥդ˻äޤޥ˻Ĥޤ
ϷꤹȤ `persist` `nopersist` ꤹ뤳
Ǥޤ
set term qt persist size 700,500
ϷˤäƤϡλĤäɥǤ¿Υޥǽ
⤢ޤդκ᤹륺 (Ȥε) Τ
ϡ˥ץबλƤΤ̵Ǥ襦ɥ
ޤĤθΥޥǽⴰ˲ǽˤˤϡ㤨
gnuplot ÷ǤϤʤץȥե뤫¹Ԥˡ
ʲ: `pause mouse close`
2 (Plotting)
?plotting
`gnuplot` ˤϥդ褹 4 ĤΥޥ `plot`, `splot`, `replot`,
`refresh` ޤ¾ΥޥɤϡǽŪ˥վ
Ǥ䡢쥤ȡԤޤ
`plot` 2 դޤ`splot` 3 (
ºݤˤϤ 2 ̤ؤμͱ) ޤ`replot` ϡľ `plot`
`splot` ޥɤƼ¹Ԥޤ`refresh` ϡ`replot` ȻƤޤ
ϥǡեϥȥफɤ߹ߤˡ
¸ǡƻѤޤ
=multiplot
=inset
=subfigures
4 ĤΥޥɤΤΰĤ¹ԤϡƤ
٥롢ȥ롢Ӹ plot ޥɤǻꤵ줿ޤޤʴ
ǡΤ٤ƤޤϤΥ褹뤫ϥڡ
ޤ⤷ĤΥڡʣΥդ٤礦褦¤٤
Ϥ硢㤨ʣοޤΥѥͥꡢ礭ʥդ
ʥդꤷϡޥ `set multiplot`
襳ޥɤǿڡΤƤ
˴ؤŪʾȾϡ`plot` ˴ؤǸĤޤ3
˸ͭξ `splot` ιˤޤ
`plot` xy ľɸϤȶ˺ɸϤȤޤʲ: `set polar`
`splot` xyz ľɸȤޤ3 ˺ɸɸǡ
ϤǤޤʲ: `set mapping`
=axes
`plot` Ǥϡ4 Ĥζ x (), x2 (), y (), y2 () 줾
ΩʼȤưȤǤޤץ `axes` ǡͿ줿ؿ
ǡɤμΥڥɽ뤫٤ޤޤƼν̼ܤ丫
ФŤ椹뤿˽ʬ亴Ȥʤ `set` ޥɷ¸
ޤĤΥޥɤϡ`set xlabel` Τ褦˼̾
äƤޤʳΤΤ `set logscale xy` Τ褦ˡ1 ġ
ʣμ̾ץȤƤȤޤz 椹륪ץ
䥳ޥɤ 2 դˤϸϤޤ
`splot` ϡ˲äƶ̤ȤǤޤ3 δ
γʻ˴ؤˤĤƤϡʲ: `set isosamples`3
ǡΥեɬפʷ֤ˤĤƤϡʲ: `splot datafile`
˴ؤˤĤƤϡʲ: `set contour`, `set cntrlabel`,
`set cntrparam`
`splot` Ǥν̼ܤ丫Фդϡz ˤͭǤ뤳ȡ
x2 y2 Υ٥դ `set view map` Ȥäƺ뵿Ū 2
ˤΤ߲ǽǤ뤳Ȥ `plot` ƱǤ
2 ץ饰 (Plugins)
?plugins
դѤǤؿϡͭ饤֥꤫¹Բǽʴؿ
ץ饰λȤߤˤĥǤޤ㤨Сgnuplot ΥС
5.4 ǤϡԴؿ Q(a,x) Ȥ߹ߴؿȤƤϼ
ƤޤǤ
#TeX \\ $Q(a,x)=\frac{1}{\Gamma(x)}\intop_{x}^{\infty}t^{a-1}e^{-t}dt$ .\quad\quad
ϡgnuplot ľܰʲΤ褦ˤƶŪǤޤ
Q(a,x) = 1. - igamma(a,x)
ϡ1 ζ igamma(a,x) ͤ٤˼¼Ūʸ³
ޤΤ֤ͤߤ硢ץ饰̤Ѱդ
Ǥ礦 ()ټСؿϡgnuplot ¾
߹ߴؿ桼ؿƱͤѤǤޤ
ʲ: `import`
gnuplot ʪΥǥ쥯ȥ demo/plugin ˤϡץ饰饤֥
뤿ȥɤޤñʥץե
`demo_plugin.c` δؿʤζ̣ؿμ֤ƽ
Ƥ
ˤϡοإ饤֥δؿθƤӽФޤޤƤޤ
ǥ쥯ȥ demo/plugin ˤϡQ(a,x) ץ饰Υ
ޤդ褦ˡΥץ饰ϡgnuplot С 6
˴ޤޤ `uigamma` ƱؿΥС˼뤳Ȥ
ǽˤޤ
import Q(a,x) from "uigamma_plugin"
uigamma(a,x) = ((x<1 || x<a) ? 1.0-igamma(a,x) : Q(a,x))
C ѿͭϰ () (Scope of variables)
2 Scope of variables
?scope
?variables local
=local
=global
gnuplot ѿϡʲ˼̤ʾƤŪ (global) Ǥ
ͭѿФƤϡ̾Ƕ̤줿³Ūʰɽޤ
ѿγƤȤϡΰɽ˹ܤĺ뤫֤뤳Ȥ̣
ޤΰɽѿͣˡϡޥ `undefine`
Ѥ뤳ȤǤ
㳰 1: ֤ǻѤѿͭϰ () ϡ
֤Ǥ֤ѿͤμ¹ԥ֥åDZ³Ū
ѹ뤳ȤϤǤޤ֤ѿ֤ͤäƤ
顢ͤϷ֤νλݻޤޤ
㤨СʲΥޥɤϡ1 2 3 4 5 6 7 8 9 10 A Ϥޤ
i = "A"
do for [i=1:10] { print i; i=10; }
print i
㳰 2: ؿǻѤѥ̾ϡδؿƤӽФȤ
Ϳºݤ֤ͤ˲ޤ㤨СʲǤϡx y
θߡ뤤̤ͤϤǼˤϴطʤA Ϥ
ؿɾȤˤѿȤ¸ߤʤФޤ:
func(x,y) = A + (x+y)/2.
㳰 3: ޥ `local` 줿ѿ
`local` (С 6 Ǥοǽ) ϡѿޤΥץ
Ūǽˤˤꤽ줬Ĥ륳ɥ֥åˤ
ͭϰϤ¤ΤǤΥɥ֥åȤϡ`load` `call`
оݡؿ֥åɾƾ `if`, `else`, `do for`, `while`
θ³ΥɤǤ
ɽ (local) ѿ̾ (global) ѿȽŤʤä硢ζɽ
ͭϰϤȴޤǤϡѿϱޤ
#TeX \newline
ʳ: ƤɽѿͭϰϤϡ줬줿
ɥ֥åƤӽФؿˤĹޤϡ`call`,
`load`, ؿ֥åƤӽФǤƱǤ
ϡѹ졢ͭϰϤϤƤ륳ɥ֥å
˸̩¤褦ˤʤǤ礦
2 (Startup (initialization))
?startup
?start
?start-up
?initialization
?.gnuplot
?gnuplotrc
ưˡgnuplot ϤޤƥѤνե `gnuplotrc` õ
ޤΥե֤ gnuplot Υȡ˷ꤵ졢
`show loadpath` Τ뤳ȤǤޤ˥桼Υۡǥ쥯ȥ
˸ĿѤեõޤΥե Unix ϤΥƥǤ
`.gnuplot` Ǥꡢ¾νϤǤ `GNUPLOT.INI` ȤʤäƤޤ
(OS/2 ǤϡĶѿ `GNUPLOT` ꤵƤ̾Υǥ쥯ȥ
õޤ; Windows Ǥϡ`APPDATA` Ѥޤ)Unix ϤΥ
Ǥϡɲä gnuplot $XDG_CONFIG_HOME/gnuplot/gnuplotrc
ޤ
2 ʸʸѿʸؿ (Strings)
?string
?strings
ʸ˲äơۤȤɤ gnuplot ޥɤʸѿʸ
ޤʸ֤ؿդޤ㤨Сʲ 4 Ĥ plot Τ
Ϸ̤ȤƱ西ȥޤ:
four = "4"
graph4 = "Title for plot #4"
graph(n) = sprintf("Title for plot #%d",n)
plot 'data.4' title "Title for plot #4"
plot 'data.4' title graph4
plot 'data.4' title "Title for plot #".four
plot 'data.4' title graph(4)
ϡ줬ʸ黻 (ʸ '.') ˤäƺѤ줿ϡʸ
ѴޤΤǡʲƱͤưޤ:
N = 4
plot 'data.'.N title "Title for plot #".N
̤ˡޥɥ饤γǤϡ餬ɸŪ gnuplot ؤ̿ʸ
ˡΰʬǧΰʳϡͭʸѿȤƤɾΤߤ
ʤޤäơʲΥޥϡ餯Ϻʤ
٤ǤʸˡŪˤϴְäƤϤޤ:
plot = "my_datafile.dat"
title = "My Title"
plot plot title title
3 ʬʸ (substrings)
?string substring
?substrings
ǤդʸʸѿʸʹؿˡϰϻҤĤ뤳Ȥˤ
ʬʸǤޤϰϻҤ [begin:end] ηǡbegin
ʬʸƬ֡end ϺǸΰ֤Ǥֻϡǽʸ 1
ܤȸޤƬΰ֡Ǹΰ֤϶뤤 '*' Ǥޤ
ξ硢ϸʸΤƬ뤤ϺṆ̀ޤä
str[:] str[*:*] Ϥɤ str ʸΤ̣ޤ
:
eos = strlen(file)
if (file[eos-3:*] eq ".dat") {
set output file[1:eos-4] . ".png"
plot file
}
Ʊδؿ `substr( string, begin, end )` ⤢ޤ
3 ʸ黻 (string operators)
?string operators
3 Ĥ黻Ҥʸ˺Ѥޤ: ʸη黻 ".", ʸ
黻 "eq", ʸ黻 "ne" Ǥʲ
Ǥ TRUE ɽޤ
if ("A"."B" eq "AB") print "TRUE"
3 ʸؿ (string functions)
?string functions
gnuplot ϡʸ˺ѤȤ߹ߴؿĤäƤޤ
Ūʽؿ: ʲ: `gprintf`, `sprintf`
ؿ: ʲ: `strftime`, `strptime`
ʸ: ʲ: `split`, `substr`, `strstrt`, `trim`, `word`,
`words`
3 ʸ (string encoding)
?string encoding
=utf8
gnuplot Ȥ߹ʸؿϡUTF-8 ɤǧޤ (ʲ
: `set encoding`):
set encoding utf8
utf8string = "¦"
strlen(utf8string) 3 ֤ (ʸǤäơХȿǤϤʤ)
utf8string[2:2] "" Ȥʤ
strstrt(utf8string,"") 2 Ȥʤ
(: UTF-8 ɡɤͿ)
2 ִȥޥɥ饤ޥ (Substitution)
?substitution
gnuplot ؤ̿ʸǽɤ߹ޤ줿ʤޤ줬
졢⤷ϼ¹Ԥʳǡ2 Ĥηñִ¹Ԥ
ϵհ () (ASCII ֹ 96) ǰϤޤƤ뤫ޤ @
(ASCII ֹ 64) ƬˤĤʸФƹԤʤޤ
3 հˤ륷ƥॳޥɤִ (Substitution backquotes)
?substitution backquotes
?backquotes
?shell commands
륳ޥɤհ () ǰϤळȤˤäƥޥִԤ
ǤޤΥޥɤϻҥץǼ¹Ԥ졢νϷ̤ǥޥ
饤εհǰϤޤ줿ʬ֤ޤƥॳޥɤνλ
ơϡѿ GPVAL_SYSTEM_ERRNO GPVAL_SYSTEM_ERRMSG ֤
: ('\r') Ȳ ('\n') ʸϡִʸϤ
ޤ
ޥִϡñʸʳϡ`gnuplot` Υޥɥ饤
桢ɤǤǤѲǽǤ
㤨Сʲϸߤդȥ桼̾Υ٥ޤ:
set label "generated on `date +%Y-%m-%d` by `whoami`" at 1,1
set timestamp "generated on %Y-%m-%d by `whoami`"
ʲϡȥǥ쥯ȥΥե̾ʤޤ:
FILES = split( "`ls -1`" )
3 ʸѿΥޥִ (Substitution macros)
?substitution macros
?macros
=exists
ʸ @ ϡޥɥ饤ǤʸѿͤؤִԤʤΤ˻
ޤʸѿͤȤƤʸϡʣñ줫ʤ뤳ȤǽǤ
ˤʸѿޥɥ饤ޥȤƻȤȤǽˤʤ
εǽˤŸǤΤʸΤߤǡʸͤ˼
ȤȤϤǤޤ
:
style1 = "lines lt 4 lw 2"
style2 = "points lt 3 pt 5 ps 2"
range1 = "using 1:3"
range2 = "using 1:5"
plot "foo" @range1 with @style1, "bar" @range2 with @style2
@ ޤԤϡϻŸ졢줬ºݤ˼¹Ԥ
ˤϼΤ褦ǤƱȤˤʤޤ
plot "foo" using 1:3 with lines lt 4 lw 2, \
"bar" using 1:5 with points lt 3 pt 5 ps 2
ؿ exists() ϥޥɾ˴ؤͭѤǤ礦ʲϡC
˥桼ѿ̾ŸǤ뤫ɤåޤ
C = "pi"
if (exists(C)) print C," = ", @C
ޥŸϡñ⡢ޤŰǤϹԤʤޤ
հ () ǤϥޥŸޤ
ޥŸϡgnuplot ޥɹԤȤᤤʳ
gnuplot Ƥ٤Ԥޤäơ
A = "c=1"
@A
Τ褦ʥɤ¹ԤޤʲΤ褦ʹԤϤǤϡ
ޥƱԤˤ뤿Ÿ˴֤˹ʤǤ
A = "c=1"; @A # will not expand to c=1
֤ѤǤΥޥŸϡΥ롼פ¹Ԥ˹Ԥ
ޤʤ롼Ǥ A ΤƤ⡢@A Ͼ A θ
ͤŸޤ
ޥɤƼ¹Ԥˤϡޥ `evaluate` ͭѤǤ礦
3 ʸѿޥޥɥ饤ִ (mixing_macros_backquotes)
?mixing_macros_backquotes
?substitution mixing_macros_backquotes
ʸѿհ () ˤִޥˤִߴطϾ
䤳Ǥհϥޥִ˸ʤΤǡ
filename = "mydata.inp"
lines = ` wc --lines @filename | sed "s/ .*//" `
ϡmydata.ipn ιԿѿ lines ¸뤳Ȥˤʤޤޤ
Űϵհִ˸ʤΤǡ
mycomputer = "`uname -n`"
ϡƥॳޥ `uname -n` ֤ʸʸѿ mycomputer
¸뤳Ȥˤʤޤ
ޥִŰǤϵǽʤΤǡƥॳޥɤ
ޥȤƤޥȤѤĵհִԤʤ
ȤϤǤǤޤ
machine_id = "uname -n"
mycomputer = "`@machine_id`" # ޤʤ !
μԤϡŰ䤬 @machine_id ޥȤƲ᤹뤳Ȥ˸
Ƥ뤫ǤƥॳޥɤޥȤ¸θ夽¹
ˤϡհ伫Τޥ˴ޤɬפޤϰʲΤ
˥ޥ뤳ȤǼ¸Ǥޤsprintf νˤ 3 ΰ
ƤҤˤʤäƤ뤳ȤդƤ
machine_id = sprintf('"`uname -n`"')
mycomputer = @machine_id
2 ڤ䥫åλȤ (Syntax)
?syntax
?specify
?punctuation
ꥹȤɸ (,) ڤǤΤФץ䤽ȼ
ѥϥڡ ( ) ڤǤϰϤϥ (:) ǶڤäƤ
ä ([]) Ǥޤʸե̾ϰǤꡢ¾ˤ
Ĥå (()) ǤΤޤ
ޤϰʲζڤǻѤޤ`set` ޥɤ `arrow`, `key`,
`label` κɸ; ƤϤ (fit) ѿΥꥹ (ޥ `fit` Υ
`via` ³ꥹ); ޥ `set cntrparam` ǻꤵ
ӤȤӤͤ䤽Υ롼ץѥΥꥹ; `set` ޥɤ
`dgrid3d` `dummy`, `isosamples`, `offsets`, `origin`, `samples`,
`size`, `time`, `view` ΰ; ΰ֤䤽Υ롼ץѥΥ
; ȥ伴θФΰ; `plot`, `replot`, `splot` ޥɤ
x,y,z ɸη˻ȤѿؿΥꥹ; `plot`, `replot`,
`splot` ޥɤʣ (ǡޤϴؿ) Τ줾ΰϢΥ
ɤΥꥹȡ
() åϡθФ (롼ץѥǤϤʤ) Ū˽
ͿζڤȤơޤ `fit`, `plot`, `replot`, `splot`
ޥɤ `using` Ǥηؼ뤿˻Ȥޤ
(å䥳ޤ̾δؿɽǤȤޤ)
äϡ`set`, `plot`, `splot` ޥɤǤϰϤڤΤ˻Ȥ
ޤ
`range` (ϰ) (`set`, `plot`, `splot` ޥɤǻȤ
) ξüͤڤΤˡޤ `plot`, `replot`, `splot`, `fit`
ޥɤ `using` γƥȥڤΤ˻Ȥޤ
ߥ (;) ϡԤΥޥɹͿʣΥޥɤ
Τ˻Ȥޤ
楫å ({}) ϡĥʸ⡼ (enhanced text mode) εҤ䡢
if/then/else ʸΥ֥åζڤȤƻȤޤޤʣǿ
ҤΤˤȤޤ: {3,2} = 3 + 2i Ȥʤޤ
3 (quote marks)
?quotes
?syntax quotes
gnuplot ϡʸڤΤˡŰ (ASCII 34 )ñ
(ASCII 39 )ӵհ () (ASCII 96 )
3 ΰȤޤ
ե̾ñ䡢뤤ŰǰϤߤޤΥޥ˥奢
Ǥϰ̤˥ޥɤ㼨Ǥϡ狼䤹뤿˥ե̾ñ
Ǥꡢ¾ʸŰǤޤ
Ф (label)ȥ (title)ޤϤ¾ǤǻѤʸ
ʣʸñ䡢뤤ŰǰϤߤޤ
ǰϤޤ줿ʸΤʤη̤ϡɤΰ䵭֤ˤ
äѤޤ
\n () \345 (8 ɽʸ) Τ褦ʥХåå (\)
ˤüʸɽϡ2 ŰʸǤΤ߸Ϥޤñ
ǤϡХåå弫Τ̾ʸȸʤޤñ
ʸñ伫 (ASCII 39 ) ȤˤϡŤ
ƽɬפޤĤޤꡢʸ "d\" s' b\\" ȡ'd" s'' b\' ϴ
ƱΤȤʤޤ
1 Ĥʣʸ˴ؤ·ϳƹԤƱƯޤäơ
·줿ʸ
"This is the first line of text.\nThis is the second line."
ϼΤ褦ɽޤ:
This is the first line of text.
This is the second line.
'This is the first line of text.\nThis is the second line.'
ȼΤ褦ˤʤޤ
This is the first line of text.\nThis is the second line.
ĥʸ (enhanced text processing) ŰФƤñ
ФƤⵡǽޤʲ: `enhanced text`
հ,ޥɥ饤ִΤ˥ƥॳޥɤϤΤ˻
ޤʲ: `substitution`
2 /եǡ (Time/Date)
?time/date
`gnuplot` ϥǡȤƻ/վλѤݡȤƤޤ
εǽ `set xdata time`, `set ydata time` ʤɤΥޥɤˤäͭ
ˤʤޤ
ǤƤλ/դ 1970 ǯÿѴޤޥ
`set timefmt` ƤϤФǥեȤνޤǡ
ե롢ϰϡθФ٥ΰ֤ȡǡͤ
뤹٤ƤΤΤؤϤνǥեȤǤˤʤޤ
ϰĤΥǥեϽΤߤͭǤäơե x y
ξ/եǡǤϡǥեȤǤϤƱȲ
ᤵޤΥǥեȤϡ`using` Ǵؿ `timecolumn`
ѤơбΥեǡɤߤळȤˤ
ꡢѤ뤳ȤǽǤ
ÿ (ÿ) ѴϹɸ (UT; ˥åɸ (GMT) Ʊ
) Ȥޤƹɸƻ֤ؤѴεǽϲ碌Ƥ
ޤ⤷ǡ٤ƱɸӤ˽äƤʤ (Ƥ
ƻ֤ǤʤΤɤ餫ˤΤ߽ʤ) ˴ؤƲ⿴
ۤ뤳ȤϤޤʤѤ륢ץꥱ
Ūʻ̩˹ͻʤФʤϡʤȤ UT Ѵ
٤Ǥ礦
`show xrange` Τ褦ʥޥɤϡͤ `timefmt` ˽äƲ
ľޤ`timefmt` ѹƤ⤦ `show` Ǥͤɽȡ
Ͽ `timefmt` ˽äɽޤΤᡢ(`set xdata`
ɤˤ) μФǡꥻåȤȡͤͤȤ
ɽ뤳Ȥˤʤޤ
ޥ `set format` ޤ `set tics format` ϡꤵ줿Ф
Ϥ/դǤʤ˴ؤ餺θФ˻Ȥ
ޤ
/վե뤫褵硢`plot`, `splot` ޥɤ
`using` ץɬȤɬפޤ`plot`, `splot`
ϳƹԤΥǡʬΥ˥ڡȤޤ/եǡϤ
˥ڡޤ뤫Ǥ⤷ֶڤѤƤΤʤ顢
ΥƥबɤΤ뤿˲٤ƥȤɬפ
Ǥ礦
ؿ `time` ϡߤΥƥΤ˻Ȥޤͤϡ
`strftime` ؿʸѴǤޤ`timecolumn` Ȥ߹碌
ŪդΤˤȤޤηϤ줬֤
ꤷޤξ time() ϸߤλ 1970 ǯ 1 1
Ȥ֤¿ (ޤʣǿ) ʤƱͤͤ¿
Ȥ֤ޤ (ðʲ) ʬ٤ϡڥ졼ƥƥ
˰¸ޤʸʤСʸǤȤߤʤ
줿ʸ褦 `strftime` Ϥޤ
ϻ/եǡǤ
ե "data" ϰʲΤ褦ʹԤʤȤޤ:
03/21/95 10:00 6.02e23
ΥեϰʲΤ褦ˤɽޤ:
set xdata time
set timefmt "%m/%d/%y"
set xrange ["03/21/95":"03/22/95"]
set format x "%m/%d"
set timefmt "%m/%d/%y %H:%M"
plot "data" using 1:3
ǡx θФ "03/21" Τ褦ɽޤ
ߤ gnuplot ϡߥ٤פΥեޥåȤ⤽
ȼäѹƤޤ
: ߤλߥ٤ɽ
print strftime("%H:%M:%.3S %d-%b-%Y",time(0.0))
18:15:04.253 16-Apr-2011
ʲ: `time_specifiers`, `set xtics time`, `set mxtics time`
2 åݥ (Watchpoints)
?watchpoints
?watch
åݥȤϡʤѤ gnuplot configure ˥ץ
--enable-watchpoints Ĥƺ줿ˤΤߥݡȤޤ
κϻʳǤ (ܺ٤ϡΥǤѹǽ
ޤ)
:
plot FOO watch {x|y|z|F(x,y)} = <value>
plot FOO watch mouse
set style watchpoints nolabels
set style watchpoints label <label-properties>
unset style watchpoints # ǥեȥ᤹
show watchpoints # ľ plot ޥɤΤ٤ƤΥå
# ݥȤɽ
ĤΥåݥȤϡx, y, z ɸޤϴؿ f(x,y) Ф
оͤǤƥåݥȤϡޥ `plot` ΰĤΥդ
տ路ޤåݥȤϡ`with lines` `with linespoints`
襹ǤΤߵǽޤξ硢ΥդΤ٤Ƥιʬ
ФΥդտ魯뤹٤ƤΥåݥȤå졢
ʾΥåݥȤоݤʬ뤫ɤĴ
ޤоݾ (֥ҥåȡ("hits") ȸƤӤޤ) ΰϡ
դѤޤ
㤨Со y=100 ΥåݥȤ硢ʬФơ
ξü y ɸоͤǤ뤫åޤ⤷
ʤ顢ʬΤ [x,y] оݾ y=100 Ȥ
ʤޤ֡ޤ 2 ʬȿˡˤꤽоĤ
ޤ
Ĥ plot ޥɾʣΥåݥȤϡֹ֤Ťޤ
ˡ1 İʾΥåݥȤǤޤ
:
plot DATA using 1:2 smooth cnormal watch y=0.25 watch y=0.5 \
watch y=0.75
Ffigure_watchpoints
ľ plot ޥɤоݤ˥ҥåȤåݥȤϡWATCH_n Ȥ
̾¸ޤľ plot ޥɤҥåȤ٤Ƥ
åݥȤɽ뤳ȤǤޤʲ:
`show watchpoints`
gnuplot> show watchpoints
Plot title: "DATA using 1:2 smooth cnormal"
Watch 1 target y = 0.25 (1 hits)
hit 1 x 49.7 y 0.25
Watch 2 target y = 0.5 (1 hits)
hit 1 x 63.1 y 0.5
Watch 3 target y = 0.75 (1 hits)
hit 1 x 67.8 y 0.75
ʿ경: ʬϡ褹ݤ˥åޤʿ경ʤǡ
ФƤϡϡ֤ˤäƸĤоϡ2 ĤΥǡ
ʬξ˴˾뤳Ȥ̣ޤǡդʿ경
ϡҥåȤʿ경줿Фʬξˤޤ줬ʿ
경ʤǡФо٤ɤϡʿ경
Ϥμ˰¸ޤ
: ʬؿ줿ΤǤСf(x) = y Ȥʤ x ͤ
2 ʬȿˡǸĤޤʳξϡʬ˱褦֤Ǻɸ
[x,y] ޤ
3 åޥ (watch mouse)
?watchpoints mouse
?watch mouse
ߤΥޥ x ɸåоݤȤƻѤȡޥοʿ֤
פʤ顢դ˱äưư٥ޤˤ
Ʊվʣζ y ͤƱɽ뤳ȤǽǤ
ΰ֤ȥ٥θܤϡ`set style watchpoint` ѹǤ
:
set style watchpoint labels point pt 6 ps 2 boxstyle 1
set style textbox 1 lw 0.5 opaque
plot for [i=1:N] "file.dat" using 1:(column(i)) watch mouse
3 å٥ (watch labels)
?watchpoint labels
?watch labels
ǥեȤǤϥ٥ϡо "watch mouse" Фƾޤ¾
оݤФƤ⡢ޥ `set style watchpoint labels` ȤХ
ˤǤޤ٥ʸ "x : y" ǡx, y оκɸ
νб뼴Ф븽ߤѤޤ
:
set y2tics format "%.2f<C2><B0>"
set style watchpoint labels point pt 6
plot FOO axes x1y2 watch mouse
D watchpoints 2
1 襹 (Plotting styles)
?plotting styles
=plot styles
gnuplot Ǥϡ襹뤬ѤǤޤ
ϡե٥åȽ˰ʲ˾Ҳ𤵤Ƥޤ
ޥ `set style data` `set style function` ϡʹߤ
`plot` `splot` ޥɤФƥǥեȤ襹ѹ
ޤ
襹ϡޥ `plot` `splot` ΰʬȤơŪ˥
ץꤹ뤳ȤǤޤĤǡʣ襹
Ȥ߹碌ϡǤФ襹ꤹɬפ
:
plot 'data' with boxes, sin(x) with lines
襹ϡ켫Τǡե뤫ΤĤΥǡ
Ԥޤ㤨СǥեȤǤ `lines` ϡy ͤ
1 Υǡ (x ͤϰۤ˽֤˼)ޤϺǽ餬 x, y
2 ĤԤƤޤեβΥǡǡȲᤵ
뤦ޤˡ˴ؤˤĤƤϡʲ: `using`
2 arrows
?plotting styles arrows
?style arrows
?with arrows
?arrows
^figure_vectors
2 Υ `arrows` ϡ (x,y) ĹγѤꤷ
ޤɲäϡƥǡ variable color
arrow style ȤƻѤޤ
ϡξλˡʳ 2 襹 `with vectors`
Ʊǡ delta_x + delta_y Ǥʤ length (Ĺ) + angle ()
Ϳޤʲ: `with vectors`
4 : x y length angle
`with arrows` θˤϡ饤 arrow style °䡢
Ѥߤ arrow style λȡޤ `arrowstyle variable` ˤ
ŬѤ arrow style ֹ¾ɤ߹ޤ뤳ȡʤɤ
ɲûǤޤ
`length` ͤϡx κɸDzᤷޤ
-1 < `length` < 0 ͤϡʿպɸʤ |length| ΤΥ
ФȤƲᤷޤ
gnuplot x y γΨκޤ襢ڥ˴ؤĴơ
ܤĹѤȤΩǤ褦ˤ褦Ȥޤ
`angle` Ͼñ̤ǻꤷޤ
3 arrowstyle variable
?arrowstyle variable
?variable arrowstyle
襹 `with arrows` `with vectors` ǡϥǡɲ
Ϳơ `set style arrow` arrow б륹
ֹꤹ뤳ȤǤޤ
:
set style arrow 1 head nofilled linecolor "blue" linewidth 0.5
set style arrow 2 head filled linecolor "red" linewidth 1.0
# 5 ͤ 1 2 Τ줫ǡ줬
# ΤѤꤹ
plot DATA using 1:2:3:4:5 with arrows arrowstyle variable
#TeX \newpage
2 ӡ (Bee swarm plots)
?beeswarm
?bee swarm
=jitter
#TeX ~
Ffigure_jitter
ӡ (bee swarm) դϡɤ餮 (jitter) ŬѤƽʣ
ʬΥ뤳Ȥˤ̤ǤŵŪϡ x ɸ
ꤹ 2 İʾΥƥˤäɽ蘆 y ͤʬۤӤǤ
ŤʤȽ䡢jitter ǻѤưѥ椹ˡ˴ؤ
Ƥϡʲ: `set jitter`οޤΥդϡۤʤ jitter
ФƱ plot ޥɤˤäƺ줿ΤǤ
set jitter
plot $data using 1:2:1 with points lc variable
2 boxerrorbars
?plotting styles boxerrorbars
?style boxerrorbars
?with boxerrorbars
?boxerrorbars
襹 `boxerrorbars` 2 ΥǡǤΤѲǽǤ
ϡ3 ޤ 4 ޤ 5 ΥǡɬפǤɲ
(4,5,6 ) ȡϳƥǡ variable color (ʲ
: `linecolor`, `rgbcolor variable`) ȤƻȤޤ
3 : x y ydelta
4 : x y ylow yhigh (xdelta <= 0 boxwidth )
5 : x y ylow yhigh xdelta (xdelta <= 0 boxwidth )
Ffigure_boxerrorbars
y θ "ydelta" ηͿϡȢβ 4 ܤͤ
"ylow yhigh" ηͿϡ 5 ܤͤѤޤ
xdelta ͤ 0 ޤξϡȢβϡͿ boxwidth
ͤ椷ޤʲ: `set boxwidth`
οľϡ`yerrorbars` Ʊͤ y θͤɽ
褦ޤy-ydelta y+ydelta ޤǡ뤤 ylow yhigh
ޤǡϲΥǡͿƤ뤫ˤäƷޤޤ
ǻѤϡ`set bars` ȤäǤޤȤ
ʤСȢζƱΤǸޤ
侩: ŤС gnuplot Ǥϡ"ylow yhigh" θ 4
ΥǡФ `boxwidth = -2.0` ̤˰äƤޤξ硢
ܤȢδ֤˷֤Ǥʤ褦ȢĴᤷƤޤν
ϡߴΤ˻ĤƤޤΥСǤϺ
礦
2 boxes
?plotting styles boxes
?style boxes
?with boxes
?boxes
2 դǤϡ `boxes` Ϳ줿 x ɸ濴Ȥx
(ʤ y=0 ǤäơդζǤϤʤ) Ϳ줿
y ɸޤǿФĹȢޤȢβϤɲǻꤹ
뤳ȤǤޤ`set boxwidth` 椹뤳ȤǤޤǤ
СȢϡܤȢƱΤäĤ褦˰Фޤ
3 դǤϡ `boxes` Ϳ줿 x, y ɸ濴Ȥ
xy ʿ (z=0) Ϳ줿 z ɸޤǿФľΤȢޤ
x Ȣϡ̤ `set boxwidth` ǻǤy Ȣ
Ԥϡ`set boxdepth` ǤޤȢϡưŪˤϤäĤ褦
˰Фޤ
3 2 boxes (2D boxes)
?style boxes 2D
?boxes 2D
`plot with boxes` ϡŪ 2 ޤ 3 ΥǡѤޤ
ɲäȡϡ (variable line color)
٤ξȤƻѤޤʲ: `rgbcolor variable`
2 : x y
3 : x y x_width
Ffigure_boxes
Ȣ 3 ĤΤĤˡǷꤵޤϥǡ 3 ܤΥǡ
ϡȢȤƻѤޤǤʤǥޥ
`set boxwidth` ȢåȤϡȤޤΤɤ
ǤʤϡܤȢäĤ褦ȢưŪ˷ޤ
ȢϸߤɤĤ֤ (fillstyle) ɤĤ֤ޤ
ʳˡɤĤ֤ plot ޥɾǻꤹ뤳ȤǤޤ
ʲ: `set style fill`
ɤ٤ plot ޥɤǻꤷʤСߤѤޤ
:
ǡեñɤꤷȢ褷ȢƱΤľ˥ڡ
():
set boxwidth 0.9 relative
set style fill solid 1.0
plot 'file.dat' with boxes
ɤ꿧ƥѥɤꥹȢ sin cos Υդ:
set style fill pattern
plot sin(x) with boxes fc 'blue', cos(x) with boxes fc 'gold'
sin ϥѥ 0 ǡcos ϥѥ 1 褵ޤɲä
ϥɥ饤ФݡȤѥ۴Ū˻Ѥޤ
3 3 boxes (3D boxes)
?style boxes 3D
?boxes 3D
`splot with boxes` ˤϡʤȤ 3 ɬפǤ
ɲäȡȢɤ٤ξȤƻѤޤ
3 : x y z
4 : x y z [x_width ޤ color]
5 : x y z x_width color
Ǹϡsplot ޥɤŪ variable 顼⡼ɤꤷƤ
Τ߿ȤƻѤޤ:
splot 'blue_boxes.dat' using 1:2:3 fc "blue"
splot 'rgb_boxes.dat' using 1:2:3:4 fc rgb variable
splot 'category_boxes.dat' using 1:2:3:4:5 lc variable
ǽϡ٤ƤȢĤɤꡢϤ餫 `set boxwidth`
Ѥޤ2 ܤϡ4 ܤ 24-bit RGB Ȥǧ
ᡢȢѤ餺 `set boxwidth` Ȥޤ3 ܤϡ
4 ܤͤȢȤɤߡ5 ܤͤȲᤷ
ޤ
Ffigure_3Dboxes
ǥեȤǤϡȢˤϤʤñ xz ʿ̤ʿԤ 1 Ĥ
Ĺǹޤy Ȥ 0 Ǥʤͤꤹ 4 ̤
ŷȢѹǤޤʲ: `set boxdepth`
3 Ȣϡ̤ǤϤʤ pm3d ĹȤƽƤޤäơɽ
ϡ`set hidden3d` αƶޤʲ: `set pm3d`
gnuplot С 6 ϡȢüϥդ fill style ζǿդ
ޤϥС 5 ȤϰۤʤѹǤ
ɤη̤ˤϡ`set pm3d depthorder base` `set pm3d lighting`
Ȥ߹碌Ƥ
2 boxplot
?plotting styles boxplot
?style boxplot
?with boxplot
?boxplot
Ffigure_boxplot
boxplot ϡͤŪʬۤɽŪˡǤʬ̶ϡ
1/4 ʬ̶ʲͤĤ褦ˡ1/2 ʬ̶
() ʲͤĤ褦ˡȷꤵޤʬ̤軰
ʬ̤δ֤ΰϤ褦Ȣ褷ͤΤȤˤϿʿ
ޤȢҤϡȢ桼³ޤDZĹޤθ³
ˤϡҤȤĤҤȤ褵ޤ
:
# x ɸ 1.0y 5 ܤͤΤȤ boxplot
plot 'data' using (1.0):5
# Ʊϰϳϱboxplot 0.3 ˤ
set style boxplot nooutliers
plot 'data' using (1.0):5:(0.3)
ǥեȤǤϡusing ˤ 2 ܤ y Τ٤ƤͤФ
boxplot 1 Ĥޤɲä (4 ܤ) ꤹ
ȡͤѿΥŪʥ٥ͤǤȸʤΥ
ͤΥ٥ͤο boxplot 褷ޤ boxplot δֳ
ϥǥեȤǤ 1.0 Ǥ `set style boxplot separation`
ѹǤޤǥեȤǤϡѿͤϡ boxplot β (ޤ
) Υ٥ɽޤ
# 'data' 2 ܤ "control" "treatment" Τ줫ʸ
# ʲϡΰ 2 Ĥ boxplot
plot 'data' using (1.0):5:(0):2
ȢΥǥեȤ `set boxwidth <width>` Ǥޤplot
ޥɤ `using` ˤ 3 ܤΥץǤǤޤ1
3 ܤ (x ɸ) ̾ǡǤϤʤȤͿޤ
ǥեȤǤϡȢҤȢü顢y ͤʬϰϤ 1.5 ܤ
ޤäƤƺǤΥƤ褦ޤDZĹޤǥեȤǤϡ
ϳ (outlier) ϱ (pointtype 7) ޤȢҤü
`set bars` ޤ `set errorbars` ȤäǤޤ
ΥǥեȤ `set style boxplot` ޥɤѹǤޤ
ʲ: `set style boxplot`, `bars`, `boxwidth`, `fillstyle`,
`candlesticks`
2 boxxyerror
?plotting styles boxxyerror
?style boxxyerror
?with boxxyerror
?boxxyerror
Ffigure_boxxyerror
`boxxyerror` 襹 2 ΥǡǤΤѲǽǤ
ϡ`xyerrorbars` 뤬ʬθɽȤĹɽ
뤳ȤФۤƱǤϥǡ 4 ޤ 6
ޤ;ʬ (5 ܡޤ 7 ) ϡǡβѿ
(variable color) Ȥưޤ (ʲ: `linecolor`,
`rgbcolor variable`)
4 : x y xdelta ydelta
6 : x y xlow xhigh ylow yhigh
Ȣȹ⤵ `xyerrorbars` Ʊ x, y θꤵޤ
Ĥޤꡢxlow xhigh ޤǤ ylow yhigh ޤǡޤ x-xdelta
x+xdelta ޤǤ y-ydelta y+ydelta ޤǡϲΥǡ
ͿƤ뤫ˤäƷޤޤ
6 ηΥޥɤϡǤդ x, y Ĺñˡ
ޤ
ȢϸߤɤĤ֤ (fillstyle) ˽äɤޤ
٤ϡʲ: `set style fill`, `boxes`plot ޥɾǿɤ
Ĥ֤ꤹ뤳ȤǤޤ
2 candlesticks
?plotting styles candlesticks
?style candlesticks
?with candlesticks
?candlesticks
Ffigure_candlesticks
`candlesticks` ϡͻǡ 2 Υǡ衢
ǡΤҤդդΤ˻Ȥޤ
ϡʿˤ x 濴Ȥľˤϳ (open) Ƚ
(close) ȤĹȤޤơ x ɸΤȤ
ĹΤƤäڤǹ (high) ޤǤȡĹ줫ǰ (low)
ޤǤοľޤοľϺǹͤȺǰͤؤäƤ
ѹޤ
Ū 5 ΥǡɬפǤ:
ͻǡ: date open low high close
ȢҤ: x box_min whisker_min whisker_high box_high
Ĺϥޥ `set boxwidth` Ǥޤ gnuplot
ؤθߴȤơboxwidth ѥꤵƤʤ
`set errorbars <width>` ĹȤƼޤ
ˡȢҤ (box-and-whisker) Υ롼ײ˴ؤŪ
λɲä 6 ܤΥǡǻǤޤϡx ɸƱ
ñ̤ͿʤФޤ
ɲ (6 ܡޤ 6 ܤǡȤƻȤ 7
) ȡϳƥǡ variable color (ʲ:
`linecolor`, `rgbcolor variable`) ȤƻȤޤ
ǥեȤǤϡľʬΤƤäڤˤϿľ˸ʿϰ
硢㤨ŵŪȢҤ (box-and-whisker
plot) ǤλѤǤ襳ޥɤ˥ `whiskerbars` ɲä
ƤǥեȤǤϡʿȢ (candlestick) οʿդ˰
ޤΤФꤹ뤳ȤѹǤޤ
ͻǡ̾δǤϡ() < () ξĹ϶ǡ
() < () ξñɤꤷޤߤ fillstyle "empty"
åȤƤϡºݤˤʤޤʲ: `fillstyle`
fillstyle solid (ñɤ)ޤ pattern (ѥ) åȤ
ϡͤ͡˴طʤ٤ƤȢˤ줬Ȥޤʲ
: `set errorbars`, `financebars`ޤʲ⻲ȤƤ
^ <a href="http://www.gnuplot.info/demo/candlesticks.html">
candlestick
^ </a>
^ <a href="http://www.gnuplot.info/demo/finance.html">
finance
^ </a>
Υǥ⡣
: ȢҤվ˵ɲä֤ˤϡɲäǤɬ
ˤʤޤʲκǽϡ2 ܤǤǡȢ٤ͤξ
֤ʬˤƤޤ
# ǡ: X 'Ǿ' '1/4 ̤' '' '3/4 ̤' ''
set errorbars 4.0
set style fill empty
plot 'stat.dat' using 1:3:2:6:5 with candlesticks title 'Quartiles', \
'' using 1:4:4:4:4 with candlesticks lt -1 notitle
# Ҥξ˿ʿȼǡʿ 50% ˤ
plot 'stat.dat' using 1:3:2:6:5 with candlesticks whiskerbars 0.5
ʲ: `set boxwidth`, `set errorbars`, `set style fill`, `boxplot`
2 circles
?plotting styles circles
?style circles
?with circles
?circles
Ffigure_circles
`circles` ϡƥǡ줿Ⱦ¤αߤ褷ޤȾ
¤ϡοʿ (x ޤ x2) ñ̤Dzᤵޤy ν
ܤΥڥϡ̵뤵ޤȾ¤Ȥ
ꤷʤ硢 `set style circle` ޤξ硢Ⱦ
graph screen κɸϤѤǤޤ
ˡƻˡꤹ°¿Ȥ߹碌꤬ǽǤ
2 ǤϡʲǤޤ
using x:y
using x:y:radius
using x:y:color
using x:y:radius:color
using x:y:radius:arc_begin:arc_end
using x:y:radius:arc_begin:arc_end:color
ǥեȤǤϴʱߤ褷ޤ
η̤ `points` pointtype 7 ѤơΥդ
ȤƱͤǤαߤ x ϰϤǿ̤Ȥ㤤ޤ
4 ܡ5 ܤ˳ϳѤȽλ (ñ̤)ꤹ뤳ȤDZ߸̤ΰ
褹뤳ȤǤޤ
using κǸǡοǤޤξ硢plot ޥ
ɤˤ `lc variable` `fillcolor rgb variable` Τ褦ư
ɬפޤ
ʲ: `set style circle`, `set object circle`, `set style fill`
3 Ǥϡusing ˤϰʲΤΤɬפǤ
splot DATA using x:y:z:radius:color
ưϥץ (ά) Ǥ
:
# Ѥ 3 ܤͤ㤹褦ʱߤ
set style fill transparent solid 0.2 noborder
plot 'data' using 1:2:(sqrt($3)) with circles, \
'data' using 1:2 with linespoints
# ߤ˥ѥåޥ
plot 'data' using 1:2:(10):(40):(320) with circles
Ffigure_piechart
=piechart
# ǡDZߥդ
set xrange [-15:15]
set style fill transparent solid 0.9 noborder
plot '-' using 1:2:3:4:5:6 with circles lc var
0 0 5 0 30 1
0 0 5 30 70 2
0 0 5 70 120 3
0 0 5 120 230 4
0 0 5 230 360 5
e
2 contourfill
?plotting styles contourfill
?style contourfill
?with contourfill
?contourfill
Ffigure_contourfill
contourfill ϡ3 襹ǡpm3d ̤ z ˱ä
äҤοդ˻Ȥޤϡ2 ͱ (`set view map`) ǡ
δ֤ñɤ٤ 2 դΤ˻Ȥޤ
ҤζȿγƤϡ `set contourfill` Ǥ
ʲ⻲: `pm3d`, `zclip`
襹ϡ`set contours` Ȥ߹碌ơҤڤʬ
Ť뤳ȤǤޤ`set contourfill` Ҥζ
`set cntrparam` Ȥ碌褦դƤ
# ztics Ҷ
# Ҥ z ͤ˳ƤѥåȤǿդ
set pm3d border retrace
set contourfill ztics
set ztics -20, 5, 20
set contour
set cntrparam cubic levels increment -20, 5, 20
set cntrlabel onecolor
set view map
splot g(x,y) with contourfill, g(x,y) with lines nosurface
2 dots
?plotting styles dots
?style dots
?with dots
?dots
Ffigure_dots
`dots` ϳ˾ʥɥåȤ褷ޤϤ
ʤ뻶ۿޤǤ礦2 Ǥ 1 ޤ 2
ϥǡ3 Ǥ 3 ΥǡɬפǤ
ϷˤäƤ (post, pdf ʤ)ɥåȤ礭 linewidth ѹ
뤳ȤǤ뤳Ȥ⤢ޤ
1 : y # x Ϲֹ
2 : x y
3 : x y z # 3D Τ (splot)
#TeX \newpage
2 ellipses
?plotting styles ellipses
?style ellipses
?with ellipses
?ellipses
Ffigure_ellipses
`ellipses` ϡƥǡʱ (ellipse) 褷ޤ
ϡ2 ˤΤŬѤޤʱߤϡ濴缴ľ¡
ľ¡x ȼ缴Τʤѡɽޤ
2 : x y
3 : x y diam (缴ξ˻)
4 : x y major_diam minor_diam
5 : x y major_diam minor_diam angle
2 ΥǡΤߤͿ줿ϡ濴κɸȤߤʤ졢ʱ
ϥǥեȤ礭褵ޤ (ʲ: `set style ellipse`)
ߤθϡ缴 x ΤʤѤޤǥեȤ
ellipse Υ뤫ޤ (ʲ: `set style ellipse`)
3 ΥǡͿ줿ϡ3 ܤϼ硢ξľ () Ȥƻ
ޤϥǥեȤ 0 ˤʤޤ
4 ΥǡͿ줿ϡ濴κɸ缴ľ ()
ľ¤ȤƻȤޤľ¤ǤꡢȾ¤ǤʤȤդ
ľ¤ʤСľ¤ξȤ `set style ellipse` ꤷ
եͤȤޤ
5 ΥǡȤơγ (ñ̤) ꤹ뤳ȤǤޤ
ʱߤϡ3,4,5 ͤͤȤƻꤹ뤳ȤǡΥǥեȤ
ͤѤʱߤ뤳ȤǤޤ
Τ٤Ƥξǡvariable color ǡǸ (3,4,5,6 )
ɲäǤޤʲ: `colorspec`
`units`: `units xy` ˴ޤޤƤ硢缴ľ
Ͽʿ (x ޤ x2) ñ̡ľ¤Ͽľ (y ޤ y2) ñ̤
Ȥߤʤޤx y ν̼ܤۤʤ硢缴ϲ
žˤϤʤޤ
`units xx` ϡľ¤ξȤ x ñ̤Ƿޤ
`units yy` ϡľ¤ξȤ y ñ̤Ƿޤ
2 ĤϡΥѹƤ⡢ʱߤڥ
ޤplot ޥɤ `units` άϡ`set style ellipse`
Ȥޤ
(ʱߤͭŪ˻Ѥ):
plot 'data' using 1:2:3:4:(0):0 with ellipses
ʲ⻲: `set object ellipse`, `set style ellipse`, `fillstyle`
2 filledcurves
?plotting styles filledcurves
?style filledcurves
?with filledcurves
?filledcurves
Ffigure_filledcurves
`filledcurves` 2 ǤΤѤޤ 3
ۤʤ꤬ǽǤǽ 2 1 Ĥδؿ衢뤤 (x,y) 2
ϥǡѤΤΤǡǾҲ𤹤褦˥ץǹʤ꤬
ޤ
:
plot ... with filledcurves [option]
ǡץϰʲΤΤ줫Ǥ:
closed
{above|below} x1 x2 y r=<a> xy=<x>,<y>
between
ǽΤΤ `closed` ǡ϶켫Ȥ¿ѷȸʤޤ
ϥǡ 2 ξˤϤ줬ǥեȤǤ
filledcurves closed ... ĶǰϤޤΰ
2 ܤϻꤵ줿뤤ϿʿľͿ줿ʤɤȡ
Ȥδ֤˺ΰɤĤ֤ޤξ硢ɤ٤ΰ
ꤷľξޤϲ¤Ǥޤ
filledcurves x1 ... x1
filledcurves x2 ... x2 (y1, y2 Ʊ)
filledcurves y=42 ... ľ y=42, ʤ x ʿ
filledcurves xy=10,20 ... x1,y1 Ǥ 10,20 (Τ褦ʷ)
filledcurves above r=1.5 ˺ɸǤư¼ 1.5 γ¦ΰ
Ffigure_yerrorfill
3 ܤϡx ɸν礬ƱǤ 2 Ĥζδ֤ΰɤ٤
ϡ(x, y1, y2) 3 ϥǡɬפǤϥǡ 3
ʾξˤϤ줬ǥեȤǤ2 ܤ y ͤǡ3 ܤ
ǡǤϡԳΰƤɽ뤳ȤǤޤ
˻ 3 襹 `zerrorfill` ⻲ȤƤ
3 : x y yerror
plot $DAT using 1:($2-$3):($2+$3) with filledcurves, \
$DAT using 1:2 smooth mcs with lines
`above` `below` ץ
... filledcurves above {x1|x2|y|r}=<val>
... using 1:2:3 with filledcurves below
ηΥޥɤŬѲǽǤɤξǤ⡢Υץ
ɤĤ֤ΰޤ϶¦¤ޤ
ǡե뤫줿ɤĤ֤礹ȡʤʤä
ʤΰˤʤ뤳Ȥޤ gnuplot ΰǤϤ
åԥƤ뤫Ǥ
<x>, <y>, <a> ΰγˤ硢ϥդζذư
ޤäơץ xy=<x>,<y> ꤷμºݤɤĤ֤
ϡxrange yrange ˰¸ޤ
3 ɤ٤° (fill properties)
?filledcurves border
=border
`with filledcurves` Ǥϡfillstyle (solid/transparent/pattern)
fillcolor ꤹ뤳ȤǤ˥ޥǤޤplot ޥ
fillstyle (`fs`) ꤷʤСߤΥǥեȤ fill
Ѥޤʲ: `set style fill`plot ޥɤ fillcolor
(`fc`) ꤷʤСߤȤޤ
fillstyle ° {{no}border} ϡfilledcurves Υ⡼ɤǥե
`closed` Ǥ˼դޤ
:
plot 'data' with filledcurves fc "cyan" fs solid 0.5 border lc "blue"
2 financebars
?plotting styles financebars
?style financebars
?with financebars
?financebars
`financebars` ϶ͻǡ 2 ΥǡǤΤѲǽ
Ǥϡx ɸ 1 (̾) ȡ4 Ĥ y ɸ () ɬפ
ޤ
5 : date open low high close
ɲ (6 ) ȡϳƹ variable color (
: `linecolor`, `rgbcolor variable`) ȤƻȤޤ
Ffigure_financebars
ϡʿˤϤ x ɸ֤졢ľˤϺǹ (high)
ǰ (low) üȤʬȤޤơʬ˿ʿ¦
ߤ (open) νˡʿ¦ιߤ (close) νˤĤ
ޤιߤĹ `set errorbars` ѹǤޤϺǹͤ
ǰͤؤäƤѤޤʲ: `set errorbars`,
`candlesticks`ʲ⻲ȤƤ
^ <a href="http://www.gnuplot.info/demo/finance.html">
ͻǡǥ⡣
^ </a>
2 fillsteps
?style fillsteps
?with fillsteps
?fillsteps
plot <data> with fillsteps {above|below} {y=<baseline>}
Ffigure_steps
`fillsteps` 2 ǤΤѲǽǤ
ϡ`steps` ȤۤƱǤȥ١饤 (ǥեȤ y=0)
Ȥδ֤ΰߤ fillstyle ɤ٤ޤץ `above`
`below` ϡ١饤ʬΤɤ٤ޤĤΥǡ
鼡ؤΰưκݤˡ`steps` `fillsteps` Ϥޤ x ɸ
Ѳθ y ɸѲȤդƤ
ʲ: `steps`
2 fsteps
?plotting styles fsteps
?style fsteps
?with fsteps
?fsteps
Ffigure_fsteps
`fsteps` 2 ǤΤѲǽǤ 2 ܤʬ
٤礦Ĥʤޤ: 1 ܤ (x1,y1) (x1,y2) ޤǡ2 ܤ
(x1,y2) (x2,y2) ޤǡξϡ`lines` `points` Ф
ΤƱǤ`fsteps` `steps` ΰ㤤ϡ`fsteps` ϡޤ
y ˽Ƥ鼡 x ˽ΤФ`steps` x
˽Ƥ鼡 y ˽ޤ
ʲ⻲
^ <a href="http://www.gnuplot.info/demo/steps.html">
steps ǥ⡣
^ </a>
2 histeps
?plotting styles histeps
?style histeps
?with histeps
?histeps
Ffigure_histeps
`histeps` 2 ǤΤѲǽǤϥҥȥ
ǤѤտޤƤޤy ͤϡx ͤ濴֤ȹͤ
x1 Ǥ ((x0+x1)/2,y1) ((x1+x2)/2,y1) ޤǤοʿȤɽ
ޤüǤϡϤ x ɸ濴ˤʤ褦˱Ĺ
٤礦ƱΤοʿüϡξԤʿͤΤȤǤαľ
ʤ ((x1+x2)/2,y1) ((x1+x2)/2,y2) ʬǷФޤ
ξϡ`lines` `points` ФΤƱǤ
`autoscale` ͭǤ硢x ϰϤϡαĹ줿ʿϰϤ
ϤʤǡϰϤޤäơü˴ؤƤϤοʿ
ȾʬʤȤˤʤޤ
ʲ⻲
^ <a href="http://www.gnuplot.info/demo/steps.html">
steps ǥ⡣
^ </a>
#TeX \newpage
2 ʬۿ (heatmaps)
?heatmaps
gnuplot ΤĤ襹Dzʬۿ (heatmaps) 뤳Ȥ
ޤɤΥȤϡǡηǷޤޤ
Ffigure_heatmap
ԥ١βʬۿޤϡ٤ʬۿγƥԥ뤬˰Ĥ
ΥǡͤбȤäƤޤ
ԥ١βϡǡͤ§ŪĹʻҤǤ뤳
ᤷޤʲ: `with image`ʻͤη礱뤳
ȤϲǽǤ (ʲ: `sparse`)ʻҤΰɽޥƾ
ƤޤȤǽǤ (ʲ: `masking`)ʻǤۤ¿
ʤϡĹǤ̡ɤä (`with image pixels`)ʿ경
ĵհ̤ ̤β ("image")ŬѤʤ褦ˤ뤳Ȥ̾
Ǥ礦
Ffigure_sector_heatmap
ԥ١ʬۿޤβƱζ˷ΤΤϡ2 襹
`sectors` ǤޤϡԥƱζ˺ɸʻҾΰ
ĤδľҤ˴бޤʲ˺ɸʻ̤Υץ
Ȥϰ㤤ʻҤθġҤǤոǤޤ襹
˺ɸա뤤ľɸդǤդξˡҤ֤褦
ȤȤǤޤοޤϡľɸվǡʬۿޤζ˷
2 ĤȾʬǡަxΥ줿֤ľΤޤ
Ffigure_mask
ǡ§ŪĹʻҤʤϡ֤䥹ץ饤Ȥ
ƳʻҶ̤ƤϤ뤳Ȥ褯Ԥޤ¾ˤϡ̩ٴؿʻ
ʿ̤餫ʶ̤˼뤳ȤǤޤʲ: `set dgrid3d`
γʻҶ̤ϡθ pm3d ̤ȤǤޤ (ϰʲ:
`masking`)ξ硢ʬۿȤ 1 1 бݻ
ޤʤʬɽϡʻҶƱ٤˲ޤ
ǥ⥳쥯ˡ礫 2 ʬۿޤ㤬
ޤ
^ <a href="http://www.gnuplot.info/demo/heatmap_points.html">
heatmap_points.dem
^ </a>
Ffigure_polar_grid
ʤѤ gnuplot --enable-polar-grid ץդǥӥ
줿硢˺ɸǡ2 ˺ɸʬۿޤΤ˻Ȥ
"ԥ" ϻ˷ꤷȤ r ϰϤбޤʲ:
`set polar grid`, `with surface`κȤϡ2 ˺ɸ֤
뤳Ȥơ `set dgird3d` `with pm3d` Ѥ뤳Ȥ
Ǥ
2 histograms
?style histograms
?with histograms
?set style histogram
?plotting styles histograms
?histograms
`histograms` 2 ǤΤͭǤϡǡγ
¤ӤʿԤդޤ`plot` ޥɤγǤϡ
˴ؤͤ (key) Υȥ뤬°뤫Τޤ
ñϥǡꤹɬפޤ (㤨ϥե 1 Ĥ
)ߤϡ4 ΥҥȥΥݡȤƤޤ
set style histogram clustered {gap <gapsize>}
set style histogram errorbars {gap <gapsize>} {<linewidth>}
set style histogram rowstacked
set style histogram columnstacked
set style histogram {title font "name,size" tc <colorspec>}
ǥեȤΥ `set style histogram clustered gap 2` б
ƤޤΥǤϡ˻ꤵ줿ǡͤνϡ
줿ǡΤΤ줾ν (ֹ) б x ɸξˡ
ơȢΥ롼פȤƸǤ֤ޤäơ<n> ĤΥǡ
˻ꤷ硢ǽθǤޤ x=1 濴Ȥ <n> ĤȢθǤޤ
ʤꡢγơι⤵ϡ <n> ǡơκǽ (1 )
ޤθ˾ (gap) 졢˳ƥǡμ (2
) ͤбȢθǤޤ꤬ x=2 濴Ȥ֤ޤʲƱ
ǤǥեȤζ (gap) 2 ϡȢθǤޤƱΤδ֤ζȢ
2 ĤȤ̣ޤƱФȢƱޤƱ
ѥͿޤ; ʲ⻲: `histograms colors`
ȢθǤޤꤽ줾ϡǡե 1 ĤιԤޤΤ
ϥեγƹԤκǽιܤФ (٥) Ǥ뤳Ȥɤ
ȤǤˤ븫Ф (٥) ϡ`using` `xticlabels`
Ĥ뤳ȤǡбȢθǤޤο x ˱ä
֤ȤǤޤ
`errorbars` ϡƥȥФɲäɬפȤ
`clustered` ˤȤƤɤƤޤǽϡ
`clustered` ξƱͤȢι⤵ (y ) Ȥݻ
ޤ
2 : y yerr # y-yerr y+err ؿӤ
3 : y ymin ymax # ymin ymax ؿӤ
θܤϡߤ `set errorbars` ͤ <linewidth> ץ
Ǥޤ
Ѥ߾夲Υҥȥ 2 ĤηݡȤƤޤ
ޥ `set style histogram {rowstacked|columnstacked}` Ǥ
Υˤơ줿ΥǡͤѤ߾夲줿
ȢȤƽޤͤϡy=0 Ѥ߾夲졢ͤ
ظäѤ߾夲ޤͤͤäƤϡ
ȲξѤ߾夲ޤǥեȤѤ߾夲⡼ɤ
`rowstacked` Ǥ
`rowstacked` ϡޤǽ줿γƹԤͤ x Τ
줾ΰ֤֤ޤ: 1 ܤͤ x=1 Ȣ2 ܤΤ x=2ʲ
ƱͤȤʤޤ2 ܰʹߤ줿бȢϡξ
߽ŤͤƹԤޤƷ̤Ȥơx=1 ˤǤȢѤ߽Ťͤϡ
κǽ (1 ܤ) ʤꡢx=2 ȢѤ߽Ťͤϳ 2
͡ʤɤΤ褦ˤʤޤƱФȢƱޤƱѥ
Ϳޤ (ʲ: `set style fill`)
`columnstacked` ƱͤǤϳȢѤ߾夲 (ƹ
ΥǡǤϤʤ) Υǡʤޤǽ˻ꤷǡ
γƹԤΥǡ x=1 ȢѤ߾夲2 ܤ˻ꤷǡ
γƹԤΥǡ x=2 ȢѤ߾夲ʤɤΤ褦ˤʤޤΥ
ǤϡȢοϡƥǡܤ (ֹǤϤʤ) ֹ椫ꤵ
ޤ
Ȣϥޥ `set boxwidth` ѹǤޤ
ȢɤĤ֤ϥޥ `set style fill` Ǥޤ
histograms x Ͼ x1 Ȥޤy ˴ؤƤ y1 y2
Ǥޤplot ̿histograms ¾Υξ
ޤ硢histogram Ǥʤϡx1 Ȥ x2 Ȥ
ޤ
ɲäΥ륪ץ `set style histogram nokeyseparators` ϡ
ʣΥҥȥޤ॰դˤΤŬڤʤΤǤξɲ
ˤĤƤϡʲ: `newhistogram`
:
Ffigure_histclust
ϥեϡ2, 4, 6, ... ˥ǡͤ3, 5, 7, ...
˸ɾĤȤޤʲϡ2 ܡ4 ܤͤȢθǤޤ귿
(clustered; ǥեȥ) ΥҥȥȤ褷ޤ
ϡplot ޥɤǷ֤ (iteration) ѤƤޤΤǡǤդθ
ΥǡĤΥޥɤǽǤޤʲ: `plot for`
set boxwidth 0.9 relative
set style data histograms
set style histogram cluster
set style fill solid 1.0 border lt -1
plot for [COL=2:4:2] 'file.dat' using COL
ϡx γͤ濴Ȥ뤽줾 2 ĤȢ (ľ)
Ǥޤˤޤϥեκǽ˥٥뤬ޤޤ
ʤ餽ʲξѹޥɤ x ˱ä֤Ǥޤ
plot for [COL=2:4:2] 'file.dat' using COL:xticlabels(1)
Ffigure_histerrorbar
ե뤬ƥǡ¬ͤϰϤξξޤǤ硢
ɲä뤳ȤǤޤʲΥޥɤϸ (y-<error>)
(y+<error>) ˰ƬȢƱοʿĤޤ
ȸüϡ 2 褵ޤ
set errorbars fullwidth
set style fill solid 1 border lt -1
set style histogram errorbars gap 2 lw 2
plot for [COL=2:4:2] 'file.dat' using COL:COL+1
ʲϡƱǡѤ߾夲 (rowstacked) Υҥȥ
ˡƤޤޤǤȤϰ㤤ʲ襳ޥɤǤϡ
֤λѤǤϤʤ̡̤ꤷƤޤ
set style histogram rowstacked
plot 'file.dat' using 2, '' using 4:xtic(1)
Ffigure_histrows
ϡİĤαľǡΰĤб
ϡ2 ĤʬѤ߾夲ηǤꡢ줾ʬι⤵
ե 2 ܤ 4 ܤͤбޤ
#TeX \vspace{1em}
Ǹ˰ʲΥޥ
set style histogram columnstacked
plot 'file.dat' using 2, '' using 4
Ffigure_histcols
ϡİĤ줾ǡб롢2 ĤαľѤ߽Ťͤ
ޤx=1 ˤϡǡե 2 ܤγƹԤͤб
Ȣʤޤx=2 ˤϡǡե 4 ܤγƹԤͤ
Ȣʤޤ
ϡgnuplot ̾Ϥνġβ촹뤳Ȥˤʤޤ
ǡΥȥ x θФλѹɬפ
ʲΥʬȤƤ
set style histogram columnstacked
plot '' u 5:key(1) # 1 ܤ㥿ȥ˻
plot '' u 5 title columnhead #
2 ĤϡƱǡͤͿƤΤǤۤʤǤ
뤳ȤդƤ
3 newhistogram
?newhistogram
?with histograms newhistogram
?histograms newhistogram
?styles histograms newhistogram
?plotting styles histograms newhistogram
:
newhistogram {"<title>" {font "name,size"} {tc <colorspec>}}
{lt <linetype>} {fs <fillstyle>} {at <x-coord>}
2 İʾΥҥȥȤ뤳ȤǤޤξ
ޥ `newhistogram` ȤȤǡŪʬΥޤ
Υ٥ʬΥ뤳ȤǤޤ
:
set style histogram cluster
plot newhistogram "Set A", 'a' using 1, '' using 2, '' using 3, \
newhistogram "Set B", 'b' using 1, '' using 2, '' using 3
٥ "Set A" "Set B" ϡ줾ΥҥȥȤβx
ƤΥ٥βΰ֤˸ޤ
ޥ newhistogram ϡҥȥοդŪ˻ꤷ
(linetype) ǻϤΤˤȤޤǥեȤǤϡֹϥҥȥ
ζޤǤϢ³Ūä³ޤϡʣΥҥ
ȥƱդܤޤ
plot newhistogram "Set A" lt 4, 'a' using 1, '' using 2, '' using 3, \
newhistogram "Set B" lt 4, 'b' using 1, '' using 2, '' using 3
ƱͤˡΥҥȥꤷ fillstyle ǻϤᤵ뤳Ȥǽ
fillstyle `pattern` ˥åȤ硢ɤ٤˻Ѥ
ѥֹϼưŪäƤޤ
ҥȥγϤϡ̾ (key) ˶Υȥɲä
ˤꤽΥҥȥǤνΥȥϡΥҥȥ
ΤΤʬΥ뤳ȤˤʤޤζԤϡǤġΥ
ȥʤ˾ޤΤǤϤޤϡΥ
`set style histogram nokeyseparators` ѹ뤳ȤǡζԤ
ϤǤޤ
Ffigure_newhist
ץ `at <x-coord>` ϡθΥҥȥ x ɸΰ֤
<x-coord> ꤷޤ:
set style histogram cluster
set style data histogram
set style fill solid 1.0 border -1
set xtic 1 offset character 0,0.3
plot newhistogram "Set A", \
'file.dat' u 1 t 1, '' u 2 t 2, \
newhistogram "Set B" at 8, \
'file.dat' u 2 t 2, '' u 2 t 2
ξ硢2 ܤΥҥȥΰ֤ x=8 Ϥޤޤ
3 ʣϤ뼫ưŪʷ֤ (automated)
?automated
?with histograms automated
?histograms automated
?styles histograms automated
?plotting styles histograms automated
ĤΥǡեΤ顢ĤΥҥȥ
硢plot η֤ (iteration) ǽȤǤ礦ʲ:
`plot for`㤨С3 ܤ 8 ܤޤǤΥǡѤ߾夲Υҥ
ȥ:
set style histogram columnstacked
plot for [i=3:8] "datafile" using i title columnhead
3 ҥȥογ (histogram color assignments)
?with histograms colors
?histograms colors
?styles histograms colors
?plotting styles histograms colors
gnuplot ϡҥȥγǤȢ˼ưŪ˿ƤޤƱ
ͤʥǡˤϡ餬ҥȥιԡޤˤɤ˸줿Ȥ
Ӥݻ褦ˤޤϡϢ³ (linetype)
ΡޤѤƤʤޤ `newhistogram` ̿ˤ
äƽǽΤ줫ϤޤΤȤޤ
λȤߤϡǡǤϤʤ (ʤĤΥե
ΥǡԴ) ˼Ԥ뤳Ȥޤޤϡܿθ
٤٤Ѥ뤳Ȥˤв뤿Υǡɲ°Ϳ
⤷ޤưŪʿγƤˡƥǡѤŪʿ
ͤ2 ܤ `using` ǡ`linecolor variable` `rgb variable`
ȤߤˤäͿ뤳ȤǤޤʲ: `colorspec`ʤΥ
Υ쥤ȤˤäơΥƥϡԤΥإåΥإå
ĤΥǡǤꤨޤ¿ʬ (key) Υץοϡ˹
褦˥ޥɬפ뤳ȤդƤ (ʲ:
`keyentry`)
: file_001.dat file_008.dat ϡ1 ܤϥƥ꼱̻Ҥ A, B,
C, ... ǡ2 ܤǡͤˤʤäƤޤ٤ƤΥե뤬٤Ƥ
ƥФԤäƤȤϸ¤餺äƴǡǤ
ޤξ硢gnuplot ϡְäƳƥե N ܤͤƱ
Ƥ褦ȤƤޤޤˡ1 ܤΥƥ˴
ŤƤǤ
file(i) = sprintf("file_%03d.dat",i)
array Category = ["A", "B", "C", "D", "E", "F"]
color(c) = index(Category, strcol(c))
set style data histogram
plot for [i=1:8] file(i) using 2:(color(1)) linecolor variable
key Υޥޤര㤬ǥ
^ <a href="http://www.gnuplot.info/demo/histogram_colors.html">
histogram_colors.dem
^ </a>
ˤޤ
D histogram_colors 1
2 image
?plotting styles image
?style image
?with image
?image
?rgbimage
?rgbalpha
襹 `image`, `rgbimage`, `rgbalpha` ϡͤɸ
äʻҾǡͤ2 ޤ 3 Τʿ̾˼ͱƤ
ޤϥǡϡˤӥåޥåײե (PNG Τ褦ɸŪ
ʥեޥåȤѴΤǤ褤) ñʿǤ
襹ϡʬۿ (heatmap) Τˤ褯Ȥޤ
˺ɸǤ 2 ʬۿޤˤĤƤϡʲ: `set polar grid`
Ffigure_heatmap
οޤϡ顼ͤ鲹ʬۤǤ (: ޤɽ
Ƥ)ߤΥѥåȤƥ顼ͤбԥ
ؤγƤ˻Ѥޤʲ⻲: `sparse`
plot '-' matrix with image
5 4 3 1 0
2 2 0 0 1
0 0 0 1 0
0 1 2 4 3
e
e
Ffigure_rgb3D
2 γƥԥ (ǡ) ϡ襰ǤĹ
ʿϻΤȤʤޤγƥǡκɸϡʿϻΤ濴
ꤷޤʤM x N ĤΥǡ M x N ԥβ
ޤϡM x N ĤΥǡ礬 (M-1) x (N-1) Ǥ
pm3d ι¤ȤϰۤʤޤХʥǡγʻҤϡɲ
ɤǤǽǤʲ: `binary keywords flipx`,
`keywords center`, `keywords rotate`
Ffigure_scaled_image
ƥԥ x y 礭Ȥǡǡ 2 ɸ
Ĺ˼ޤ褦˿̤뤳ȤǤޤʲ:
`binary keywords dx`, `dy`βΤˤϡƱϲ
줾 dx, dy, origin ꤷʣ֤ޤ PNG
ӥγ 50x128 ԥǤ⤤ӥϡ`dx=0.5 dy=1.5` dz
Ƥ褷㤤ӥϡ`dx=0.5 dy=0.35` ȤƤޤ (: ޤɽ
Ƥ)
`image` ϡ쥤 (Ĵ)ޤϥ顼ѥå
ޤǤԥϤޤä 2 (`plot`
) Ǥ 3 Υǡ (x,y,value) 3 (`splot` ޥ)
Ǥ 4 Υǡ (x,y,z,value) ɬפˤʤޤ
`rgbimage` ϡ֡СĤ 3 Ĥοʬ (RGB) ǵҤ줿
Ϥޤä `plot` Ǥ 5 ǡ (x,y,r,g,b)
`splot` Ǥ 6 ǡ (x,y,z,r,g,b) ɬפˤʤޤ֡С
Ĥγʬ [0:255] ϰˤȲꤵޤ
ϡPNG JPEG եǻѤƤȤߤ˹äƤޤ (ʲ
: `binary filetype`)RGB ʬȤ [0:1] ϰϤμ¿
ȤߤѤ褦ʥǡեˤϤޤΤ褦
ǡ `rgbimage` Ѥˤϡޤ `set rgbmax 1.0` Ȥ
Ƥ
=alpha channel
`rgbalpha` ϡ֡СĤ RGB ʬ˲äơե (Ʃ
ѥ) ξޤԥϤޤäơ`plot`
Ǥ 6 ǡ (x,y,r,g,b,a) `splot` Ǥ 7 ǡ
(x,y,z,r,g,b,a) ɬפˤʤޤ֡Сġӥեγʬ
[0:255] ϰˤȲꤵޤRGBA ʬ [0:1] ϰϤμ¿
Ǥǡ褹ˤϡޤ `set rgbmax 1.0` ȤƤ
rgbimage rgbalpha Τ줫ǤǿѤ˥ǡ 1
ʤäϡϡalpha=0 Ʃalpha=255 Ʃ
̣롢32 bit ѥå ARGB ǡǤȤߤʤޤΥե
θϡե̤ͤͿϸŽǤ
ꤹɬפΤġΥޥѤ ARGB ѥåλȤߤˤϹä
ޤ
3 Ʃ (transparency)
?image transparency
?transparency
?alpha channel
襹 `rgbalpha` ϡϥǡγƥԥ뤬 [0:255] ϰ
ΥեͤäƤɬפޤalpha = 0 ΥԥϴƩ
ǡβ () ǤѤޤalpha = 255 Υԥ
ƩǤ٤ƤνϷϡ 2 Ĥξüͤݡ
Ȥޤ0 < alpha < 255 ΥԥȾƩǡȾƩݡȤƤ
ʤϷǤϡͤ 0 255 Τ줫˴ݤޤ
D argb_hexdata 2
3 image pixels
?plotting styles image pixels
?style image pixels
?with image pixels
?image pixels
?pixels
=heatmaps
ϷˤäƤϡ2 ĹΰǤβǡΡǥХ
饤֥˰¸Ŭ롼Ѥޤϡ֥ԥ
ʿ경Ԥäꡢåԥޤʤäꡢ郎礱ʤɡ˾
ޤʤϤ뤳ȤޤȤơSVG
Υ֥֥饦ˤʿ경ޤ
`pixels` ϡ 1 ԥ뤺褹褦ʰŪʥ
ɤѤ褦 gnuplot ˻ؼޤ⡼ɤǤϡ
礭ʽϥեޤɤνϷǤⶦŪʸܤ
Ƥޤϡä˥ԥξʤʬۿ (heatmap)
ǹޤǤ礦
:
plot 'data' with image pixels
2 impulses
?plotting styles impulses
?style impulses
?with impulses
?impulses
Ffigure_impulses
`impulses` ϡ2 Ǥ y=0 y ͤؤΡ3
Ǥ z=0 z ͤؤΡľʬɽޤy z
ͤͤǤ褤ȤդƤǡɲƿľʬ
οѤǤޤΥ 3 ǻѤ硢
(linewidth > 1) ѤȤŪǤ礦 3
դ˻Τˤʤޤ
1 : y
2 : x y # [x,0] [x,y] ؤ (2D)
3 : x y z # [x,y,0] [x,y,z] ؤ (3D)
2 labels
?plotting styles labels
?style labels
?with labels
?labels
Ffigure_labels1
`labels` ϡǡե뤫ɸʸɤ߹ߡʸ
2 ޤ 3 ɸ֤ޤϴŪ 3
ޤ 4 ϤɬפȤޤ;ʬϡʸβž
( `rotate variable`) ʸ (ʲ: `textcolor variable`)
Τ褦ʡư°ͤꤵ줿Ȥߤʤޤ
3 : x y string # 2
4 : x y z string # 3
եȡžѤ䤽¾ƥȤ°ɲåץȤ
ǽǤ (ʲ: `set label`)ϡϥե 1
äԤ̾ʸ4, 5 ܤäϿɸ
褷ޤեȥϡ3 ܤͤƤơξϤ
Ͽ̣Ƥޤ
CityName(String,Size) = sprintf("{/=%d %s}", Scale(Size), String)
plot 'cities.dat' using 5:4:(CityName(stringcolumn(1),$3)) with labels
եȥġλԤ̾Фưۤʤ륵˹碌ʤƤ
ʤСޥɤϤäȴñǤ:
plot 'cities.dat' using 5:4:1 with labels font "Times,8"
labels `hypertext` ĤƤ硢ʸϥޥб
ξ褿Ȥˤޤʲ: `hypertext`ξ
ϥѡƥȤ֤ȤƵǽ뤿ˤΥ٥
`point` °ͭˤɬפޤ:
plot 'cities.dat' using 5:4:1 with labels hypertext point pt 7
Ffigure_labels2
`points` Ǥ餫Ƥε椬ŬڤǤʤ
ϽʬǤʤ硢Ȥƥ `labels` ȤȤǤ
ޤ㤨СʲñʸȤȤ3 ܤΥǡ
ͤб뤽ΰĤդγ˳ƤǤ (: ʲΥ
ץ <UTF-8 ʸ> ʬˤϡݤ䢢ܡȥ
ʤɤ UTF-8 ʸ¤ǤޤܸȤξΩʤ
Ƥޤ):
set encoding utf8
symbol(z) = "<UTF-8 ʸ>"[int(z):int(z)]
splot 'file' using 1:2:(symbol($3)) with labels
ʲϡ4 ܤͤͤβžѤȤ5 ܤͤʸ ("tc") Ȥ
٥λǤͤοϡ `using` κǸ
뤳ȤդƤ
plot $Data using 1:2:3:4:5 with labels tc variable rotate variable
2 lines
?plotting styles lines
?style lines
?with lines
?lines
Ffigure_lines
`lines` ܤľʬǷӤޤ
ϡ2 Ǥ⡢3 ǤѤǤŪˤϡ1 2
3 ϥǡɬפȤޤ
;ʬϡοѹʤɤξ줿ΤȤƻѤ
(ʲ: `rgbcolor variable`)
2 ("using" ʤ) ξ
1 : y # ֹˤۤ x
2 : x y
3 ("using" ʤ) ξ
1 : z # x ϰۤιֹ桢y index
3 : x y z
ʲ⻲: `linetypes`, `linewidth`, `linestyle`
2 linespoints
?plotting styles linespoints
?style linespoints
?with linespoints
?style lp
?with lp
?linespoints
?lp
?pointinterval
?pointnumber
Ffigure_linespoints
`linespoints` (ά `lp`) ϡܤľʬ
ӡθǺǽäƳ˾ʵޤϡ
`set pointsize` ǷޤǥեȤ礭ޤplot ޥ
Υꤷꡢ뤤ϥǡɲǸ̤
ꤹ뤳ȤǤޤɲäϡ̤οʤɤξ
ΤˤȤޤʲ: `lines`, `points`
դΤ٤Ƥ˵ΰĤ뤫ݤ椹 2 ĤΥ
`pointinterval` (ά `pi`), `pointnumber` (ά `pn`) ޤ
`pi N` 뤤 `pi -N` ϡN 1 Ĥ֤褦 gnuplot
ؼޤͤꤹȡβʬʬäޤξ
ʬΥ `set pointintervalbox` Ǥޤ
`pn N` 뤤 `pn -N` ϡǡΤ N Ĥ٥դ褦
gnuplot ˻ؼޤϤΥǡΤϤäƶʴֳ֤˼ޤ
`pi` Ʊͤ͡ꤹȡβʬʬäޤ
2 ޥ (masking)
?plotting styles mask
?plot with mask
?with mask
?masking
襹 `with mask` ϡޥΰΤ˻Ȥޤ
ϡƱ `plot`, `splot` ޥɾǸǻꤷ pm3d ̤
ŬѤǤޤϥǡϡ1 ġޤʣ¿ѷĺ
[x,y] ɸޤ [x,y,z] ɸȤƲᤷޤ襹
`with polygons` Ʊͤˡ¿ѷ϶ԤʬΥޤޥ 3
襳ޥ (splot) ΰǤ硢Ϥˤ z ͤɬפǤ
ϸߤΤȤȤޤ
plot ޥɾ˥ޥ硢θƱޥɾ image
衢pm3d ̤ `mask` ɲä뤳Ȥǥޥޤ
ޥƤʤСΥɤ̵뤷ޤ
ʲϡνϤȤ pm3d ̤бΰ
ˡޤ
Ffigure_mask
^<p align="center"><picture>
^ <source srcset="figure_mask.webp" type="image/webp">
^ <img src="figure_mask.png" alt="figure_mask">
^ </picture><p>
set table $HULL
plot $POINTS using 1:2 convexhull
unset table
set view map
set multiplot layout 1,2
splot $POINTS using 1:2:3 with pm3d, \
$POINTS using 1:2:(0) nogrid with points
splot $HULL using 1:2:(0) with mask, \
$POINTS using 1:2:3 mask with pm3d
unset multiplot
ǽΥѥͥФ륳ޥ `splot` ϡ dgrid3d
ޥƤʤ̤褷θȤ褷ޤ2
ΥѥͥФ륳ޥ `splot` ϥޥ̤褷ޤޥ
(`with mask` Ǥ plot) Ϻǽ˹ԤʤФʤ餺Ŭ
pm3d ̤ϤθǤ뤳ȤդƤ (襹
`with pm3d` ˥ `mask` Ĥѹ)
Τ괰Ǥϡǥ⽸
^ <a href="http://www.gnuplot.info/demo/mask_pm3d.html">
mask_pm3d.dem
^ </a>
ˤޤ
ˤϼޤĤΥޥʣ¿ѷΰޤޤ
ޥޥɤϻʳǤܺ٤ϡΥѹ뤫
⤷ޤ
2 parallelaxes
Ffigure_parallel
?plotting styles parallelaxes
?plot with parallelaxes
?with parallelaxes
?parallelaxes
?parallel
ʿԺɸ (parallel axis plot, parallel coordinates plot ȤƤФ
) ϡ¿ǡؤвޤϥǡθġϡ
̡Υνļ˳ƤޤĤΥեΤ٤Ƥ
褹ϡդޤ 1 ܤΥեΥǡ 1 ʬ
ͤɽƤޤ
ʬषƿƤ뤳ȤϤ褯Ԥޤ
ϡʬȼȤδ֤δطŪĴ뤳Ȥǽˤޤ
:
set style data parallelaxes
plot $DATA using col1{:varcol1} {at <xpos>} {<line properties}, \
$DATA using col2, ...
`at` ǡʲ˸褦ˡʿԺɸ x ֤
Ū֤ǽˤʤäƤޤŪ x ɸ꤬ʤСN
ܤμ x=N ξ֤ޤ
array xpos[5] = [1, 5, 6, 7, 11, 12]
plot for [col=1:5] $DATA using col with parallelaxes at xpos[col]
ǥեȤǤϡgnuplot ϼưŪ˸ġμϰϡϥǡ
ꤷޤ̾ `set axis range` ޥɤˤäƤ
ޥ뤳ȤǽǤʲ: `set paxis`
2 ˺ɸ (Polar plots)
=polar
Ffigure_polar
˺ɸ (polar) ϡplot ޥɤϤ˸ߤκɸϤ˺ɸ
ѹ뤳Ȥˤäޤץ `set polar` ϡϤ
2 ɸ <x>,<y> <>,<Ⱦ> Ȳ᤹뤳Ȥ gnuplot
˻ؼޤ٤ƤǤϤʤǤ¿ 2 襹뤬˺ɸ
⡼ɤǤⵡǽޤޤϡ襹 `lines` `filledcurves`
Ȥ߹碌Ƥޤ(: ޤɽƤ) ʲ:
`set polar`, `set rrange`, `set size square`, `set theta`, `set ttics`
?polar heatmap
˺ɸǤβʬ_ޤϡ `with surface` `set polar grid`
碌ƻѤ뤳ȤǤޤ
Ffigure_polar_grid
set size square
set angle degrees
set rtics
set grid polar
set palette cubehelix negative gamma 0.8
set polar grid gauss kdensity scale 35
set polar grid theta [0:190]
plot DATA with surface, DATA with points pt 7
2 points
?plotting styles points
?style points
?with points
?points
?point type
?pointtype
Ffigure_points
`points` ϳ˾ʵɽޤ٤ƤεΥǥե
Ȥ礭ѹˤϥޥ `set pointsize` Ȥޤǥե
ȤϡƱΤˤʤޤʲ: `linetypes`plot
ޥɤ `using` ꤬ʤϡϥǡۤΤˡʲ
褦 `x y pointsize pointtype color` νDzᤷޤ
ǽ 8 Ĥϡ٤ƤνϷǶ̤Ǥ¿
̤˥ݡȤϷ⤢ޤߤνϷǤɤΤ褦
郎ѰդƤ뤫ˤϡޥ `test` ѤƤ
ޤΤ褦ˤơǤդΰǽʸֹ˻Ѥ
뤳ȤǤޤȤơǤդ UTF-8 ʸѤǤޤ (utf8
ݡȤƤɬפ)ʲ: `escape sequences`Ĺʸ
ϡ襹 `points` ǤϤʤ `labels` ȤнϤǤޤ
plot f(x) with points pt "#"
plot d(x) with points pt "\U+2299"
3 ° (variable point properties)
?points variable
?with points variable
=variable
?variable
?pointtype variable
?pointsize variable
(point) ޤ襹ǤϡץȤɲåǡ
`using` Ǽ뤳ȤǤθܤ椹뤳ȤǤޤ
ϡplot ޥɾǥ `pointtype`, `pointsize`, `linecolor`
Ȥݤˡֹ˥ `variable` ɲä뤳Ȥǻؼ
ޤ
襹 `with labels` Ǥ⡢ʸžѤ뤳ȤǤ
ޤ
:
# ϥǡϡ 1:2 [x,y] Ϳ
# Υ 5 ܤͿ
# RGB 4 ܤ 16 ʿͤȤͿ
# ٤Ƥ pointtype 7
plot DATA using 1:2:5:4 with points lc rgb variable ps variable pt 7
2 İʾβ (variable) °ꤹȡplot ޥΥ
ɤνȤ̵طˡʲνᤷޤ
textrotation : pointsize : pointtype : color
(ʸβž) : (Υ) : (μ) : ()
äơǤϡ"lc rgb variable" plot ޥɤκǽ˸Ƥ
ޤ `using` κǸ (4) ޤѿ (variable
color) ϡ˺Ǹɲޤѿꤹˤϡ
Ĥˡޤʲ: `colorspec`
: ֥桼ѿפ variable ˴ؤˤĤƤϡʲ
: `variables`
2 polygons
?plotting styles polygons
?style polygons
?with polygons
?polygons
2 :
plot DATA {using 1:2} with polygons
`plot with polygons` ϡ`plot with filledcurves closed` Ȥƽ
ޤ¿ѷζĶȤ褹ޤϡ
ΤκǽȺǸƱǤʤƤǤϡɤ٤
(fill style) ޤϥǡեˤϡñζԤǶ
ڤäʣ¿ѷ뤳ȤǽǤ¿ѷˤϡ3 ܤͤͿ
`lc variable` ꤹ (ͤ linetype Ȳ)
`lc rgb variable` ꤹ (ͤ 24 ӥå RGB Ȳ) Ȥǡ
̤οƤ뤳ȤǤޤ¿ѷκǽĺοͤΤߤ
Ѥޤ
3 :
splot DATA {using x:y:z} with polygons
{fillstyle <fillstyle spec>}
{fillcolor <colorspec>}
`splot with polygons` ϡ3 ֤θġλѷͳѷӤ
ʾ¿ѷ褹Τ pm3d Ѥޤ 3 ̤ΰ
̤ñȤηȤʤޤΥ롼ϡĺĤʿ̤˾äƤ
ʤФޤ
ġ¿ѷĺϡϥեϢ³Ԥɤ߹ߤޤ
Ԥ¿ѷƱΤʬΥޤ
ɤ٤ȿϡsplot ޥɾǻǤޤǤʤ
Ūɤ٤ `set style fill` Ѥޤpm3d
롼¤Τᡢ`set pm3d border` ˤĤζ뤬
٤Ƥ 3 ¿ѷŬѤޤ¤ϾǤ gnuplot
ϼǤ礦
¿ѷˤϡ4 ܤͤͿ `lc variable` ꤹ
(ͤ linetype Ȳ) `lc rgb variable` ꤹ (ͤ
24 ӥå RGB Ȳ) Ȥǡ̤οƤ뤳ȤǤޤ¿
ѷκǽĺοͤΤߤѤޤ
̤ˤϡpm3d ΥȽȸǥŬѤޤΤǡˡ
`set pm3d depthorder` Ȥ⤷줻
Ffigure_polygons
set xyplane at 0
set view equal xyz
unset border
unset tics
set pm3d depth
set pm3d border lc "black" lw 1.5
splot 'icosahedron.dat' with polygons \
fs transparent solid 0.8 fc bgnd
2 rgbalpha
?plotting styles rgbalpha
?style rgbalpha
?with rgbalpha
ʲ: `image`
2 rgbimage
?plotting styles rgbimage
?style rgbimage
?with rgbimage
ʲ: `image`
#TeX \newpage
2 (sectors)
?plotting styles sectors
?with sectors
?sectors
?windrose
Ffigure_sector_definition
2 襹 `with sectors` ϡϥǡ 1 ˰Ĥδľ
("sector") 褷ޤҤηϡǡͤȤ᤹ 4
ĤͤǷꤷޤҤδĤʬθǡͤɲûꤹ
ȤǤޤοɲȤƻꤹ뤳ȤǤޤ
襹ϡľɸǡޤ϶˺ɸ⡼ (`set polar`) θ
ǻѤǤޤ̳Ѥ濴Ѥñ̡ϡ`set angles`
`set theta` 椷ޤ
ǡ 1,2 ܤϡҤΰĤγѤ (theta) Ⱦ (r) Ǥ
#TeX \newline
ǡ 3,4 ܤϡҤ̤Ѱ (濴; sector_angle) Ⱦ
¤Ѱ (ư; annular_width) Ǥ
#TeX \newline
ǡ 5,6 ܤꤷϡ濴κɸ̣ (
եȤ [0,0])ľɸǤ [x,y]˺ɸ⡼ɤǤ [theta,r] Ȳ
ᤷޤ
:
plot DATA {using specifier} {units xy | units xx | units yy}
using
4 : azimuth radius sector_angle annular_width
5 : azimuth radius sector_angle annular_width color
6 : azimuth radius sector_angle annular_width center_x center_y
7 : azimuth radius sector_angle annular_width center_x center_y
color
x y 뤬ʤ硢x,y ɸδľΤγϱߤ
ϤʤʱߤȤʤäƸ뤳ȤդƤʤΥ
˴ؤʱ (ellipse) ƱȤߤѤơľγ
γ碌뤳ȤǤޤޥɥ饤 `units xx`
ɲäȡߤ x Υ x, y ξŬѤΤ
ҤޤƱͤˡ`units yy` ϡߤ y Υ x,y
ξŬѤΤ褦Ҥޤ
ʲ: `set isotropic`, `set style ellipse`
Ffigure_windrose
with sectors ǤϡľɸǤ襹Ǥ `boxes` (
(wind rose) οޤ)`boxxyerror` `image pixels` (`heatmaps`
) Ф˺ɸǤƱʤޤsector Ǥľ
ɸ⡼ɤǤΥե쥤ȤξΩ뤿ᡢĤΥվΰۤʤ
ʣΥդ֤뤳ȤǽǤ¾ζ˺ɸ⡼ɥ
եǤԲǽǤ
˼ƤΤϡsectors Ȥäۿ (wind rose)
Ǥ˺ɸʬۿޤޤ¾αȤƤϡ㡼ȡߥ
/ߴĥա ˺ɸǤΥǡФľΥ顼ܥå
Ǥ餹٤Ƥβù줿ϡ
^ <a href="http://www.gnuplot.info/demo/sectors.html">
sector Υǥ
^ </a>
֤Ƥޤ
2 spiderplot
?plotting styles spiderplot
?with spiderplot
?spiderplot
?radar chart
㥰 (spiderplot) ϡܼŪˡʿԺɸ (parallel axis)
ǡμľǤϤʤ;֤ΤǤϤ褯֥졼
㡼ȡ(`radar chart`) ȤƤФޤgnuplot Ǥϡ
ޥ `set spiderplot` dzΩɸϤǤκȤɬפȤʤޤ
гѺɸʿԼֹˤäưۤ˷ޤ뤳Ȥ `set polar`
˻Ƥޤܤ䡢٥դ֤ϡ`set paxis`
ǤޤΥΤʤϡ`set style spiderplot`
`set grid` plot ޥɤθġλǹԤޤ
ƥ㥰դϡǡǤϤʤԥǡб뤿ᡢ̾ˡ
Ǥ (key) ȥϰ̣ޤˡǤ
ȥʸäƤСʸб뼴Υ٥˻Ѥ
ϡ `set paxis n label "Foo"` ٤ƾޤ
˥ȥ֤ˤϡ̤ `keyentry` ޥɤѤ뤫
using `key(column)` ȤäϥեʸŸ
ˡȤޤ
ʲοޤϡ 5 ĤΥ㥰դǡ줾 5 Ĥħդ
ʣΤΤӤΤ˻Ȥޤ$DATA γƹԤϡվ˿
¿ѷޤ
Ffigure_spiderplot
$DATA << EOD
A B C D E F
George 15 75 20 43 90 50
Harriet 40 40 40 60 30 50
EOD
set spiderplot
set style spiderplot fs transparent solid 0.2 border
set for [p=1:5] paxis p range [0:100]
set for [p=2:5] paxis p tics format ""
set paxis 1 tics font ",9"
set for [p=1:5] paxis p label sprintf("Score %d",p)
set grid spiderplot
plot for [i=1:5] $DATA using i:key(1)
3 newspiderplot
?newspiderplot
?spiderplot newspiderplot
̾`with spiderplot` ˤ plot ޥɤͿǡθġ
ͤϡ1 Ĥ¿ѷФ뤽줾ĺбޤ1 ĤΥվ
ˡʣ¿ѷˤϡ `newspiderplot` ʬΥƻꤷ
ޤ
:
# ʲ 10 Ĥĺ 1 Ĥ¿ѷ
plot for [i=1:5] 'A' using i, for [j=1:5] 'B' using j
# ʲ 5 Ĥĺ 2 Ĥ¿ѷ
plot for [i=1:5] 'A' using i, newspiderplot, for [j=1:5] 'B' using j
2 steps
?plotting styles steps
?style steps
?with steps
?steps
Ffigure_steps
`steps` 2 ǤΤѲǽǤ 2 ܤʬ
礦Ĥʤޤ: 1 ܤ (x1,y1) (x2,y1) ޤǡ2 ܤ
(x2,y1) (x2,y2) ޤǡξϡ`lines` `points` Ф
ΤƱǤ`fsteps` `steps` ΰ㤤ϡ`fsteps` ϡޤ
y ˽Ƥ鼡 x ˽ΤФ`steps` x
˽Ƥ鼡 y ˽ޤȥ١饤Ǥ y=0 Ȥ
֤ΰɤ٤ˤϡ`fillsteps` ѤƤ
ʲ⻲
^ <a href="http://www.gnuplot.info/demo/steps.html">
steps ǥ⡣
^ </a>
2 surface
?plotting styles surface
?style surface
?with surface
襹 `with surface` ˤϡ2 ˡޤ
3 դǤϡ`with surface` Ͼ˶̤ޤ
3 ǡ礬ʻҽ (grid) ǧǤСgnuplot ϥǥե
Ǥϡ`with lines` `with surface` ФƱȤơʻҶ̤
ᤷΤ褦˰ۤ襹 `with lines` ǽޤ
ޥ `set surface explicit` Ϥνξ
`with surface` `with lines` ϰۤʤ륹ȤʤꡢƱ
Ѥ뤳ȤǤޤ
ʻȤǧʤ 3 硢ǽŬڤʳʻҤ˹碌
뤳ȤǽǤʲ: `set dgrid3d`
2 ˺ɸդǤϡ`with surface` ϡǡοɤʻɽ
Τ˻Ȥޤζ̤ϡޥ `set polar grid`
ޤ
2 vectors
?plotting styles vectors
?style vectors
?with vectors
?vectors
Ffigure_vectors
2 `vectors` (x,y) (x+xdelta,y+ydelta) ޤǤΥ
ȥޤ3 `vectors` ƱͤǤǡϴ
Ū 6 ɬפǤξ⡢ɲ (2D Ǥ 5 ܡ3D
Ǥ 7 ) ȡϳƥǡ variable color (ʲ
: `linecolor`, `rgbcolor variable`) ȤƻȤޤ
ƥ٥ȥüˤϾޤ
4 : x y xdelta ydelta
6 : x y z xdelta ydelta zdelta
"with vectors" ϡθˡarrow °ľܽ
ꡢ arrow Ȥꡢ뤤̤
ƥ٥ȥФŬѤ arrow Υǥåɤ褦
ꤷꤹ뤳ȤǤޤκǽ 3 ĤƤ
:
plot ... using 1:2:3:4 with vectors filled heads
plot ... using 1:2:3:4 with vectors arrowstyle 3
plot ... using 1:2:3:4:5 with vectors arrowstyle variable
splot 'file.dat' using 1:2:3:(1):(1):(1) with vectors filled head lw 2
: plot ޥ˥ `arrowstyle` ¾°ߤ
뤳ȤϤǤޤarrow `lc variable` `lc rgb variable`
硢ѤɲɬפǤ
vectors ȤäƤ splot `set mapping cartesian` Τߤǥ
ȤƤޤ
`set clip one` `set clip two` 2 Υ٥ȥ˱ƶͿ
ޤʲ: `set clip`, `arrowstyle`
2 襹ΰʲ⻲: `with arrows`ϡ
x:y:length:angle ηǻꤹʳ `with vectors` ƱǤ
#TeX \newpage
2 xerrorbars
?plotting styles xerrorbars
?style xerrorbars
?with xerrorbars
?xerrorbars
Ffigure_xerrorbars
`xerrorbars` 2 ΥǡΤߤѲǽǤ
`xerrorbars` ϡʿθؼ (error bar) ɽʳ
`points` ƱǤ (x,y) ˤ (xlow,y) (xhigh,y) ޤǡ
ޤ (x-xdelta,y) (x+xdelta,y) ޤǤʬޤ
ϤĤΥǡͿ뤫ˤäѤޤؼüι
ߤΰθܤϡ`set errorbars` Ǥޤ
ȸؼδ֤η֤ϡ`set pointintervalbox` 椷ޤ
ľ̤ˤϡ`unset pointintervalbox`
ѤƤ
ΥϴŪˡ3 4 ΥǡɬפǤ:
3 : x y xdelta
4 : x y xlow xhigh
ɲ (4,5 ) Ȥ variable color ȤƻȤޤ
ΥǤϡvariable point °ϻȤޤ
2 xyerrorbars
?plotting styles xyerrorbars
?style xyerrorbars
?with xyerrorbars
?xyerrorbars
Ffigure_xyerrorbars
`xyerrorbars` 2 ΥǡΤߤѲǽǤ
`xyerrorbars` ϡʿľθؼ (error bar) ɽʳ
`points` ƱǤ (x,y) ˤ (x,y-ydelta)
(x,y+ydelta) ޤǤ (x-xdelta,y) (x+xdelta,y) ޤǡޤ
(x,ylow) (x,yhigh) ޤǤ (xlow,y) (xhigh,y) ޤǤʬ
ޤϤĤΥǡͿ뤫ˤäѤޤ
ؼüιߤΰθܤϡ`set errorbars` Ǥޤ
ȸؼδ֤η֤ϡ`set pointintervalbox` 椷ޤ
ľ̤ˤϡ`unset pointintervalbox`
ѤƤ
4 6 ΥǡɬפǤ
4 : x y xdelta ydelta
6 : x y xlow xhigh ylow yhigh
ǡݡȤƤʤ緿ηͿ줿硢`plot`
ޥɤ `using` ȤäŬڤʷľʤȤޤ㤨Х
(x,y,xdelta,ylow,yhigh) ȤǤ硢ʲΤ褦ˤ
:
plot 'data' using 1:2:($1-$3):($1+$3):4:5 with xyerrorbars
ɲ (5,7 ) Ȥ variable color ȤƻȤޤ
ΥǤϡvariable point °ϻȤޤ
#TeX \newpage
2 xerrorlines
?plotting styles xerrorlines
?style xerrorlines
?with xerrorlines
?xerrorlines
Ffigure_xerrorlines
`xerrorlines` 2 ΥǡΤߤѲǽǤ
`xerrorlines` `linespoints` ˻Ƥޤʿθ
Ȥ㤤ޤ (x,y) ǡǡθĿ˱ (xlow,y)
(xhigh,y) ޤǡޤ (x-xdelta,y) (x+xdelta,y) ޤǤʬ
ޤüιߤΰθܤϡ`set errorbars` Ǥޤ
Ūˤϡ3 4 ΥǡɬפǤ:
3 : x y xdelta
4 : x y xlow xhigh
ɲ (4,5 ) Ȥ variable color ȤƻȤޤ
ΥǤϡvariable point °ϻȤޤ
2 xyerrorlines
?plotting styles xyerrorlines
?style xyerrorlines
?with xyerrorlines
?xyerrorlines
Ffigure_xyerrorlines
`xyerrorlines` 2 ΥǡΤߤѲǽǤ
`xyerrorlines` `linespoints` ˻Ƥޤʿȿľθ
뤳Ȥ㤤ޤ (x,y) ǡǡθĿ˱ơ
(x,y-ydelta) (x,y+ydelta) ޤǤ (x-xdelta,y) (x+xdelta,y)
ޤǡ뤤 (x,ylow) (x,yhigh) ޤǤ (xlow,y) (xhigh,y)
ޤǤʬޤüιߤΰθܤϡ`set errorbars`
Ǥޤϡ4 6 ϥǡɬפǤ
4 : x y xdelta ydelta
6 : x y xlow xhigh ylow yhigh
ǡݡȤƤʤ緿ηͿ줿硢`plot`
ޥɤ `using` ȤäŬڤʷľʤȤޤ㤨Х
(x,y,xdelta,ylow,yhigh) ȤǤ硢ʲΤ褦ˤ
:
plot 'data' using 1:2:($1-$3):($1+$3):4:5 with xyerrorlines
ɲ (5,7 ) Ȥ variable color ȤƻȤޤ
ΥǤϡvariable point °ϻȤޤ
2 yerrorbars
?plotting styles yerrorbars
?plotting styles errorbars
?style yerrorbars
?with yerrorbars
?style errorbars
?with errorbars
?yerrorbars
=errorbars
Ffigure_yerrorbars
`yerrorbars` (ޤ `errorbars`) 2 ΥǡΤߤ
ѲǽǤ`yerrorbars` ϡľθؼ (error bar) ɽ
ʳ `points` ˻Ƥޤ (x,y) ˤ (x,y-ydelta)
(x,y+ydelta) ޤǡޤ (x,ylow) (x,yhigh) ޤǤʬ
ϤĤΥǡͿ뤫ˤäѤޤ
üιߤΰθܤϡ`set errorbars` Ǥޤȸ
Ȥη֤ `set pointintervalbox` 椷ޤľ
̤ˤϡ`unset pointintervalbox` ѤƤ
2 : [ۤ x] y ydelta
3 : x y ydelta
4 : x y ylow yhigh
ɲäȡϲ (variable) pointsize, pointtype,
ѿ (variable color) ξȤƻȤޤ
ʲ⻲
^ <a href="http://www.gnuplot.info/demo/mgr.html">
errorbar ǥ⡣
^ </a>
2 yerrorlines
?plotting styles yerrorlines
?plotting styles errorlines
?style yerrorlines
?with yerrorlines
?style errorlines
?with errorlines
?yerrorlines
?errorlines
Ffigure_yerrorlines
`yerrorlines` (ޤ `errorlines`) 2 ΥǡΤ
ѲǽǤ`yerrorlines` `linespoints` ˻Ƥޤľ
뤳Ȥ㤤ޤ (x,y) ǡǡθĿ˱
(x,y-ydelta) (x,y+ydelta) ޤǡޤ (x,ylow) (x,yhigh)
ޤǤʬޤüιߤΰθܤϡ
`set errorbars` Ǥޤϡ3 4 ϤɬפǤ
3 : x y ydelta
4 : x y ylow yhigh
ɲ (4,5 ) ȡ variable color Ȥ
Ȥޤ
ʤϡvariable point size, variable point type, variable
color ξȤƻȤޤ
ʲ⻲
^ <a href="http://www.gnuplot.info/demo/mgr.html">
顼СΥǥ
^ </a>
#TeX \newpage
2 3 (3D plots)
?3D plots
?plotting styles 3D plots
=3D
3 դϡޥ `plot` ǤϤʤޥ `splot` Ȥä
ޤ¿ 2 襹 (points, images, impulse, labels,
vectors) ϡz ɸǡɲûꤹ 3 ǤȤޤ2
ͱƥդΤߤߤǤ⡢`splot` ޥɤȤäʤ
ʤ跿 (pm3d coloring, surfaces, contours) ˤϤޤ
3 (surface plots)
?surface plots
=surface
Ffigure_surface+contours
襹 `splot with lines` `splot with surface` Ϥ
ʻޤ̤ɤ٤ϡ `splot with pm3d`
ԤȤǤޤ̤̾줬 3 ζ̤ǤȤϤä
褦Ŭڤʻɽޤʲ: `set view`
ξ硢X, Y, Z Ϥ٤ɽޤ3 ŪʺФϡ
ˤꡢޤʲ: `hidden3d`
ޥ `splot` ϡ Z ͤФ褹뤳Ȥ
ޤϡ̤켫Τξ˽ȤǤޤXY
ʿ̤ؼͱƤ뤳ȤǤޤʲ: `set contour`
3 2 ͱ (set view map)
?2D projection (set view map)
Ffigure_mapcontours
ޥ `splot` ̤ʾȤơդ Z ˱ä xy ʿ̤ؤ
ͱƤˤ롢Z ɸ 2 ̤ؤϿ (map) ޤʲ:
`set view map`⡼ɤϡ䲹ʬ (heatmap)
Ǥ礦ʲοޤ襹 `lines` ١`labels`
褷Ƥޤ (: ޤɽƤ)
3 PM3D (PM3D plots)
?PM3D PLOTS
Ffigure_pm3dsolid
3 ̤ϡʬǤʤñ pm3d շȤä褹뤳ȤǤ
ޤξ硢̽ϤޤǤطʤ̤˸
ȤƱͤθ̤ޤʲ: `set pm3d depthorder`
pm3d ̤ϡǥեȤǤϳ餫Ϣ³Ūʥ顼ѥåȤȤäƿ
ޤ (ʲ: `set palette`) ñζ̤ꤹ뤳ȤǤ
ޤοޤˤ褦 (: ޤɽƤ)̤Ȳ
̤˰ۤʤñꤹ뤳ȤǤޤʲ: `pm3d fillcolor`
hidden3d ⡼ɤǤʬڤȤϰ㤤pm3d ̤ϸߤ zrange
ϰϤ˳餫˥åԥǤޤʲ: `set pm3d clipping`
#TeX \newpage
2 (Fence plots)
?fenceplots
=zerrorfill
Ffigure_fenceplot
(fence plot) ϡʣ 2 դ Y ɸ·
줾̤뤿 X ˱äƤϤ餷Ƿ礷ΤǤ
ͤġΥդ Z ɸޤǤδ֤ΰɤ٤ȤǡY
Z ɸι⤵ΰ㤤θܤĴޤgnuplot ǤηΥ
դˤϤĤˡޤǤñʤΤϡ5 η
`zerrorfill` ѤˡǤi ź줿ʣζ z
= Fi(y) Ȥ`splot with zerrorfill` ǰʲΤ褦Ȥ
кդȤǤޤ:
i y z_base z_base Fi(y)
2 ܥǡΥ⥶ (isosurface)
?plotting styles isosurface
?style isosurface
?with isosurface
?isosurface
Ffigure_isosurface
3 襹ˤϡͤäƤܥʻҥǡɬפ
(ʲ: `set vgrid`, `vfill`)᤹ͥ٥б
ʻҺɸɾݤϡܥʻ֤ͤѤޤ
ϡ⥶̤Τ˻Ѥޤζ̤Ҥϡ
`set pm3d` ǿƩᡢ°ʤɤǤ褦 pm3d ¿ѷȤ
褷ޤ̤ˡζ̤ϡҤ٤Ϳ졢ζ
ɤ٤οŤǤСܤ狼䤹ʤޤǥ
ȤǤϡ⥶̤ϻͳѷȻѷƻȤޤѷ
ߤȤϡʲ: `set isosurface`
:
set style fill solid 0.3
set pm3d depthorder border lc "blue" lw 0.2
splot $helix with isosurface level 10 fc "cyan"
2 3 Ǥζ֤ɤ٤ (Zerrorfill)
?plotting styles zerrorfill
?style zerrorfill
?with zerrorfill
?zerrorfill
:
splot DATA using 1:2:3:4[:5] with zerrorfill {fc|fillcolor <colorspec>}
{lt|linetype <n>} {<line properties>}
襹 `zerrorfill` ϡ2 襹ΰĤѼΤ褦
ΤǤϡ2 Ĥδؿδ֡ޤƱ x, y Ф 2 Ĥ z
ͤͿǡޤδ֤ΰɤ٤ޤϡ
4 5 ϤɬפǤ
4 : x y z zdelta
5 : x y z zlow zhigh
Ffigure_zerror
zlow zhigh δ֤ΰɤ٤θ z ͤΤȤ
ǥեȤǤϡɤ٤ˤƱȤޤο
splot ޥɾѹǤޤɤ٤ϡŪ fill style
αƶޤʲ `set style fill`
splot ޥɤʣζꤷϡΤ
ƤζƤޤǽޤ¦μζΤߤ
褦Ŭڤʿ¤٤Ԥˤϡ`set pm3d depthorder base`
ѤƤǰʤ顢 z ͤб뤹٤Ƥޤ
ˡ٤Ƥΰɤ٤Ԥޤäơޤ
ˤơΰɤ٤ο¤٤Ԥˤϡΰɤ
ʬŪƩ (transparent) 뤫ñɤ (solid fill)
˥ѥɤ (pattern fill) ѤȤ⤷ޤ
ʲκǽ 2 Ĥɤ٤ΰϡƱΤˤʤޤ
splot 'data' using 1:2:3:4 with zerrorfill fillcolor "grey" lt black
splot 'data' using 1:2:3:($3-$4):($3+$4) with zerrorfill
splot '+' using 1:(const):(func1($1)):(func2($1)) with zerrorfill
splot for [k=1:5] datafile[k] with zerrorfill lt black fc lt (k+1)
襹ϡ (fence plot) ΤˤȤޤ
ʲ: `fenceplots`
2 ˥ (Animation)
?animation
gnuplot ÷Ϸ (qt, win, wxt, x11, aqua) ǤϤ⡢
ɥ饤䥹ץȤϢ³ե졼ԤȤǥ˥
ɽ뤳ȤǤޤ
ޥȤʤϷǤ⡢Υ˥ݡȤ
ޤʲ: `term sixelgd`, `term kittycairo`
˥եȤ¸ơǼ긵Ǻ Web ڡ
ǤϷ 2 Ĥޤʲ:
`term gif animate`, `term webp`
^ <p align="center">
^ <picture>
^ <source srcset="figure_spinning_d20.webp" type="image/webp">
^ <img src="figure_static_d20.png">
^ </picture>
:
unset border; unset tics; unset key; set view equal xyz
set pm3d border linecolor "black"
set term webp animate delay 50
set output 'spinning_d20.webp'
do for [ang=1:360:2] {
set view 60, ang
splot 'icosahedron.dat' with polygons fc "gold"
}
unset output
1 ޥ (Commands)
?commands
ΥǤ `gnuplot` դ륳ޥɤե٥åȽ
¤٤ƤޤΥɥȤ˰ΤƤΥޥɤޤ
Ǥޤ÷ǻȤǤɥȤϴǤϤʤǽ
ޤºݡθФβ˲Υޥɤɽʤƥब
ޤ
ۤȤɤξ硢ޥ̾ȤΥץϡʶ路ʤϰϤǾά
뤳ȤǽǤʤ"`plot f(x) with lines`"
"`p f(x) w li`" Ȥ뤳ȤǤޤ
εҤˤơ楫å ({}) ɲûǤ̣
(|) ϸߤ¾ŪʰڤΤȤޤ
2 Break
?commands break
?break
ޥ `break` ϡ`do`, `while` ʸη֤¹ʬΥåǤ
̣߰ޤΥޥɤϡ楫åλĤ̿å
֤ǤĤåμʸ¹ԤƳޤʲ
⻲: `continue`
2 cd
?commands cd
?cd
`cd` ޥɤϥȥǥ쥯ȥѹޤ
:
cd '<ǥ쥯ȥ̾>'
ǥ쥯ȥ̾ϰ˰ϤޤƤʤФʤޤ
:
cd 'subdir'
cd '..'
Хåå (\) Ű (") Ǥ̤ʰ̣äƤޤ
˥פɬפޤΤǡWindows 桼ˤñ
Ȥޤ㤨С
cd "c:\newdata"
ǤϼԤޤ
cd 'c:\newdata'
cd "c:\\newdata"
ʤ̤ưǤ礦
2 call
?commands call
?call
`call` ޥɤϡɤ߹ե̾θˡ9 ĤޤǤΥѥ
Ϳ뤳ȤǤ뤳Ȥ `load` ޥɤǤ
call "inputfile" <param-1> <param-2> <param-3> ... <param-9>
ߤ gnuplot ϡʸѿ ARG0, ARG1, ..., ARG9 ȡѿ ARGC
ޤ`call` ޥɤ¹ԤȡARG0 ˤϥե̾
ARGC ˤϥѥꤵ졢ARG1 ARG9 ˤϥޥɥ饤
٤줿ѥͤɤ߹ޤޤ
̾ѥ ARG1 ... ARG9 ʸͤȤ¸Τǡ
ŸƻȤ뤳ȤǤޤ¿ξ硢¾
ƱͤѤ꼫Ǥ礦
ѥ ARG1 ... ARG9 ʸɽʿԤơΥѥȤ
ARGV[9] ˤ¸ޤʲ: `ARGV`
侩: 5.0 ΥСǤϡ<param-1> ... Ƥ̤ʵ
$0, $1, ..., $9 ޥΤ褦ִ뤳ȤɽƤޤθ
ȤߤϡϤ䥵ݡȤƤޤ
ʳ: ؿ֥å (ΥСοǽ) ϡ`call`
ʵǽޤʲ: `function blocks`
3 ARGV[ ]
?argv
?ARGV
?call argv
?call ARGV
`call` ޥɤˤ gnuplot ץȤä硢ƤӽФ¦
ѥϡ2 ĤλȤߤѤǤޤƥѥϡޤʸ
ѿ ARG1, ARG2, ... ARG9 ¸ޤˤ ARGV[9]
γǤȤƤ¸ޤϡͤʣѿͤȤ¸ޤ
ʳϤ٤ʸȤ¸ޤARGC ϥѥθĿ
ݻޤäơʲ call ˤ
call 'routine_1.gp' 1 pi "title"
ʲ 3 Ĥΰ routine_1.gp ǰʲͤȤѤǤޤ:
ARGC = 3
ARG1 = "1" ARGV[1] = 1.0
ARG2 = "3.14159" ARGV[2] = 3.14159265358979...
ARG3 = "title" ARGV[3] = "title"
ǤϡARGV[1] ARGV[2] ϲǽʸ¤٤ưͤȤ
ޤARG2 Ͻ "%g" ˤʸȤ¸뤿٤
Ƥޤ
ARGC Ȥб ARGV[ARGC] ϴؿ֥åƤӽФǤ
ѲǽǤؿ֥åƤӽФǤϡʸѿ ARG1,...
ޤ
3 (Example)
?call example
?commands call example
ʲ call :
MYFILE = "script1.gp"
FUNC = "sin(x)"
call MYFILE FUNC 1.23 "This is a plot title"
ƤӽФ줿ץǤϰʲΤ褦ˤʤ:
ARG0 "script1.gp"
ARG1 ʸ "sin(x)"
ARG2 ʸ "1.23"
ARG3 ʸ "This is a plot title"
ARGC 3
ΥץǤϰʲΤ褦ʤΤ¹ԤǤ:
plot @ARG1 with lines title ARG3
print ARG2 * 4.56, @ARG2 * 4.56
print "This plot produced by script ", ARG0
ARG1 ʸʤΤǡϥޥȤƻȤʤФޤ
ARG2 ϥޥȤǤ (ˤʤ)ѿΤޤޤǤ (ʸ
"1.23" ¿ͤ˼ưŪѴ줿Ʊͤˤʤ) ʤȤ
դƤ
륹ץȤ gnuplot ޥɥ饤ץ `-c` ĤǼ¹
뤳ȤǡƱȤľܹԤȤǤޤ:
gnuplot -persist -c "script1.gp" "sin(x)" 1.23 "This is a plot title"
2 clear
?commands clear
?clear
=inset
?inset
`clear` ޥɤϡ`set terminal` `set output` ̡
֤ꥢޤϡɥԡ֤ФƤ̾ڡԤޤ
Ĥν֤ `clear` ޥɤǤ `set size` 줿
ΰΤߤõޤΤᡢ`set multiplot` ȤȤ˻Ѥ뤳Ȥ
ޤĺ뤳ȤǤޤ
:
set multiplot
plot sin(x)
set origin 0.5,0.5
set size 0.4,0.4
clear
plot cos(x)
unset multiplot
ܺ٤ˤĤƤϡʲ: `set multiplot`, `set size`, `set origin`
2 Continue
?commands continue
?continue
ޥ `continue` ϡ`do`, `while` ʸη֤¹ʬΥå
Τ̣߰ޤΥޥɤϡ楫åλĤ̿
פη֤˿ʤߤޤ (⤷롼פλĤ꤬)ʲ⻲:
`break`
2 Do
?commands do
?do
:
do for <iteration-spec> {
<commands>
<commands>
}
ϡޥʣ¹Ԥޤޥɤ楫å {} ǰϤߡ
ijϥå "{" ϡ `do` ƱԤ֤ɬפޤ
ΥޥɤϡŤ (äʤ) if/else ʸȰ˻ȤȤ
Ǥޤ֤ <iteration-spec> ˤĤƤϡʲ:
`iteration`:
set multiplot layout 2,2
do for [name in "A B C D"] {
filename = name . ".dat"
set title sprintf("Condition %s",name)
plot filename title name
}
unset multiplot
ʲ⻲: `while`, `continue`, `break`
2 evaluate
?commands evaluate
?evaluate
ޥ `evaluate` ϡʸޤϴؿ֥å˴ޤޤ gnuplot
ޥɤ¹Ԥޤʸ˲ʸƤϤޤ
evaluate "commands in a string constant"
evaluate string_valued_function( ... arguments ... )
evaluate $functionblock( ... arguments ... )
ϡäƱͤΥޥɤη֤ͭѤǤ
:
set_label(x, y, text) \
= sprintf("set label '%s' at %f, %f point pt 5", text, x, y)
eval set_label(1., 1., 'one/one')
eval set_label(2., 1., 'two/one')
eval set_label(1., 2., 'one/two')
gnuplot ޥɤʸ¹Ԥ¾λȤߤˤĤƤϡ
ʲ: `function blocks`, `substitution macros`
2 exit
?commands exit
?exit
exit
exit message "顼åʸ"
exit status <Υ顼>
`exit` `quit` ξޥɤ END-OF-FILE ʸ (̾ Ctrl-D) Ʊ͡
ߤϥȥࡢʤüäѥϡե (
) Ϥλޤϥȥब (Ū
`load` ΥץȤ) ˤʤäƤ硢ɤ߹ߤϿƤΥȥǷ
³ޤȥåץ٥ΥȥबĤȡץϤ켫
Ƚλޤ
ޥ `exit gnuplot` ϡľˡ̵ˡ㤨ϥȥ
¿ʳ˥ͥȤƤƤ⡢gnuplot λޤξ硢
ƤƤνϥեϤ줤˴ʷǤĤʤǽ
ޤ:
bind "ctrl-x" "unset output; exit gnuplot"
ޥ `exit error "error message"` ϡץ२顼Ԥ
÷⡼ɤǤϡΥ顼åɽ٤ΥͥȤ줿
롼פ call Ǥƥޥɥ饤˵ޤ÷⡼ɤǤϡ
ץλޤ
gnuplot λ硢֤ͤϰ̣ΤʤΤˤ
뤳ȤޤΥޥɤʲΤ褦˼¹ԤС
֤ͤȤǽǤ
exit status <value>
ܺ٤ϡʲ: `batch/interactive`
2 fit
?commands fit
?fit
?least-squares
?Marquardt
ޥ `fit` ϡMarquardt-Levenberg ˡˤǾˡ (NLLS)
Ѥơǡν˥桼Ϳ뼰ƤϤޤΩѿ
12 ޤǵƤơ°ѿϾ 1 ĤǡǤոĿΥѥ
Ϥ뤳ȤǤޤɲäǡǡνŤդѤ˸ɾ
Ϥ뤳ȤǽǤ
`fit` κǤŪʻˡϡʲñ㤬Ƥޤǡ
뤫ɤ߹ x y η¬ (measured) νϡؿ y = f(x)
Υǥ벽˻Ȥޤ
f(x) = a + b*x + c*x**2
fit f(x) 'measured.dat' using 1:2 via a,b,c
plot 'measured.dat' u 1:2, f(x)
:
fit {<ranges>} <expression>
'<datafile>' {datafile-modifiers}
{{unitweights} | {y|xy|z}error | errors <var1>{,<var2>,...}}
via '<parameter file>' | <var1>{,<var2>,...}
ϰ (xrange, yrange ) ϡƤϤ˻Ѥǡ¤Ū
ȤȤǤϰϤĶǡ̵뤷ޤν `plot`
ޥƱ
[{dummy_variable=}{<min>}{:<max>}],
Ǥʲ: `plot ranges`
<expression> ϡ̾Ϥ餫桼줿 f(x) ޤ f(x,y)
ηδؿǤ`gnuplot` ͭʤɤʿǤǤޤ
¿ʹؿǤʤФޤ
Ωѿ̾ϡޥ `set dummy` ꤹ뤫fit ϰϻ
ʬ (<rangse>) ꤷޤ (ʲ)ǥեȤǤϡǽ 2 Ĥ
x, y Ȥʤޤ
ˡοϡƤϤκȤˤꤹͤ 1 İʾ
(ѥ) ˰¸٤Ǥ
<datafile> `plot` ޥɤƱͤ˰ޤ`plot datafile` ν
(`using`, `every`,...) ϡ`smooth` ơ `fit` ˻Ȥ
ȤǤޤʲ: `plot datafile`
ǡեƤϡplot ޥɤ˻ѤΤƱ `using`
ȤȤǽ˲ᤵ뤳ȤǤޤ㤨СΩѿ x 2
3 ܤ¤Ȥz ͤ 6 ܤꡢŤߤ 1 Ȥ
ϰʲΤ褦ˤޤ:
fit ... using ($2+$3):6
`using` ꤬ʤ硢fit ϰۤΩѿ 1 ĤȲꤷޤ
ե뼫ȡޤ using ꤬ 1 Υǡľ硢ι
ΩѿͤȤƻѤޤ
`using` Ϳ硢 12 (ꤷƥѥ뤷ƤФ
ˤʾ) ΩѿѤǤޤ
ץ `unitweights` (줬ǥե) ϡ٤ƤΥǡ
ŤߤĤȤߤʤޤϡ `error` Ѥ뤳Ȥ
ѹǤϥǡե뤫 1 İʾѿθɾɤ߹ߡ
θɾбѿͤɸк s Ȥߤʤƥǡ 1/s**2
νŤߤΤ˻Ѥޤ
ΩѿθɾˤơνŤߤˤϡ"ͭʬˡ" (effective
variance method; Jay Orear, Am. J. Phys., Vol. 50, 1982) ˽äơ
ƤϤؿʬޤ
`errors` ˤϡθˡϤɤѿθǤΤ
ڤ 1 İʾѿ̾ΥꥹȤդޤ°ѿ z Ͼ
ˤˤʤФޤΩѿɬܤǤϤޤ
ΥꥹȤγѿФե뤫餽ʬΡѿθɾ
ɲäɤ߹ߤޤ֤ˤʤޤ`using` ˤ
ǽˤʤޤ
äơΩѿοϰۤˡ`using` ο 1
(°ѿʬ) `errors` ѿθĿˤʤ뤳Ȥ
դƤ
Ȥơ2 ĤΩѿꡢ 1 ܤΩѿȽ°ѿθ
ǡϡ`errors x,z` 5 `using` Ȥ
Ȥˤʤޤ x:y:z:sx:sz Τ褦˲ᤵޤ (x, y Ω
z °ѿsx, sz x, z ɸк)
`errors` ΤäȤάˡ 2,3 ѰդƤޤ:
`yerrors` (Ωѿ 1 ƤϤ)
`zerrors` (̤ξ) ϡ `errors z` Ʊͤǡ1
ɲäν°ѿѤθ뤳Ȥ̣Ƥޤ
`xyerrors` ϡΩѿ 1 ǡΩѿȽ°ѿξ 2
θɲä뤳Ȥ̣ޤξ硢x y θ Orear
ͭʬˡ (effective variance method) ǽޤ
`yerror` `xyerror` ηӲϡ줾 2 襹
`yerrorlines` `xyerrorlines` ƱǤ뤳ȤդƤ
ޥ `set fit v4` Ѥȡfit Υޥɽ `gnuplot`
4 ȸߴνˤʤޤξ硢`using` ˤϡΩѿ
2 İʾʤСΩѿο 2 (z s) ¿꤬ɬפǡ
`gnuplot` ϡ`using` Ϳ줿ο˱ơʲν˽
ޤ:
z # Ωѿ 1 (ֹ)
x:z # Ωѿ 1 ( 1 )
x:z:s # Ωѿ 1 ( 3 )
x:y:z:s # Ωѿ 2 ( 4 )
x1:x2:x3:z:s # Ωѿ 3 ( 5 )
x1:x2:x3:...:xN:z:s # Ωѿ N ( N+2 )
ϡ2 İʾΩѿ fit 硢z- s Ϳɬפ
뤳Ȥ̣뤳ȤդƤŤߤ 1 ˤϡ
㤨 x:y:z:(1) Τ褦ʽ using ˻ꤹ뤳ȤŪͿ
ɬפޤ
ѿ̾ϡǾҲ𤹤褦ϰϻǻꤹ뤳ȤѹǤޤ
ϰϤ `using` κǽΤΤбʲƱͤǤ°ѿ
z ϰϻǤޤϡf(x,...) ͤϰϳˤ
ޤ褦ʥǡĺǾ뤳ȤˤϴͿʤͭ
ʣΥǡʣ 1 ѿؿƱƤϤ뤳Ȥ⡢y '
ѿ' ȤвǽǤ㤨ХǡֹȤ2 ѿؿؤƤ
ᡢȤФǤ礦ʲ: `fit multi-branch`
`via` ҤϡѥκŬľܹԤޤϥѥե
Ȥ뤳ȤˤäƹԤꤷޤ
:
f(x) = a*x**2 + b*x + c
g(x,y) = a*x**2 + b*y**2 + c*x*y
set fit limit 1e-6
fit f(x) 'measured.dat' via 'start.par'
fit f(x) 'measured.dat' using 3:($7-5) via 'start.par'
fit f(x) './data/trash.dat' using 1:2:3 yerror via a, b, c
fit g(x,y) 'surface.dat' using 1:2:3 via a, b, c
fit a0 + a1*x/(1 + a2*x/(1 + a3*x)) 'measured.dat' via a0,a1,a2,a3
fit a*x + b*y 'surface.dat' using 1:2:3 via a,b
fit [*:*][yaks=*:*] a*x+b*yaks 'surface.dat' u 1:2:3 via a,b
fit [][][t=*:*] a*x + b*y + c*t 'foo.dat' using 1:2:3:4 via a,b,c
set dummy x1, x2, x3, x4, x5
h(x1,x2,x3,x4,s5) = a*x1 + b*x2 + c*x3 + d*x4 + e*x5
fit h(x1,x2,x3,x4,x5) 'foo.dat' using 1:2:3:4:5:6 via a,b,c,d,e
ȿθġΥƥåפθǡƤϤθߤξ֤ˤĤƤξܺ٤ʾ
̤ɽޤǽȺǸξ֤˴ؤƱ "fit.log"
ȤեˤФޤΥեƤϤ
äʤ褦˾ɲäƤޤ˾ʤ뤤
̾ˤǤޤޥ `set fit logfile` Ȥäƥե̾
ѹ뤳ȤǤޤ
`set fit errorvariables` Ѥ硢ƤϤѥθ
ΥѥȻ̾ ("_err" ɲä줿̾) ѿ¸
ΤǡθθηϤȤƻѤ뤳ȤǤޤ
`set fit prescale` Ȥ硢ƤϤѥνͤ
饹ѴޤˤꡢġΥѥ礭ˤʤ㤤
褦ʾǤ⡢Marquardt-Levenberg 롼꿮
Τͤ˼«褦ˤʤޤ
ƤϤȿ Ctrl-C (wgnuplot Ǥ Ctrl-Break) ȤǤ
ޤߤȿ˽λ塢ʲΤ줫֤ȤǤ
:
(1) ƤϤߤƸߤΥѥͤѤ
(2) ƤϤ³Ԥ
(3) `set fit script` Ķѿ `FIT_SCRIPT` ǻꤷ `gnuplot`
ޥɤ¹Ԥ롣ΥǥեȤ `replot` ǡ⤷ǡƤϤ
ĤΥդˤ餫褷ƤСߤƤϤξ֤ɽ
뤳ȤǤޤ
`fit` λϡǸΥѥͤ¸Τ `save fit`
ޥɤȤޤͤϺƤӥѥͤȤƻȤȤǤޤ
ܺ٤ϡʲ: `save fit`
3 ѥĴ (adjustable parameters)
?commands fit parameters
?fit parameters
?commands fit adjustable_parameters
?fit adjustable_parameters
?fit_parameters
`via` ϥѥĴ᤹뤿 2 ĤˡǤޤĤ
ޥɥ饤ľܻؼΤǡ⤦Ĥϥѥե
ȤƴŪ˹ԤΤǤ 2 ĤϽͤǰäˡ
ޤ
Ĵѥϡ`via` ɤθ˥ޤǶڤ줿ѿ̾
ΥꥹȤȤǻǤޤƤʤѿϽ 1.0
ƺޤƤϤϡѿνͤ餫Ŭڤͤ
ꤵƤ¿ʬ®«Ǥ礦
ѥեϸġΥѥ̤ 1 Ԥ˰Ĥġͤ
Τ褦ʷǻꤷƽޤ
ѿ̾ =
'#' ǻϤޤ륳ȹԤԤޤ̤ʷȤ
ѿ̾ = # FIXED
ϡѿꤵ줿ѥǤ뤳Ȥ̣ϤΥե
ǽޤĴϤޤϡ`fit` ǥݡȤ
ѿǡɤ줬ꤵ줿ѿǤ뤫ΤͭѤǤ礦
`# FIXED` ȸɤϸ̩ˤηǤʤƤϤʤޤ
3 fit γά (fit beginners_guide)
?commands fit beginners_guide
?fit beginners_guide
?fit guide
?fitting
`fit` ϡͿ줿ǡͿ줿桼ؿˤäȤɤ
ƤϤ褦ʥѥĤΤ˻ȤޤƤϤϡ
ƱǤϥǡȴؿͤȤμ뤤ϻĺ (SSR:Sum
of the Squared Residuals) ¤Ƚꤵޤ̤̾()
ȸƤФޤΥ르ꥺ SSR Ǿ뤳Ȥ褦
ޤ⤦ܤȡǡνŤߤĤĺμ (WSSR)
κǾԤäƤޤǡĺϡ褹ϥǡ
ŤߤŤޤܺ٤ϡʲ: `fit error_estimates`
줬() ǾƤϤˡȸƤФ椨Ǥ``
̣ƤΤ뤿Ҳ𤷤ޤˤĤ
ˤĤƽҤ٤ƤޤǤϴñΤᡢ1 ѿΥ桼
ؿ z=f(x), 2 ѿδؿ z=f(x,y) Τ褦ˤ⽾°ѿ
z Ѥ뤳ȤˤޤѥȤ `fit` ĴŬڤͤ
ꤹ桼ѿǡؿ̤οǤǸ
/Ȥϡ°ѿ z `fit` ĴѥȤδط
ΤǤꡢz Ωѿ x (ޤ x y) ȤδطΤȤǤϤ
ޤ (Ū˽Ҥ٤ȡǾǤϡƤϤؿΥѥ
ˤ 2 (ƹ˹ⳬ) Ƴؿ 0ȤȤˤʤޤ)
ǾˡǤϡ桼ؿñʴؿ¤Ǥꡢ줾ϰ
ĤΥѥܤ¾Υѥޤޤʤˤʤޤ
ˡǤϡʣʴؿѥʻȤޤ
աꥨκǾˡΰ㤤ɽĤǤա
ǤϰĤι
z=a*sin(c*x) + b*cos(c*x).
Τ褦ɽޤ⤷a b ̤Τʥѥ c Ȥ
ѥɾǾˤʤޤc ̤Τʥѥ
ʤФˤʤޤ
ξ硢ѥͤŪñľˡˤäƷ
ޤ'gnuplot' Ѥȿˡϡ̤ξޤ
ơŪȤǤޤ`fit` ϸԤ
ȤǺǾͤõȤޤȿγƥƥåפϡѥοͤ
ȤФ WSSR ޤMarquardt-Levenberg Υ르ꥺϼ
ƥåפΥѥͤޤƤϤ餫Ϳࡢ
ʤ(1) ƤϤ "«" (WSSR и³ͤ꾮
ʤä硣ʲ: `set fit limit`)ޤ (2) 餫
줿ȿθ³ã (ʲ: `set fit maxiter`)Τ
ޤ³ޤܡɤ餽ƤϤȿǤǤ
ޤ³ߤ뤳ȤǤޤ (ʲ: `fit`)桼
FIT_CONVERGED ϡ ľ fit ޥɤ«ˤ꽪λ 1
ʳͳǤ 0 ޤFIT_NITER ϡľ
ƤϤǹԤ줿֤βޤ
ƤϤ˻ȤؿϤФФǥ (ޤϤ) ˤ
ơϥǡοҤꡢ뤤ͽ¬褦Ȥޤ
`fit` ϡǡΥǥˤɤ줯餤ޤƤϤޤäƤΤ
ꤹ뤿ᡢƸġΥѥθϰϤɾ뤿ˡ
μͳʥѥͤΤ˻Ȥޤʲ:
`fit error_estimates`
ǤʤСˤƤϤˤؿϡǥȤ̵ط
ФƤޤ (ϽʬɽϤȺǤ⾯ʤΥѥǡ
ηҤʴؿȤƷи˴ŤФǤ礦)
⤷ʤƤΥǡ̤褦ʳ餫ʶߤʤ
`fit` ǤϤʤष `plot` `smooth` ץǤԤ٤
礦
3 ɾ (error estimates)
?commands fit error_estimates
?fit error_estimates
?fit errors
`fit` ˤ "" ȤѸ 2 Ĥΰۤʤäʸ̮Ѥޤ
Ĥϥǡ⤦ĤϥѥǤ
ǡϡʿĺνŤդ WSSRʤּꤹ
ġΥǡŪʽŤߤΤѤޤϥѥ
ɾ˱ƶͿޤϡ餬ƤϤ줿ؿ
ġΥǡкǽŪͤͿƶ礭ꤹ뤳Ȥˤ
ޤΤʥǡɾͿƤˤϡѥθ
ɾ `fit` ϤϤΩĤǤ礦
`statistical overview` Ǥ `fit` νϤΤĤ
'practical guidelines' ФطʤҤ٤Ƥޤ
4 Ūʳ (statistical overview)
?commands fit error statistical_overview
?statistical_overview
Ǿˡ (Non-Linear Least-Squares) ϡʬۤ
Ū˵ҤƤޤʤϥǡͿ줿ʿѤ
ʿѤФͿ줿ɸкĥ () ʬۤ˽콸
ɸܤȲꤵޤʬ礭ɸܡ콸ĤɸкΤ
ȤФƤϡּʬפѤơּ֦̾פȸƤФͤĴ
٤뤳ȤˤƤϤɤפҤ٤뤳ȤǤޤ餵줿ͳ
٤Φּ (ּμͳ٤ϡǡοƤϤѥ
θĿ) 1.0 ǤϡǡƤϤ줿ؿ
ȤкνŤߤĤ¤ߤΥѥͤФؿͿ줿
ɸкˤäħդ줿콸ĤΡʥץФ뼫
¤ȤƱǤ뤳Ȥ̣ޤ
ʬ = פǤ夲׳Ʊ͡콸ĤɸкǤʤ硢
ϴ¬к¤ȴԤк¤ӤȤ˸̤˽Ť
Ť٤Ǥ
ǽʳ `fit` 'stdfit'ʤĺ RMS (ʿʿ) ǵ
ƤϤɸкȡǡŤߤŤƤ '
줿ּ' ȤƤФĺʬݡȤޤͳ (ǡ
οƤϤѥο) ϤɾǻѤ
ʤʤ顢ǡλĺηǻȤѥƱǡ
ΤǤǡŤߤľ硢`gnuplot` Ϥ
p-ͤޤϤμͳ٤ȷ̤ΦּͤФּʬۤ
ʬ۴ؿͤ 1 ͤǤʲ:
`fit practical_guidelines`
ͤϰʲѿޤ:
FIT_NDF = ͳ٤ο
FIT_WSSR = ŤߤĤĺμ
FIT_STDFIT = sqrt(WSSR/NDF)
FIT_P = p-
ѥ˴ؤ뿮٥ɾ뤳ȤǡƤϤᤫǾ
Φּȡ᤹뿮٥Φּͤꤹ뤿Φּ
Ѥ뤳ȤޤΤ褦ͤѥȤ
ꤹˤϡΤʤɬפȤʤǤ礦
`fit` Ͽ֤ηषǸȿʬ-ʬľ
ѥθɾ𤷤ޤɾϡɸк
ȤƷ̤λ˴ؤξ郎̤ˤǾ
ǤݾڤʤΤǤǾǤɸ (ƥѥ
ɸк) ƱˡǷޤƤΤᴷˤꡢ
"ɸ" Ȥ "ɸ" ȸƤФƤޤɸϰ
̤˳ڴѲ٥ηˤϻȤ٤ǤϤޤŪʻ
ɸȤƤΩĤǤ礦
ǽŪʲϡϰϤˤѥؤع
: μгǡʤؤϾ 1 ǡƤΥѥ
ΩʤгǤϤ٤ 0 ˶ᤤͤˤʤޤ¾䤤 2
Ĥѿϡ礭 1 ǡطؤؤˤä
ʤгǤޤгǤ礭ۤɡ
ѥɸкɾϡɸ˶ʤޤ
4 Ūʥɥ饤 (practical guidelines)
?commands fit error practical_guidelines
?fit practical_guidelines
?fit guidelines
ġΥǡؤνŤߤŤγƤδäΤäƤʤ顢줬¬
̤ФܤѤ褦ȤǤ礦㤨СĤ
¾ƤˤʤȤȤθ뤳ȤǽǤ
ơϺǽŪʥѥͤ˱ƶޤ
ǡνŤդϡǸȿ `fit` ɲýϤФδ
ͿޤƱ˽ŤդԤʤˤƤ⡢Ť 1 ȤȤ
षʿɸкɾ뤳Ȥּ褬ˤꤽǤ
ˡWSSR ̵ѿȤ뤳Ȥˤʤޤ
ƤϤȿγʳǡƤϤοʹԤɾ˻ȤȤɽ
ޤ ('*' Ϥ꾮 WSSR Ĥʤäȡƺƻ
ԤƤ뤳Ȥ̣ޤ)'sum of squares of residuals' (ĺμ
) ϡ'chisquare' (ּ) ȤƤФޤϥǡƤϤ
ؿȤδ֤ WSSR ̣Ƥơ`fit` ϤǾ褦Ȥޤ
ʳǡŤդ줿ǡˤäơּͤϼͳ (= ǡ
ο - ѥο) ˶դȤԤޤWSSR 줿
ּ (WSSR/ndf; ndf = ͳ)ޤƤϤɸк (stdfit =
sqrt(WSSR/ndf)) Τ˻ȤޤϺǽŪ WSSR Ф
ƥݡȤޤ
ǡŤդƤʤСstdfit ϡ桼ñ̤ǤΡǡ
ƤϤؿк RMS (ʿʿ) ˤʤޤ
⤷ʥǡͿǡʬ¿ǥ뤬С
ּͤϤۤ 1 ˤʤޤ (ܺ٤ϡŬ׳ؤܤ 'ּʬ
' ιȤƤ)ξ硢γפ˽Ƥ뤳Ȱʳ
ˡǥ뤬ǡˤɤ줯餤ɤƤޤäƤ뤫ꤹ뤿ɲ
λˡĤޤ
ּ褬 1 Ϥ뤫礭ʤä顢ʥǡɾ
ʬۤʤǡƥ¬Ωɸ
(outliers)ޤɤʤǥؿʤɤΤǤ礦㤨
`plot 'datafile' using 1:($2-f($1))` ʤɤȤƻĺ褹뤳Ȥϡ
ΥƥŪʷΤ뤿μ꤬Ȥʤޤǡȴؿ
ξԤ褹뤳Ȥϡ¾Υǥͤμ꤬ȤʤǤ礦
Ʊͤˡ1.0 꾮ּϡWSSR ʬۤĥ
ʥץȴؿФƴԤΤ⾮Ȥ̣
ǡɾ礭ΤŪʲ꤬ʤΤޤ
ϥǥؿŪơŪ˲äüʥץˤư
ƤϤˤʤäƤΤǤ礦Ǹξϡꥷץʴؿˤ
ФޤԤǤ礦
ƤϤ p-ͤϡͳ٤ȷ̤ΦּͤФּʬۤʬ
ؿͤ 1 ͤǤϡƤϤɤΤΤ
ޤp-ͤϰϤ 0 1 ޤǤǡp-ͤȤƤ⾮뤤ϤȤƤ
礭ϡǥ뤬ǡȤθȵҤƤʤȤ
̣ޤǽҤ٤褦ˡϥǡ꤬뤫ǥ
꤬롢ޤϤȤ߹碌ʤΤȻפޤp-ͤ
ȤϡᾮɾƤΤǡäƺǽŪʥѥ
Ѵ٤ȤȤ̣Ǥ礦ʲ⻲:
`set fit errorscaling`
ɸŪʥ顼ѥԳ˴ؤ롢긽Ūɾ
طդ뤳ȡعνɾ뤳ȤǤ褦ˤʤ
ˡʤ `fit` ȡŬѤ褦Ȥ뤢˴Ƥ
ɬפǤ礦
`fit` ϡǾˡμǤ϶̤ơΥμ
(y-f(x))**2 νŤդ¤Ǿ褦Ȥ뤳ȤդƤ
ϡx ͤ "" ˴ؤƤϤɤˡͿƤϤ餺ñ
y ˴ؤɾΤߤǤޤ"Ω" (ʬۤΥǥΤ鳰
Ƥǡ) Ͼ˲ǽޤ
3 (control)
?commands fit control
?fit control
=FIT_LOG
=FIT_SCRIPT
`fit` ˱ƶͿ褦ǤĶѿ 2 Ĥޤ
Ķѿ `gnuplot` Ω夬ʤФʤޤ
ˡϥڥ졼ƥƥ˰¸ޤ
FIT_LOG
ϡƤϤΥե̾ (ӥѥ) ѹޤǥ
ȤǤϡȥǥ쥯ȥ "fit.log" ȤʤäƤޤϡ
Ի˥ޥ `set fit logfile` ȤäƾǤޤ
FIT_SCRIPT
ϡ桼Ǥ˼¹Ԥ륳ޥɤꤷޤǥեȤǤ
`replot` Ǥ`plot` `load` ޥɤȤСƤϤοʹԾ
ɽޥΤǤ礦ϡ¹Ի˥ޥ
`set fit script` ȤäƾǤޤ
fit ưˤ뤽¾¿μ¹ԻĴˤĤƤϡʲ:
`set fit`
3 顼 (error recovery)
?commands fit error_recovery
?fit error_recovery
gnuplot С 6 ꡢޥ `fit` ϡեåƥ
Ԥ˴ؤ餺˥ޥϹԤμ褦ˤʤޤϡ
fit Υ顼륹ץȤǽˤޤѿ FIT_ERROR ϡ
0 ˡ顼ξ 0 ʳͤˤʤޤʲϡ5
ΥǡΤɤ¿ΤΤ fit ǤƤ褷ޤ
㤨 2 ܤΥǡǼԤƤ⡢줬 3 ܤ 5 ܤΥǡ
Ф fit ˸뤳ȤϤޤ
do for [i=1:5] {
DATA = sprintf("Data_%05d.dat", i)
fit f(x) DATA via a,b,c
if (FIT_ERROR || !FIT_CONVERGED) {
print "Fit failed for ", DATA
continue
}
set output sprintf("dataset_%05.png", i)
plot DATA, f(x)
unset output
}
3 ʣƤϤ (multi-branch)
?commands fit multi-branch
?fit multi-branch
?multi-branch
?branch
ʣƤϤˡ (multi-branch fitting) ǤϡʣΥǡ̤
ѥʣ 1 ѿδؿˡWSSR ¤Ǿ뤳Ȥˤ
äƱƤϤ뤳ȤޤƥǡФؿȥѥ
() 'ѿ' ȤȤǤޤ㤨Сǡֹ
(-1; 'ǡ' ֹ) ޤϥǡեֹ (-2) 2 ܤΩ
ѿȤޤ
: 2 Ĥλؿ z=f(x) ͿƤơ줾ۤʤǡ
ҤƤ뤬̤֤Υѥͤɾ롣
ǡե뤬 x:z:s ηǤäȤȡξʲΤ褦ˤ
Ф褤
f(x,y) = (y==0) ? a*exp(-x/tau) : b*exp(-x/tau)
fit f(x,y) 'datafile' using 1:-2:2:3 via a, b, tau
ʣˤĤƤϡǥե "fit.dem" ǻȤ "hexa.fnc"
ȤƤ
⤷°ѿΥ˺硢ñ̤νŤդǤ 1 Ĥλޤ
ۤƤޤǽΤǡŬʽŤդɬפˤʤޤƻޤ
ХƤϤΤʣƤϤˡβͤȤѤΤϡ
碌γƻޤФŪʱƶ˴ؤɽͿ뤳Ȥˤʤ
礦
3 (starting values)
?commands fit starting_values
?fit starting_values
?starting_values
ƤϤϡŪʺŬ (ĺμ (SSR) κǾͤIJ)
ؤμ«ݾڤϤޤɽŪʶ˾ͤͿ뤳ȤϤǤޤ
֥롼Ϥꤹˡ碌ƤʤΤǡ줬
äɤȽǤΤϤʤǤȤʤޤ
`fit` ϡϤȼԤ뤫ΤޤФФ
ϵޤȤΤϡSSR 礭ѥѲФ
Ѳ뤤ϿŪΰ (㤨пͤ礭
ưη夢դ) ãƤޤäơη "̤
(undefined value)" Υå `gnuplot` ߤƤޤ
褦ʾ̣ޤ
ŪʺŬͤĤǽˤϡǽͤβ˾ʤ
Ȥۤܶ˼٤Ǥ礦㤨С⤷ǽʤаʬ礭
ϰǡǽͤ˶ᤤۤʲǽλƤޤǽ㤯
ޤǽͤĤĤˡϡǡƤϤؿƱ
դξ褷Ŭʶᤵãޤǡѥͤѹ
`replot` 뤳Ȥ֤ȤǤϡʶ˾ͤĤ
ȤƤϤλɤåΤˤͭѤǤ
ܤɤƤϤĤäƤ⡢ "褤"
ƤϤ (ɤ줿ƤϤɤδˤäħդ줿׳
Ūʰ̣ǡ뤤ϤΥǥΤŬڤʲǤ롢ȤʪŪʰ̣
) ¸ߤʤȤξˤϤʤޤˤäƤϡƥѥ
ΰ̣ΤϰϤС褦͡ʽͤνФ `fit`
뤳Ȥ˾ޤΤޤ
3 ǡ (time data)
?commands fit time_data
?fit time_data
ǡƤϤǤϡgnuplot 1970 1 1 ÿȤƻ
ɽƤ뤳ȤפФȤפǤ㤨С2023 ǯΤ 1
δ֤˷¬ʤ餫λ֤˰¸ǡФơ2 ؿǥ
ǤƤϤ硢ʲΤ褦ˤ줬ǤȴԤǤ礦:
T(x) = a + b*x + c*x*x
set xdata time
fit T(x) 'hits.dat' using 1:3 via a,b,c
¿ʬԤޤʤʤ餽ΤбǤ x
ͤ [1.67746e+09 : 1.67754e+09] Τ褦ϰϤˤʤäƤޤǤ
¬ǡ x ξѹϤ鷺 1.e-05 ٤ʤΤǡ«ݾڤ
뤿ˤϡѥɾ¿ʬäξ貿̤٤ɬפ
ʤäƤޤǤ礦
Ĥβϡ֤¬γϻ֤λ֤ѹѤ
ƤޤȤǤ
set xdata time # ǡ "27-02-2023 12:00:00 ¬"
timefmt = "%d-%m-%Y %H:%M:%S"
set timefmt timefmt
t0 = strptime( timefmt, "27-02-2023 00:00:00" )
fit T(x) 'temperature.dat' using ($1-t0):3 via a,b,c
ϥǡϰϤ [0 : 86400] Ѥ갷䤹ʤޤ
ξ¾ˡȤƤϡ1 ܤդ̵뤷2 ܤл
(tH/tM/tS) Ѥ뤳ȤǤ
set timefmt "%tH:%tM:%tS"
fit T(x) 'temperature.dat' using 2:3 via a,b,c
3 ҥ (tips)
?commands fit tips
?fit tips
?tips
Ǥϡ`fit` ¤Ѥ뤿ˤĤФƤ٤ҥȤ
Ҳ𤷤ޤȿŪǤϤʤΤǡܼ߹ޤDz
ɤǤ
`fit` ΰ `via` ˤϡ2 Ĥ礭ۤʤŪΤ 2 Ĥη
ޤ`via "file"` ηϡХå (÷Ǥμ¹Ԥǽ)
ǺǤɤȤ졢ΥեǽͤͿ뤳ȤǤޤ
`via var1, var2, ...` η÷μ¹ԤɤȤ졢ޥɥҥ
εȤäƥѥꥹȤԽԤƤϤ¹Ԥꡢ
뤤ϿͤͿƼμ¹ԤԤʤäꤷޤ
ФƤäͭѤǡƤΥѥФ 1 ٤ƤϤľ
¹ԤƤ⡢ɤͤǤʤФޤʤȤ뤫Ǥ
ĤˤϡĤΥѥΤߤФƲȿԤʤ
ǽŪˤƤΥѥФ 1 ٤ƤϤޤȤ
ʬʤޤǤ֤ȤǤ
ƤϤԤʤؿΥѥ֤˶̤ΰ¸طʤȤϳǧ
Ƥ㤨Сa*exp(x+b) ƤϤ˻ȤäƤϤޤ
a*exp(x+b)=a*exp(b)*exp(x) ǤäƤξ a*exp(x)
ޤ exp(x+b) ȤäƤ
Ūʤ: ͤǤ礭ѥȺǤ⾮ѥ椬
礭ƤϤμ«٤ʤޤ椬ޥư
εտ˶ᤤޤϤʾʤСۤܤäȼ«ʤ«
˼¹ԤǤǤ礦äƤΤ褦ʾϡδؿ㤨
'parameter' '1e9*parameter' ˤȤǽͤ 1e9 dz
Ƥ褦˲ɤ뤫ޤ `set fit prescale` ǥѥ
νͤ˽äƤΥѴǤ餻뵡ǽѤ뤫
줫ɬפǤ礦
⤷ؿƤϤѥȤ롢ñʴؿ
ʤ顢ϤȤƤ⤤ΤƤΤʤ顢꤬
ϤǤϤʤΤǡȿϾʤǼ«Ǥ礦⤷
餿äǤफ⤷ޤ
ºݤμ¸ιֵǤϥǡϤФ뤤ĤλؼͿ졢
ǡؤκǽδؿƤϤԤʤޤ⤷ȡ
ʣ¦̤ˤҤȤĤбʣΥץɬפΤޤ
ƤδؿƤϤΥѥߤä
ФǤ礦`fit` ȤСѥλľܥ
ǥؿȤˤꡢϤФ 1 ǺѤΤǤϤ
ƤϤηȤޤǡѴ⤫ʤγ
뤳Ȥޤ⤷줬ƤϤؿñ㲽˴ؤơ
̷⤷ƤȻפʤ顢Ǥ
"singular matrix" Υåϡ Marquardt-Levenberg 르ꥺ
Υ롼ȿФѥͤηʤȤ
̣ޤξ硢̤ʽͤϤ뤫ؿ̤ʷǽľ
ñʴؿˤƤߤƤ
Ǹˡ¾ƤϤѥå (fudgit) Υޥ˥奢뤫顢ʸ
褦ʤѤ夲ޤ: "Nonlinear fitting is an art! (
ƤϤˡϷݽѤ !)"
#TeX \newpage
2 ؿ֥å (function blocks)
?commands function
?function blocks
?functionblocks
ޥ `function` ϡgnuplot ɤʤ̾դ֥åΥҥ
ȷˤ̣ǡϴؿȤƸƤӽФ
ǽǤ
ǡ֥åƱ͡ؿ (function) ֥å̾ '$' ǻϤޤɬ
פޤˤϡ 9 Ĥ̾դΰǤޤ
̾ϡδؿ֥åǶɽѿȤưޤʲ:
`local`, `scope`
ٴؿ֥åȡ̾δؿƤӽФΤƱ褦
ɤǤ⤽̾ǸƤӽФȤǤޤ֤ͤŬڤǤʤ硢ؿ
֥åΰȤƤǤʤޥ "evaluate" ǸƤӽФ
Ǥޤ
:
function $sinc(arg) << EOF
if (arg == 0) { return 1.0 }
return sin(arg) / arg
EOF
gnuplot> plot $sinc(x) with lines title "sinc(x) as a function block"
̾դΰϡؿ֥å˻ꤹɬפϤޤ
ޥɥ饤ǻꤷؿΰθĿȤͤϡؿ֥å
顢ѿ ARGC Ȥб ARGV[ARGC] ǥǤޤ
ʲ: `ARGV`ˤꡢѤʸĿΰǤؿ֥å
뤳ȤǤޤ`call` ʸˤեɤ߹ߤȤϰ㤤
ʸѿ (㤨 ARG1) Ϥޤ
:
function $max << EOF
local max = real("-Inf")
if (ARGC == 0) { return NaN }
do for [i=1:ARGC] {
if (max < ARGV[i]) {
max = ARGV[i]
}
}
return max
EOF
gnuplot> foo = $max( f(A), 2.0, C, Array[3] )
gnuplot> baz = $max( foo, 100. )
ؿ֥åݡȤ֤Ūϡʣʴؿ gnuplot ľ
Ǥ褦ˤ뤳ȤǤƱؿ C Fortran ǥ
ɤ¹®٤٤ʤޤϿŪ뤳
Ȥǽˤޤ¹®٤פʾϡˤδؿ̤˥ץ饰
ȤƼФǤ礦 (ʲ: `plugins`)
ؿ֥åȤ 2 ܤŪϡgnuplot ޥɤȤʳ
ˤ¸ߤǤʤ褦ʾǤμ¹Ԥǽˤ뤳ȤǤ㤨Фʤ
2 Ĥ CSV ե뤫Υǡ褷ĤΥեϥե
ɤڤǡ⤦ϥߥڤǤȤޤ̾
°ФƤϡ˥ޥ `set datafile` åȤޤ
plot ޥɤѤ뤹٤ƤΥեŬѤƤޤޤ
桹ϡƥե뤬 plot ޥɤǻȤľˤꤹ
褦˸ƤӤ褦ʴؿ֥åǤޤ
function $set_csv(char) << EOF
set datafile separator char
EOF
plot tmp=$set_csv(",") FILE1, tmp=$set_csv(";") FILE2
:
#start
#b ؿ֥åǡǡ֥åؿ֥å뤳ȤϤǤ
##
#b ե '-' ϡؿ֥åǤΥǡɤ߹ߤˤϻѤǤ
## ޤ
#b ʲΥޥɤϴؿ֥åǼ¹ԤǤޤ
## `reset`, `shell`, `!<shell command>`
#b ޥ `plot`, `replot`, `splot`, `refresh`, `stats`, `vfill`,
## `fit` ϡΤ⤬¹ǤʤΤߡؿ֥åǤ
## Ǥޤ㤨Сޥ `plot` ƤӽФؿ֥å `stats`
## ȤȤϤǤޤޥ `fit` 椫 `plot` ƤӽФ
## ȤϤǤʤ
#end
ؿ֥åȤǤʤȤơʣпؿ lngamma
15 Lanczos μȥդǥ⥳쥯ˤޤ
^ <a href="http://www.gnuplot.info/demo_6.0/function_block.html">
function_block.dem
^ </a>
δؿ֥åˤϡƱ르ꥺ C ľܥɤ
Ȥ߹ߴؿ lnGamma ٤ơ 25 ܰ٤Ǥ
Ǥ÷Ǥ 3 դβžˤϽʬʰ̤®Ǥ
#TeX ǥˤؿϰʲ̤ꡣ
#TeX \newline
#TeX \begin{center}
#TeX \begin{minipage}{5in}
#TeX {
#TeX 15 Lanczos Ѥ $log\Gamma(z)$ δؿ֥åˤ
#TeX \hrule
#TeX ~\newline
#TeX \small
#TeX \begin{verbatim}
#TeX array coef[15] = [ ... ]
#TeX
#TeX function $Lanczos(z) << EOD
#TeX local Sum = coef[1] + sum [k=2:15] coef[k] / (z + k - 1)
#TeX local temp = z + 671./128.
#TeX temp = (z + 0.5) * log(temp) - temp
#TeX temp = temp + log( sqrt(2*pi) * Sum/z )
#TeX return temp
#TeX EOD
#TeX
#TeX function $Reflect(z) << EOD
#TeX local w = $Lanczos(1.0 - z)
#TeX local temp = log( sin(pi * z) )
#TeX return log(pi) - (w + temp)
#TeX EOD
#TeX
#TeX my_lngamma(z) = (z == 0) ? NaN : (real(z) < 0.5) ? $Reflect(z) : $Lanczos(z)
#TeX \end{verbatim}
#TeX \hrule
#TeX }
#TeX \end{minipage}
#TeX \end{center}
ؿ֥åλѤϻʳǤ
ܺ٤ϡǤ˴ޤޤѹǽޤ
#TeX \newpage
2 help
?commands help
?help
`help`ޥɤϡȤ߹ߥإפɽޤˤĤƤ
ꤷȤˤϡνȤäƲ:
help {<̾>}
⤷ <̾> ꤵʤäϡ`gnuplot` ˤĤƤδñ
ɽޤꤷܤˤĤƤɽ줿塢Ф
ܤΥ˥塼ɽ졢κ̾Ϥ뤳ȤǺܤФإ
³뤳ȤǤޤơκܤɽ줿ˡ
̾Ϥᤵ뤫ޤ 1 ιܤΥ٥ޤ
֤Ȥ䤬ơ`gnuplot` Υޥɥ饤ؤޤ
ޤ (?) ܤȤƻꤹȡߤΥ٥ιܤΥꥹȤ
ɽޤ
2 history
?commands history
?history
ޥ `history` ϡޥΰɽꡢ¸ꡢ
ΥޥɤƼ¹ԤꤷޤΥޥɤεư
¸Ѥˤϡʲ: `set history`
`history` ޥɤǻϤޤϹԤϡޥˤ¸ޤ
:
history # Τɽ
history 5 # ľ 5 Ĥɽ
history quiet 5 # ȥֹʤľ 5 Ĥɽ
history "hist.gp" # Τե hist.gp ˽Ф
history "hist.gp" append # Τե hist.gp ɲä
history 10 "hist.gp" # ľ 10 Ĥե hist.gp ˽
history 10 "|head -5 >>diary.gp" # ѥפ 5 ĽФ
history ?load # "load" ǻϤޤΤ٤Ƥɽ
history ?"set c" # Ʊ (ʣθϰǰϤ)
hist !"set xr" # Ʊ (ʣθϰǰϤ)
hist !55 # 55 ܤܤΥޥɤƼ¹
2 if
?commands if
?if
:
if (<condition>) { <commands>;
<commands>
<commands>
} else if (<condition>) {
<commands>
} else {
<commands>
}
ΥС gnuplot ϡif/else Υ֥åݡȤƤ
`if`, `else` θ˳ϥå "{" ³硢"}"
λ֥åޤǤΤ٤Ƥʸ (ʣϹԤ) ˾Ūʼ¹ԤŬ
Ѥޤif ޥɤҤˤ뤳ȤǤޤ
С 5 gnuplot Ǥϡif/else ޥɤϰϤ 1
αޤäƤޤߤʣԤ楫å { } ǰϤǽȤ
ǤޤŤĤƤޤ楫åΥ֥å
ȤȤϤǤޤ
ν:
if (<>) <ޥɹ> [; else if (<>) ...; else ...]
`if` "{" Ȥʤʤϡ<> (Ǥʤ)
ʤ <ޥɹ> Υޥ (ʣ) ¹Ԥ졢 () ʤ
åפޤξϹԤκǸˤʤ뤫`else`
ȤޤǤ줬Ԥޤ`;` ȤƱԤʣΥޥ֤
ǽǤդΥޥ (`if` ιʸ) ϤǤϽʤ
ȤդƤ
2 for
?for
`plot`, `splot`, `set`, `unset` ޥɤǤϡ֤ȤȤ
ǤޤϡŪʥޥɤʣ¹Ԥ̤Τ
Τμ¹ԤǤϷ֤ѿˤäƿϺɾޤ`do`
ɤǤϡɤʥޥǤ֤ⷫ¹Ԥ뤳ȤǤޤ
ϸߤϰʲ 2 ĤηݡȤƤޤ:
for [intvar = start:end{:increment}]
for [stringvar in "A B C D"]
:
plot for [filename in "A.dat B.dat C.dat"] filename using 1:2 with lines
plot for [basename in "A B C"] basename.".dat" using 1:2 with lines
set for [i = 1:10] style line i lc rgb "blue"
unset for [tag = 100:200] label tag
֤Ҥ⥵ݡȤƤޤ:
set for [i=1:9] for [j=1:9] label i*10+j sprintf("%d",i*10+j) at i,j
ʤˤĤƤϡʲ: `iteration`, `do`
2 import
?commands import
?import
=plugins
ޥ `import` ϡ桼ؿ֥̾ͭȤ
ޤؿ˷ӤĤޤϡgnuplot Ѳǽʴؿĥ
ץ饰ޤ
:
import func(x[,y,z,...]) from "sharedobj[:symbol]"
:
# ؿ myfun "mylib.so" "mylib.dll" Ǻ
# gnuplot Ǥ衢ޤϿͷѲǽ
import myfun(x) from "mylib"
import myfun(x) from "mylib:myfun" # Ʊ
# "theirlib.so" "theirlib.dll" Ѥδؿ theirfun
# ۤʤ̾Ѳǽ
import myfun(x,y,z) from "theirlib:theirfun"
ץ϶֥ͭȤȤͿ줿̾ˡڥ졼ƥ
ƥ˽ä ".so" ".dll" ɲäޤեѥ̾ȤƸ
˥ȥǥ쥯ȥ꤫Хѥ̾ȤƸޤڥ
ƥƥ༫Τ LD_LIBRARY_PATH DYLD_LIBRARY_PATH Ǥդ
ǥ쥯ȥޤʲ: `plugins`
2 load
?commands load
?load
`load` ޥɤϡꤵ줿ϥեγƹԤ줬Ū
줿Τ褦˼¹Ԥޤ`save` ޥɤǤĤ줿եϡ
`load` 뤳ȤǤޤͭ gnuplot ޥɤν줿ƥȥ
ϡ`load`ޥɤˤäơ¹Ԥ뤳ȤǤޤ`load`
եˤ `load` ޤ `call` ޥɤäƤޤ
`load` ե˰Ϳˤϡʲ: `call`
:
load "<ϥե̾>"
load $datablock
ϥե̾ϰǰϤޤʤФʤޤ
`load` ޥɤϡɸϤΥޥɤϤΤˡ̤ʥե
̾ "-" ѰդƤޤϡ`gnuplot` Υޥɥե뤬
ĤΥޥɤɸϤդ뤳Ȥ̣ޤܺ٤ˤĤ
ϡʲ: `batch/interactive`
popen ؿݡȤ褦ʥƥǤϡ'<' ǻϤޤե̾ˤ
뤳Ȥǡϥեѥפɤ߹ळȤǤޤ
:
load 'work.gnu'
load "func.dat"
load "< loadfile_generator.sh"
`gnuplot` ؤΰȤͿ줿ե̾ϡۤΤ `load`
ޥɤˤäƼ¹Ԥޤϡꤵ줿˥ɤ졢θ
`gnuplot` Ͻλޤ
ʳ: ¸ƥȤιԤ饳ޥɤ¹Ԥ뤳Ȥǽ
ʲ: `function blocks`ؿ֥åϡޥɥ饤ǡ
뤤ϳեǤޤٴؿ֥åСΥ
ޥɤϡ餿ƥե뤫ɤ߹ΤǤʤΥԡФ
`evaluate` ȤȤǷ֤¹ԤǤޤ
2 local
?local
?commands local
:
local foo = <expression>
local array foo[size]
`local` ϡѿƳѿͭϰ (scope)
ޤޤ륳ɥ֥åμ¹ԤΤߤ¤ޤѿ
ɬܤǤϤޤ줬ʤФ٤Ƥѿ (global) ѿ
Ȥʤޤɽ (local) ѿ̾ѿȽŤʤäϡɽ
ͭϰϤȴޤǤϡѿϱޤʲ: `scope`
local ϡ`call` `load` ʸˤäѿͤռ˾
ƤޤȤ뤿˻Ȥޤä˴ؿ֥å
ͭѤǤޥ `local` ϡ`if`, `else`, `do for`, `while` ³
̤Υɥ֥åǤͭǤ
: ǡΰ췲褹륳ޥɤʤʲΤ褦ʥץ
"plot_all_data.gp" ȤޤʥץȤϡ"file"
"files" "dataset" "outfile" ̾Ǥդѿ˲뿴ۤ
˥ޥɥ饤뤤¾ΥץȤƤӽФޤ
ѿ "file" ܼŪ˶ɽŪǡϤ줬֤ѿǤ
(ʲ: `scope`) ¾ 3 Ĥϡݸˤϥ
`local` ɬפǤ
plot_all_data.gp:
local files = system("ls -1 *.dat")
do for [file in files] {
local dataset = file[1:strstrt(file,".dat")-1]
local outfile = dataset . ".png"
set output outfile
plot file with lines title dataset
}
unset output
2 lower
ʲ: `raise`
2 pause
?commands pause
?pause
?pause mouse
`pause` ޥɤϡޥɤ³Ǥդʸɽ塢ꤵ
֤ޤϡԥޤԤޤ`pause` ޥɤϡ
`load` ѤΥեȶ˻ѤȡˤʤǤ礦
:
pause <time> {"<string>"}
pause mouse {<endcondition>}{, <endcondition>} {"<string>"}
pause mouse close
<time> ϡǤդޤϼ¿ͤμǤ`pause -1` ϲԥ
ޤԤ0 ꤹȰԤοꤹȤÿ
Ԥޤ
ѤƤϷ `mousing` (ޥǽ) ݡȤƤ硢
`pause mouse` ϡޥå뤫 ctrl-C ޤԤĤ褦
ˤʤޤǤʤϷޤϥޥǽͭˤʤäƤʤ
`pause mouse` `pause -1` ƱǤ
ġ뤤ʣνλ (endcondition) `pause mouse` θͿ
줿硢ΤΤɤΰĤǤ pause ϽλޤǤ뽪
λϡ`keypress`, `button1`, `button2`, `button3`, `close`, `any`
Τ줫Ǥpause Ϥˤäƽλ硢줿
ASCII ɤ MOUSE_KEY ¸졢ʸ켫Ȥϡ1 ʸʸ
Ȥ MOUSE_CHAR ֤ޤ`keypress` λΰĤǤС
ۥåȥ (ƥޥ) ̵ˤʤޤ`buttons3` λ
ΰĤǤС絡ǽ̵ˤʤޤ
ɤξǤޥκɸѿ MOUSE_X, MOUSE_Y, MOUSE_X2, MOUSE_Y2
¸ޤʲ: `mouse variables`
: `pause` ޥɤ OS ؤΥޥɤǤΰǤϤʤΤǡ
ۤʤ֤Ǥϰۤʤưǽޤ(ϡƥ
ȥեåɤΤ褦˺ߤ뤫ˤޤ)
:
pause -1 # ԥޤԤ
pause 3 # 3 Ԥ
pause -1 "³ˤ return ǤäƤ"
pause 10 "ʤǤ ? 3 spline Ǥ"
pause mouse "ǡǤդΥܥåƤ"
pause mouse keypress "ͭʥɥ A-F ʸϤƤ"
pause mouse button1,keypress
pause mouse any "ǤդΥܥǽλޤ"
Ǥ "pause mouse key" ϡͭ襦ɥǤǤդΥ
ϤˤäƺƳޤ̤ʥϤޤԤĤ褦ˤϡ
Τ褦ʥ롼פȤȤǤޤ:
print "襦ɥ Tab ǤĤޤ"
plot <something>
pause mouse key
while (MOUSE_KEY != 9) {
pause mouse key
}
3 pause mouse close
?commands pause mouse close
?pause mouse close
?pause close
ޥ `pause mouse close` ϡ٥ȤԤĤǤħ
ŪΰĤǤξ硢gnuplot 襦ɥ "close"
ȤΤԤޤǥȥå״ĶΤˤΥ٥Ȥ
ˡϰۤʤޤ̾ϡɥζˤʤ餫
ʤޥå뤫<alt><F4> <ctrl>q Τ褦ʥۥåȥ
פ뤳Ȥ襦ɥ close ǤޤŬڤȤ
䡢ۥåȥѲǽǤ뤫狼ʤ硢gnuplot ȤλȤߤ
ۥåȥ뤳ȤǤޤʲ: `bind`
ʲΥޥϡgnuplot ޥɥ饤ǤʤץȤ
ԤƤͭѤǤ
plot <...whatever...>
bind all "alt-End" "exit gnuplot"
pause mouse close
3 pause εޥ (pseudo-mousing during pause)
?commands pause pseudo-mousing
?pseudo-mousing
`dumb`, `sixel`, `kitty`, `domterm` ϷΤ褦ˡʸϤȥ
եåɽƱɥǹԤϷޤνϷ
ǤϡΤȤ¼Ū˥ޥưݡȤƤޤޥ
`pause mouse` δ֤ϡޥưǽʽϷξƱȤߤǥ
ᤷޤ㤨С///ϡ3 դǤ
Ѳ2 դǤϻư/ʬƥåפ¹Ԥ
ޤ`l` пΥȥ롢`a` ϸߤΥդư̼ܤˡ`h` ϥ
Ƥΰɽޤԥ `pause` λ̾Υ
ɥ饤ޤ
2 plot
?commands plot
?plot
`plot` `splot` `gnuplot` ǿޤδŪʥޥɤǤ
ϴؿǡΡ¿μΥɽޤ`plot`
2 δؿǡ`splot` 3 ζ̤ǡ 2
Ƥޤ
:
plot {<ranges>} <plot-element> {, <plot-element>, <plot-element>}
(plot-element) ϡ (definition) ؿ (function)
(data source) Τ줫 1 Ĥˡץ°Ҥʤɤ
ΤǤ:
(plot-element):
{<iteration>}
<definition> | {sampling-range} <function> | <data source>
| keyentry
{axes <axes>} {<title-spec>}
{with <style>}
ǤΥɽϡ㤨 `with lines` `with boxplot`
ɤΤ褦˥ `with` Ƿꤷޤʲ: `plotting styles`
褹ǡϡ1 Ĥδؿ (ѿ⡼
(parametric) Ǥ 2 Ĥδؿ)ޤϰĤΥǡե뤫ɤ
ޤΡޤϻ줿̾դǡ֥åɤ߹
ΡޤȴФΡΤ줫ǤޤǶڤ
ȤǡʣΥǡե롢ǡ֥åؿʤɤ 1 Ĥ
plot ޥɤǤޤʲ: `data`, `inline data`,
`functions`
ؿѿǤϡϤޤ 3 ܤ
ȤƤ
:
plot sin(x)
plot sin(x), cos(x)
plot f(x) = sin(x*a), a = .2, f(x), a = .4, f(x)
plot "datafile.1" with lines, "datafile.2" with points
plot [t=1:10] [-pi:pi*2] tan(t), \
"data.1" using (tan($2)):($3/$4) smooth csplines \
axes x1y2 notitle with lines 5
plot for [datafile in "spinach.dat broccoli.dat"] datafile
ʲ: `show plot`
3 (axes)
?commands plot axes
?plot axes
?axes
(axes) ϡ4 ȤѤǤޤ; <axes> ϡľ
ɤμ˼٤碌뤫ȤȤΤ˻Ȥޤ
`x1y1` ϲμȺμ; `x2y2` Ͼȱμλ; `x1y2` ϲ
ȱμλ; `x2y1` ϾȺμλǤ`plot` ޥɤǻꤵ
줿ϰϤϡκǽμ (Ⱥ) ˤΤŬѤޤ
3 binary
?binary
?data binary
?datafile binary
?plot data binary
Хʥǡե:
ե̾θ `binary` ΥɤͿʤФޤե
˴ؤ뽽ʬܺ٤ʾϡ桼ޥɥ饤Ϳ뤫
ޤϥݡȤƤ `filetype` ΥХʥΥե뤽켫Ȥ
ȴФ뤫ɬפޤХʥեˤϡ礭 2 Ĥ
binary matrix binary general ޤ
`binary matrix` ϡ32 ӥå IEEE ʤư (float) 2
η¤ӡκɸͤɽԤɲäƤޤplot
ޥɤ `using` ˤơ1 (column(1)) ϹιԤκɸ
Ȥ2 (column(2)) κɸȤ3 (column(3)) ϡ
Τκɸξ¸ƤͤȤޤ
`binary general` ϡǤոĤΥǡޤߡξϥ
ɥ饤ǻꤹɬפޤ㤨 `array`, `record`, `format`,
`using` ʤɤǥǡμǤޤ¾ˤ⡢ե
إåɤФꡢǥ (endian) ѹ뤿ͭѤʥ
ޥɤޤ֡ǡѴԤʤޥɤȤޤ
ϡͤɸܲ줿ǡξ硢κɸեˤϴޤޤ
Ȥɤ뤫Ǥmatrix Хʥեƥȥǡ
ϤȰ㤦ȤǤgeneral Хʥ 1,2,3 Ȥä `using`
ȤֹȤ鷺 1 ܤϥե 1 ܡ
뤤 `format` ꥹȤǻꤵ줿Ρˤʤޤ
ޤޤ binary ץФŪʥǥեȤǽǡ
`(s)plot <filename> binary ...` ޥɤͿ륪ץ
ƱǻǤޤν `set datafile binary ...` Ǥ
Ūʵ§ȤơǥեȤΥѥϥե뤫ȴФ줿
Ǿ졢ϥޥɥ饤ǻꤵ줿̤ʥѥ
Ǿޤ
㤨 `array`, `record`, `format`, `filetype` `binary general`
ꤹ褦ʥɤĤƤʤСǥեȤΥХ
`binary matrix` Ǥ
general Хʥǡϡ̤ʥե̾ '-' Ȥäƥޥɥ饤
Ϥ뤳ȤǤޤϥܡɤϤտޤ
ΤǤϤʤѥפȤäƥץ˥ХʥѴ뤿
ΤΤǤХʥǡˤϺǸɽ椬ޤΤǡgnuplot
ϥѥפǡɤ߹硢`array` Ҥǻꤷˤ
ޤǥǡɤ߹³ޤܺ٤˴ؤƤϡʲ:
`binary matrix`, `binary general`
`index` ɤϡեեޥåȤ 1 ĤΥեˤĤ 1
ζ̤ʤᡢݡȤޤ`every` `using`
ݡȤޤ`using` ϡǡ 3 Ȥηɤޤ
Τ褦Ưޤ
^ <a href="http://www.gnuplot.info/demo/binary.html">
Хʥե splot Υǥ⡣
^ </a>
4 general
?commands plot binary general
?commands splot binary general
?plot binary general
?splot binary general
?datafile binary general
?data binary general
?binary general
`binary` ñȤǻꤷϡͤʳʻҤɸ
ȡƳʻǤͤξĥХʥǡǤ뤳Ȥ̣ (
: `binary matrix`)¾ηΥХʥǡξϡΥǡ
η̣ɲåɤꤹɬפޤǰʤ顢
ɲåɤνñǤϤޤǤ general
ʥ⡼ɤϡä¿̤Υǡ gnuplot 褦ʥץꥱ
˼äƤͭѤǤ
:
plot '<file_name>' {binary <binary list>} ...
splot '<file_name>' {binary <binary list>} ...
general Хʥϡե빽¤˴ؤ˴Ϣ륭ɡ
ʤ `array`, `record`, `format`, `filetype` ʤɤ <binary list>
Ϳ뤳Ȥͭˤʤޤʳξϡͤ matrix Х
ʥȸʤޤ(ܺ٤˴ؤƤϡʲ: `binary matrix`)
gnuplot ϡ㤨 PNG Τ褦˴˼ʵҤɸŪʥХ
եɤ߹ˡĤΤäƤޤΰϡò
̤ `show datafile binary` Ϥ뤳ȤǻȤǤޤʳ
ΤˤĤƤϡǰϥХʥǡϥƥȥǡƱͤ˹ͤ뤳
ȤǤޤˤϡ`using` ޤ
`format` ʸꤷʤä硢gnuplot ϥХʥͤο
`<using list>` Ϳֹޤ㤨С
`using 1:3` Ȥ 3 ĥǡɤ졢2 ܤΤΤ̵뤷
ޤ襹ˤϥǥեȤ using ꤬ޤ㤨
`with image` ϥǥեȤ `using 1` `with rgbimage` ϥǥե
`using 1:2:3` Ȥޤ
4 array
?binary array
Хʥեɸܤ礭ꤷޤɸ gnuplot
ƤޤμɽꤷʤФޤ㤨
`array=(10,20)` ϡ2 Ǻǽμ (x) ˤ 10 2 ܤμ
(y) ˤ 20 ɸܲǡ뤳Ȥ̣ޤե
λޤǥǡ³ȤΤͤȤޤǡ 1
ϡåϾάǤޤʣΥǡΥʬΥΤˡ
ȤȤǤޤ㤨 `array=25:35` 2 Ĥ 1 ǡ
եˤ뤳Ȥ̣ޤ
4 record
?binary record
Υɤ `array` ƱǡƱǽޤ
`record` gnuplot ˺ɸưޤϡΤ褦
ɸХʥǡեΤ˴ޤޤƤΤΤ
ΤǤ
4 skip
?binary skip
ΥɤϡХʥեΤΥåפǽˤޤ
㤨СΥե뤬ǡΰγϰ֤ 1024 ХȤΥإå
Ĥ褦ʾˤϡʲΤ褦ˤȻפǤ礦:
plot '<file_name>' binary skip=1024 ...
եʣΥ쥳ɤ硢Τ줾ФƬΤ餷
֤ꤹ뤳ȤǤޤ㤨СǽΥ쥳ɤ 512 ХȤ
åפ2 ܡ3 ܤΥ쥳ɤ 256 ХȤåפ
ϰʲΤ褦ˤޤ:
plot '<file_name> binary record=356:356:356 skip=512:256:256 ...
4 format
?binary format
ǥեȤΥХʥϡñư (float) ġǤ
ꤹ뤿ˡ format ѿΥ˴ؤܺ٤ʾ
Ǥޤ㤨 `format="%uchar%int%float"` ϡǽ using
Ȥʤʸѿ (unsigned char) 2 ܤĤ
(int) 3 ܤñư (float) ꤷƤޤ⤷
Ҥο꾮ϡĤѿϰ
Τ˺ǸͿѿޤ
`using` Ʊ͡`*` ʸĤɤΤƤ˻ꤹ
ȤǤޤ֤եɤؤβˤäưۤη֤
ꤹ뤳ȤǤޤ㤨С`format="%*2int%3float"` ϡ3 Ĥ
¿ǡɤˡ2 ĤǡɤΤƤޤѤǤѿ
ΰϡ`show datafile binary datasizes` Ǹ뤳ȤǤޤ
ϡ줾ΥѥˤäƤΥХȥȤȤ˥ޥ
¸ѿ̾Υ롼פȡޥ˰¸ʤѿ̾Υ롼פʬ
Ƥޤ
4 endian
?binary endian
եΥХʥǡΥǥϡgnuplot ưץåȥ
ΥǥȤϰۤʤɤޤĤλ
gnuplot ХȤɤΤ褦˰Ǥޤ㤨
`endian=little` ϡХʥեΥХȤ¤Ӥ夫
礭¤ǤȸʤޤץϰʲΤΤȤޤ
little: 夫礭ʷ¤
big: 礭ʷ夫龮ʷ¤
default: compiler Ʊǥȸʤ
swap (swab): ǥѹ (褦ʤ餳
ȤäƤߤƤ)
gnuplot ϡѥ˥ץꤵƤС"middle" (
"pdp") ǥ⥵ݡȤǤޤ
4 filetype
?binary filetype
?filetype
gnuplot ϡĤɸŪʥХʥեˤĤƤɬפʾ
Υե뤫ȴФȤǤޤ㤨 "format=edf" ESRF
åեΥեȤɤ߹ߤޤߥݡȤƤ
ˤĤƤϡ`show datafile binary filetypes` ǸƤ
̤ʥեȤ `auto` ꡢξ gnuplot ϥХʥ
γĥҤݡȤƤɸŪʳĥҤǤ뤫
åޤ
ޥɥ饤ɤϥե뤫ɤΤ˻Ȥ
졢ե뤫ɤϥǥեȤޤʲ:
`set datafile binary`
5 avs
?binary filetype avs
?filetype avs
?avs
`avs` ϡưŪǧФХʥեη
ĤǤAVS ñʥեޥåȤǡץꥱ֤ǤȤ
Τ˺ǤŬƤޤϡ2 Ĥ long (xwidth ywidth) ȡ
θ³ԥꡢγƥԥ alpha/red/green/blue
4 ХȤޤ
5 edf
?binary filetype edf
?filetype edf
?edf
?filetype ehf
?ehf
`edf` ϡưŪǧФХʥեη
ĤǤEDF ESRF ǡեޥå (ESRF Data Format) ̣
ơ edf ehf ξηݡȤƤޤ (Ԥ ESRF
Header Format)λѤ˴ؤܤϰʲǸĤǤ礦:
http://www.edfplus.info/specs
5 png
?binary filetype png
?binary filetype gif
?binary filetype jpeg
?filetype png
?filetype gif
?filetype jpeg
gnuplot png/gif/jpeg Ѥ libgd 饤֥Ȥ褦˥
뤵Ƥ硢βХʥեȤɤ߹ळ
ȤǤޤʲΤ褦Ūʥޥ
plot 'file.png' binary filetype=png
ȤȤǤޤ餫ʲΤ褦ꤷơĥҤ鼫ư
Ū˲ưŪǧ뤳ȤǤޤ
set datafile binary filetype=auto
4 keywords
?binary keywords
ʲΥ (keyword) ϡХʥե뤫ɸȤ
ˤΤŬѤޤĤޤꡢbinary array, matrix, image θġǤ
x,y,z ΰ֤ؤ֤ΤΤΤǤ
5 scan
?binary keywords scan
?scan
gnuplot ХʥեɤΤ褦뤫ȤȤȼºݤ
Ǹ뼴Ȥδ֤δطˤĤƤ¿κ𤬵ޤ
κ餹ˤϡgnuplot ϥХʥե "" //̡ޤ
®//٤ȹͤȤǤ礦Υɤ
gnuplot ˡΤɤκɸ (x/y/z) ˳Ƥ
ꤷޤ 2 ġޤ 3 Ĥʸ¤Ӥɽǽʸ
ˡʸˡ3 ܤʸ̤бޤ㤨С
`scan=yx` ϡǤ® () y б̤®
() x б뤳Ȥ̣ޤ
⡼ɤ `plot` ξ硢ˤ x y 2 ĤʸȤȤ
Ǥ`splot` ФƤ x, y, z 3 ĤʸȤȤǤޤ
Ƥ˴ؤƤϡ//̤ľɸؤΤߤ¤
̤ˤޤͳǡɸؤγƤΤλҤѰդ
Ƥơľɸ x, y, z t (), r, z
ʤäƤޤ
5 transpose
?binary keywords transpose
?transpose
`scan=yx`ޤ `scan=yxz` ƱǤʤϻ
ԤΥԥؤγƤ˱ƶͿޤɽݤ˲ž֤
ϡʲΤ褦ˤƤߤƤ:
plot 'imagefile' binary filetype=auto flipx rotate=90deg with rgbimage
5 dx, dy, dz
?binary keywords dx
?binary keywords dy
?dx
?dy
gnuplot ɸ硢δֳ֤ϤΥɤǻꤵ줿
ΤѤޤ㤨 `dx=10 dy=20` x 10y 20
δֳ֤ɸܲ줿Ȥ̣ޤ`dy` `dx` ʤлȤޤ
Ʊͤ `dz` `dy` ʤлȤޤ⤷ǡμꤷ
ɤμ礭硢Ĥμδֳ֤ϡꤵ줿
Ǥ⤤ΤΤƱͤѤޤ㤨вե뤫ɤ
ޤ졢`dx=3.5` Τꤵ줿硢gnuplot x δֳ֤ y
δֳ֤ 3.5 Ѥޤ
ʲΥɤɸˤΤŬѤޤʲΤΤ
matrix ХʥեˤȤޤ
5 flipx, flipy, flipz
?binary keywords flipx
?flipx
?flipy
?flipz
Хʥǡե gnuplot Ȱפʤ
ޤˤޤΥɤϡ줾 x, y, z Υǡ
ոˤޤ
5 origin
?binary keywords origin
?binary origin
gnuplot ž (transpose) ȿž (flip) ˤƺɸ硢
κˤʤ褦ˤޤʤǡž֤
ȿžιԤʤ줿ľɸϤ 1 ݸ¤褦ˤޤ
դΤ¾ξ֤硢`origin` ɤǻ
gnuplot κ碌ޤλϡ`plot`
2 Ĥκɸȡ`splot` Ǥ 3 ĤκɸȤꤷƤ㤨
`origin=(100,100):(100,200)` ϡĤΥե˴ޤޤ 2 ĤΥ
Фǡ2 ФǤ2 ܤȤ
`origin=(0,0,3.5)` ȡ 3 ѤλǤ
5 center
?binary keywords center
?keywords center
?center
`origin` ȻƤޤΥɤϡ濴Υ
ǻꤷˤʤ褦֤ޤ㤨 `center=(0,0)` Τ褦ˤ
Υ `Inf` ΤȤ center ŬѤޤ
5 rotate
?binary keywords rotate
?keywords rotate
?rotate
ž (transpose) ȿž (flip) ޥɤϺɸȺɸˤ
νͿƤޤ٤˴ؤ봰ϡ2
βžѤҤžѥ٥ȥͿ뤳ȤˤԤʤȤǽˤ
ޤ
`rotate` , `plot`, `splot` ξǡ2 ̤ФŬ
ޤžϺɸʿ̤γ٤˴ؤƹԤʤޤ
٤ϡ饸ñ̤Ǥpi degrees ܿȤƤΥ饸Ǥɽ
Ǥޤ㤨С`rotate=1.5708`, `rotate=0.5pi`, `rotate=90deg`
٤Ʊ̣Ǥ
`origin` ꤵ줿硢žʿư˺濴ˤƹ
ʤޤʳǤϲž濴 (`center`) ˴ؤƹԤʤ
5 perpendicular
?binary keywords perpendicular
?perpendicular
`splot` ˴ؤƲž٥ȥ꤬٥ȥɽ 3 Ĥο
Ȥꤹ뤳ȤǼƤơΥ٥ȥ 2 xy ʿ̤
Ƹդ줿ˡ٥ȥ (perpendicular) ɽƤޤ
ΥǥեȤ (0,0,1) Ǥrotate perpendicular ξ
뤳Ȥˤꡢ3 ̵إǡդ뤳Ȥ
ʤޤ
ޤǽ 2 βžԤʤ졢μ 3 βžԤʤޤ
ĤޤꡢR' Ѥˤ 2 x 2 βžȤP (0,0,1)
(xp,yp,zp) ػҸ˲ž 3 x 3 ιȤR' ʬ
Ȥƻ 3,3 ʬ 1 Ǥ¾ʬ 0 Ǥ褦ʹ (Ĥ
z βž) ȤСѴɽˤط
v' = P R v Ȥʤޤǡv ϥǡե뤫ɤ߹ޤ줿
3 x 1 ΰ֥٥ȥǤեΥǡ 3 ŪʤΤǤʤ
ϡŪʥ롼뤬ŬѤ 3 Υǡȸʤޤ (
С̾ z ɸ 0 Ȥ졢xy ʿ 2 ǡȸʤޤ)
3 ǡ (data)
?commands plot datafile
?plot datafile
?data-file
?datafile
?data
?file
եˤǡϡ`plot` ޥɥ饤ǡΥǡե
̾ñޤŰǰϤǻꤹ뤳ȤɽǤޤ
ǡϥեǤϤʤϥȥफ뤳ȤǤޤ
ʲ: `special-filenames`, `piped-data`, `datablocks`
:
plot '<file_name>' {binary <binary list>}
{{nonuniform|sparse} matrix}
{index <index list> | index "<name>"}
{every <every list>}
{skip <number-of-lines>}
{using <using list>}
{convexhull} {concavehull}
{smooth <option>}
{bins <options>}
{mask}
{volatile} {zsort} {noautoscale}
Ҥ `binary`, `index`, `every`, `skip`, `using`, `smooth`, `bins`,
`mask`, `convexhull`, `concavehull` `zsort` 줾ʬ
ñ˸Ȱʲ̤ꡣ
#start
#b `skip N` ϥեƬ N Ԥ̵뤹褦 gnuplot ˻ؼ
#b `binary` ϥե뤬ƥȤǤʤХʥǡĤȻؼ
#b `index` ʣΥǡ礫ɤΥǡ褹뤫
#b `every` ϰĤΥǡ礫ɤ褹뤫
#b `using` ϥեΤɤɤνǻȤ
#b `smooth` ˥ǡñʥե륿֤֡
## ¹
#b `convexhull` ñȡޤ with `smooth` ȤȤ߹碌ϡϥǡ
## ζ¿ѷĺ뿷֤ޤ
#b `bins` ϸġ x ˱褦ζ֤˻ʬƶñ
## ͤȤ
#b `mask` ϡ줿ޥ̤ơΥԥ
## 줿ʬ硢ޤ pm3d ̤줿ΰΤߤ褹褦ե
## 륿ޤ
#b `volatile` ϥեƤǺɤ߹ߤ뤳ȤϤǤä
## ƻѤΤˤݻƤʤФʤȤؼ
#end
`splot` 褯Ȥޤ`bins` ϥݡȤƤޤ
ʿ경ˤĤƤϡ2,3 `smooth` ץݡȤƤޤ
`noautoscale` ϡưŪ˼ϰϤꤵ뵡ǽͭ
ˡǡˤĤƤϡ̵뤵 (
ư̼ܵǽηоݤ鳰) 褦ˤޤ
ƥȥǡե:
ǡեζǤʤƹԤϡĤΥǡҤޤ`#` ǻ
ޤԤ㳰ǡϥȤȤư̵뤵ޤ
襹Ȼꤷץ˰¸ƹԤ 1 İʾ 8 İʲ
ͤɤ߹ߡñΥǡ˴Ϣդޤʲ: `using`
ǡեñθġͤϡۥ磻ȥڡ (Ĥޤʣ
ζ) ޤϥޥ `set datafile` ǻꤷ̤ʥե
ɶڤʸǶڤƤɬפޤեΤŰ
ǰϤޤƤ硢ޤϥեɶڤʸ꤬ۥ磻ȥڡ
ˤʤäƤϡΥեɤۥ磻ȥڡޤळȤǽ
ǤŰΥۥ磻ȥڡδκݤˤ̵뤵Τǡ
ΥǡԤ 3 ȸʤޤ:
1.0 "second column" 3.0
ǡϡؿ e, E ʸĤؿɽǽƤƤޤ
ޥ `set datafile fortran` ͭʾϡfortran λؿ
d, D, q, Q Ȥޤ
ǡեζԤϽפǤ
1 ԤΥ֥Ԥϡ`plot` Ϣ³ؼޤ; ֥Ԥˤäƶ
ڤ줿ǷФ뤳ȤϤޤ (line style ǽƤ
ˤ)
2 ԤΥ֥Ԥϡ̡Υǡ֤ζڤޤʲ:
`index`
⤷ autoscale ξ֤Ǥ (ʲ: `set autoscale`)Ƥ
ǡݥȤޤ褦˼ưŪ˰Фơ꤬
ʤƤ꤬ޡޤϡ2 Ĥη̤ޤ:
i) `splot` Ǥϡ̤γѤ̤γѤ˰פƤʤȤޤ
ξ硢ĤϽ뤳ȤϤޤii) 2 μǤΡƱ x
ϰϤΥǡɽκݡ⤷ x2 μФ꤬Ƥʤ
ϡx ɸäƤʤȤޤ x (x1) Ƥ
ˤޤǼưŪ˰ФΤФx2 ϤǤϤʤǤ
Ǥ뤳ȤǤޤ:
reset; plot '-', '-' axes x2y1
1 1
19 19
e
1 1
19 19
e
ˤϡ`set autoscale` ޥɤ `set [axis]range` ޥ
ɤ `noextend` ץȤȤǤޤϡι
ߤ褦ʼϰϤγĥǽ̵ˤޤ
٥κɸʸǡե뤫ɤ߹ळȤǤޤ (ʲ
: `labels`)
4 columnheaders
?commands plot datafile columnheaders
?data-file columnheaders
?datafile columnheaders
?columnheaders
ޥ plot Υ `skip` ȤȤǡǡեƬ
ɲù (ʣԤ) Ū̵뤵뤳ȤǤޤǡե
ˤϡʸإåޤɲäñԤ⤢ޤޥ
plot إå (column header) 㤨ХȥȤƻѤ
ɤΤ褦Ū˻ȤϡιԤưŪ˥åפޤ
ǤʤСå 1 ɲä뤫`set datafile columnheaders`
°ꤹ뤳ȤŪˤιԤåפɬפǤ礦
ʲ: `skip`, `columnhead`, `autotitle columnheader`
4 ڤե (csv files)
?csv files
?datafile csv
:
set datafile separator {whitespace | tab | comma | "chars"}
"csv" ϡϥڤ ("comma-separated values") άǤ
ǤΡcsv ե ("csv file") ȤդϡΥǡե
ɤɬ⥫ޤǤɬפϤʤʸǶڤƤ褦
ʥեȤޤcsv ե뤫ǡɤिˤϡgnuplot ˥
ɶڤʸʤǤ뤫ɬפޤ㤨Сե
ɶڤʸȤƥߥȤե뤫ɤ:
set datafile separator ";"
ʲ: `set datafile separator`ϡѤΥեˤΤŬ
ޤϤȤ CSV եˤϡ`set table` ˥ץ
`separator` ѤƤ
4 every
?commands plot datafile every
?plot datafile every
?plot every
?data-file every
?datafile every
?every
`every` ϡ褹ǡǡ礫Ū˥ץ
뤳Ȥǽˤޤ
̾ΥեФƤϡ֥ݥȡפ 1 ĤιԡǡΡ֥֥å
ϡΥ֥åȶԤǶڤϢ³ԤΤޤȤޤ̣뤳
Ȥޤ
matrix ǡФƤϡ֥֥åפȡ֥ݥȡפϡ줾ֹԡ
ȡפбޤʲ: `matrix every`
:
plot 'file' every {<ݥʬ>}
{:{<֥åʬ>}
{:{<ϥݥ>}
{:{<ϥ֥å>}
{:{<λݥ>}
{:<λ֥å>}}}}}
褹ǡݥȤϡ<ϥݥ> <λݥ> ޤ <
ʬ> äӡ֥å <ϥ֥å> <λ֥å>
ޤ <֥åʬ> äӤޤ
ƥ֥åκǽΥǡϡեκǽΥ֥åƱ褦ˡ
0 ֡פȿޤ
ץåȤǤʤޤԤ⥫Ȥ뤳ȤդƲ
ĤοϾάǤޤ; ʬΥǥեȤ 1 ϤͤϺǽ
ݥȤǽΥ֥åƽλͤϺǸΥݥȤǸΥ֥
ꤷޤ`every` Υץ ':' ǽΤϵƤޤ
`every` ꤷʤСƤιԤƤΥݥȤץåȤޤ
:
every :::3::3 # 4 ܤΥ֥åӤޤ (0 ֤ǽ)
every :::::9 # ǽ 10 ֥åӤޤ
every 2:2 # 1 ĤΥ֥å 1 ĤΥݥȤ
# ޤ
every ::5::15 # 줾Υ֥åǥݥ 5 15 ޤǤ
# Ӥޤ
ʲ⻲
^ <a href="http://www.gnuplot.info/demo/simple.html">
ñ plot ǥ (simple.dem)
^ </a>
,
^ <a href="http://www.gnuplot.info/demo/surface1.html">
ѿ⡼ɤǤ splot ǥ
^ </a>
,
^ <a href="http://www.gnuplot.info/demo/surface2.html">
ѿ⡼ɤǤ splot ǥ
^ </a>
4 ǡե (example)
?commands plot datafile example
?plot datafile example
?plot example
?datafile example
?data-file example
?example
ϡե "population.dat" Υǡޤˤ
Ǥ
pop(x) = 103*exp((1965-x)/10)
set xrange [1960:1990]
plot 'population.dat', pop(x)
ե "population.dat" ϼΤ褦ʥեǤ
# Gnu population in Antarctica since 1965
1965 103
1970 55
1975 34
1980 24
1985 10
=skip
binary :
# 2 Ĥ float ͤ (2 ܤ̵̣ͤ)ɤΤơ
# Ĥ float ̵ͤ¤Ĺ³ 1 ǡȤƻ
plot '<file_name>' binary format="%float%*float" using 1:2 with lines
# ǡե뤫ɸΤɬפʾ٤ƤΥإ
# ˴ޤǤ EDF եξ
plot '<file_name>' binary filetype=edf with image
plot '<file_name>.edf' binary filetype=auto with image
# 3 Ĥʤʸ (unsigned char) RGB ο
# ʬȤy ȿžɸʿ̾ѹ
# (夬ˤʤ褦)ԥδֳ֤ꤷե
# ˤ 2 ĤβޤޤƤơΤĤ origin ʿ
# ư롣
plot '<file_name>' binary array=(512,1024):(1024,512) format='%uchar' \
dx=2:1 dy=1:2 origin=(0,0):(1024,1024) flipy u 1:2:3 w rgbimage
# 4 Ĥ̤Υǡʤꡢɸǡե˴ޤޤƤ
# 롣ե gnuplot ¹ԤƤ륷ƥȤϰۤʤ륨
# ǥƤ롣
splot '<file_name>' binary record=30:30:29:26 endian=swap u 1:2:3
# Ʊϥեǡ 1 ܤ 3 ܤΥ쥳ɤå
splot '<file_name>' binary record=30:26 skip=360:348 endian=swap u 1:2:3
ʲ: `binary matrix`
4 ե륿 (filters)
?commands plot datafile filters
?plot datafile filters
?plot filters
?data-file filters
?datafile filters
?filters
ϥǡɤ߹ľ塢¾ smooth 䥹ͭνץ
ŬѤˡե륿 (filters) ľŬѤޤ
˥ե륿ŪϡΤ¿ʬѷƥ롼ײ
ԤȴФʬ֤ޤ
ߥݡȤƤե륿 `bins`, `convexhull`, `concavehull`,
`mask`, `sharpen`, `zsort` Ǥ
5 ٿʬ (bins)
?commands plot datafile filters bins
?plot datafile filters bins
?plot filters bins
?data-file filters bins
?datafile filters bins
?filters bins
?bins
:
plot 'DATA' using <XCOL> {:<YCOL>} bins{=<NBINS>}
{binrange [<LOW>:<HIGH>]} {binwidth=<width>}
{binvalue={sum|avg}}
`plot` ޥɤФ륪ץ `bins` ϡǽ˸Υǡx
ĤĤγ (ӥ) ˳ơƳ˰
ͤΤߤ褷ޤοΥǥեͤϡ`set samples` Ƿꤷ
ޤ plot ޥɤǥӥοŪ˻ꤹ뤳ȤѹǤ
ޤ
binrange ꤷʤȡϰϤ 'DATA' ͤξüޤ
ϡꤷϰϤȳο鼫ưŪ˷ 0
NBINS-1 ޤǤγ˳Ƥޤ:
BINWIDTH = (HIGH - LOW) / (NBINS-1)
xmin = LOW - BINWIDTH/2
xmax = HIGH + BINWIDTH/2
first bin holds points with (xmin <= x < xmin + BINWIDTH)
ǽγ (xmin <= x < xmin + BINWIDTH) ϰϤݻ
Ǹγ (xmax-BINWIDTH <= x < xman) ϰϤݻ
i = floor(NBINS * (x-xmin)/(xmax-xmin)) ֤γ˳
Ȥ̤ˡγꤹ뤳ȤǽǤξ硢ο
(nbins) ϡϰΤˤ錄ǾγοȤʤޤ
νϤϡ衢ޤɽˤޤ㤨 gnuplot
Τ褦˳硢ǽγ x ɸνϤ x=LOW Ǥ
ꡢx=xmin ǤϤޤ
using ̿ǰĤΤߤꤷ硢ƥǡϡ x ɸͤ
Ф볬ιͤ 1 Ϳޤ2 ܤꤹȡγ
ͤˤ 2 ܤͤɲäޤäơʲ 2 Ĥ plot ޥ
ɤƱˤʤޤ:
plot 'DATA" using N bins=20
set samples 20
plot 'DATA' using (column(N)):(1)
ǥեȤǤϡƳФ褵 y ͤϡγΤ٤
˴ؤ y ͤ¤ˤʤޤϡץ `binvalue=sum`
бޤФơ`binvalue=avg` ǤϤγΤ٤Ƥ
Ф y ͤʿѤ褷ޤ
Ϣץ˴ؤƤϡʲ: `smooth frequency`,
`smooth kdensity`
5 (convexhull)
?commands plot datafile filters convexhull
?commands plot datafile convexhull
?plot datafile filters convexhull
?datafile filters convexhull
?plot filters convexhull
?filters convexhull
?plot convexhull
?convexhull
convexhull 襹ǤϤޤϡե륿
ȤñȤǡޤ `smooth path` `expand <increment>` ȤȤ߹
碌ȤƻȤޤ
plot FOO using x:y convexhull
plot FOO using x:y convexhull smooth path
plot FOO using x:y convexhull expand <increment> {smooth path}
Ffigure_convex_hull
ϡFOO ޤ¿ѷŪʬ硢
ʤ (convex hull) ֤ޤ¿ѷĺϡ
ײĶȤʤ褦˽ϤޤäƤζλȽϰ
`lines` `polygons`, `filledcurves` 襹Ŭڤ
褦ˤƤޤϡ丵Υǡ٤Ƥޤ pm3d
̤ΤΰŪ褹ޥȤƤ˻Ȥޤʲ:
`masking`
`smooth` Ĥȡĺϳ餫ʶ뤿
ȤƻȤޤ (ʲ: `smooth path`)ǥեȤǤϡ
ʿ경ϥ̤ޤ
ץΥ `expand` ʬ (<increment>) ϡդ
ʬʬͤεΥޤưưʬαѤ
(mitered) ǤĤʤޤϡγĺ 2 Ĥĺ֤
Ѥ뤳Ȥ̣ޤܤդȤδ֤˷֤ǤƤޤ
Ǥ
5 (concavehull)
?commands plot datafile filters concavehull
?commands plot datafile concavehull
?plot datafile filters concavehull
?datafile filters concavehull
?plot filters concavehull
?filters concavehull
?concavehull
ʤ gnuplot --enable-chi-shapes դǥӥɤ줿Τ
ǽ
(concavehull) ϡ襹ǤϤޤϡϥǡ
ζ¿ѷ(hull) Ĥե륿ΰĤǡϡ
¿ѷμνŤ줿ʬ֤ޤ
ǤդФưդ˷ꤷޤϤȤϰ㤤ʣα
ꤨޤĤαȤߤϤޤޤޤ
gnuplot Duckham (2008; Patttern Recognition 41:3224-3236) ˤ
줿-ޤ
Ffigure_concave_hull_1
Ϳ줿Фɥ͡ѷʬ䤫黰ѷȿ뤳
Ǧ-ޤȿǤϡʲδ˽äƻѷĺ
ޤ: (1) ܿ붭Ϣ٤餵ʤϺ˾
(2) ѷΰĤդߤμϤκǤĹʬǤ硢(3)
դ-˷ꤹĹѥĹ
硣gnuplot ǤϡĹѥϡ桼ѿ `chi_length`
ޤȿϡ뻰ѷʤʤäߤޤ
`chi_length` 礭硢ѷϰĤ-ϸμ
ˤʤޤ`chi_length` Ȥʬ¿λѷ
졢ǽŪʷ㤯ʤޤ `chi_length`
˾ޤޤ
Ffigure_concave_hull_2
`chi_length` Ŭڤϡϥǡʬ̩ۤ٤˶¸ޤ
桼 `chi_length` ꤷʤСgnuplot ϤưŪ
ޤ줬ʤΥǡФŬڤǤݾڤϤޤοޤ
ƤǡФƤϡgnuplot chi_length=22.6 ǥեȤ
κĹդ 0.6 ܤĹǤǥեȤǻѤ
κĹդФΨϡޥ `set chi_shape fraction <value>`
ѹǤޤ
ߤΥդǻȤä桼 gnuplot `chi_length`
ͤϡѿ GPVAL_CHI_LENGTH ¸ޤ
ץ `expand` ʬ (<increment>) ϡγդ
ꤷΥޤϡΤ٤Ƥγ¦ˤ
Ķ롢ޤϡ`smooth path`
߹碌뤳ȤǽǤ
5 ޥ (mask)
?commands plot datafile filters mask
?plot datafile filters mask
?plot filters mask
?data-file filters mask
?datafile filters mask
?filters mask
?mask
plot FOO using 1:2:3 mask with {pm3d|image}
ޥȡimage 衢ޤ pm3d 褫ʬ
ΤˤѤǤޤ
ʲ: `masking`
5 Բ (shapen)
?plot filters sharpen
?filters sharpen
?sharpen
ե륿 `sharpen` ϡؿˤΤŬѤޤ褹ؿ
ˤõޤϡΥդʬǤɸΤ
줫 x ͤξäƤȤϸ¤ޤϡζˤ
ʬˡˤäơĤƤɸνɲäޤϡԡ
αԤüڤΤƤ餷ޤƤɸܲǤϤˤϼ
ޤ
:
set samples 150
set xrange [-8:8]
plot abs(sqrt(sin(x))) sharpen
"sharpen" ʤǤϡ̤ΥդϢ³ǡ˶˾
ʤꡢζ˾ͤ 0 ã٤ΤǤͰŪڤΤƤ졢
y ζ˾ͤϸܤˤ 0.02 0.20 δ֤ˤʤޤ
"sharpen" Ĥ뤳ȤǡδؿܤǤ롢
ŪDZԤ y=0 ã˾ͤĥդޤ
D sharpen 1
5 z (zsort)
?commands plot datafile filters zsort
?plot datafile filters zsort
?plot filters zsort
?data-file zsort
?datafile zsort
?filters zsort
?zsort
plot FOO using x:y:z:color zsort with points lc palette
ϥǡ¾ smooth ץŬѤϸľ˥Ȥ
ޤ¾ smooth ץǡƥȤơ`zsort` θ̤
դˤʤ⤢뤳ȤդƤ
z ư̼ܤǤʤ硢ϰϳ z ͤϥե饰դޤ
Ϥޤ
εǽϡȤƤǡ 2 λۿޤɽ
ʬۤ狼Ǥ³褦˥ե륿褦ʻȤտޤƤ
z ݾͤˤ륽Ȥˤꡢ⤤ z ͤĤ褦㤤 z ͤ
ʤ뤳ȤϤʤʤޤ
4 index
?commands plot datafile index
?plot datafile index
?plot index
?data-file index
?datafile index
?index
`index` ϡѤʣΥǡĥե뤫顢
Υǡ뤳ȤǽˤޤźȤƤ index
ˤĤƤϡʲ: `arrays`
:
plot 'file' index { <m>{:<n>{:<p>}} | "<name>" }
ǡ 2 ԤζʬΥƤޤ`index <m>` <m> ܤν
ޤ; `index <m>:<n>` <m> <n> ޤǤΥǡ
; `index <m>:<n>:<p>` ϡ<m>, <m>+<p>, <m>+2<p>, ʤɡ<p>
<n> ǽλޤC ź (index) դ˽
index 0 ϤΥեκǽΥạ̇̄ޤ礭
index λˤϥ顼å֤ޤ<p> ꤷ<n>
ˤ硢<p> ΥǡեκǸޤɤ߹ߤޤ`index`
ꤷʤϡեΥǡΤñΥǡȤ褷
:
plot 'file' index 4:5
եγФơ줬ޤޤǡ index ͤϡ
`column(-2)` ѤǤޤϡʲ˸褦ˡΥե
θġΥǡ̤̤ˡޤϡѤ 1
ĤΥǡʤ `index` ޥɤԳ湥Ǥ
ġΥǡ˰ۤʤ°ƤˤϤȤƤǤ
ʲ: `pseudocolumns`, `lc variable`
:
plot 'file' using 1:(column(-2)==4 ? $2 : NaN) # ȤƤԳ湥
plot 'file' using 1:2:(column(-2)) linecolor variable # ȤƤ !
`index '<name>'` ϡǡ̾ '<name>' ޤ̾ϥ
ȹԤ˽ƥǡ˳ƤޤʸȤ³
ΥȹԤơη̤ <name> ϤޤäƤС
³ǡ <name> Ȥ̾ĤơǤ
:
plot 'file' index 'Population'
<name> ǻϤޤ뤹٤ƤΥȤ³ǡ̾ˤʤ뤳
դƤ뤿ˡ㤨 '== Popolation =='
'[Population]' ʤɤ̿̾ˡǤ礦
^ <p>ʲ Web ڡ⻲
^ <a href="http://www.gnuplot.info/demo/multimsh.html">
^ index Ȥä splot Υǥ
^ </a></p>
4 skip
?plot datafile skip
?data-file skip
?datafile skip
?skip
`skip` ϡץ˥ƥȥǡե (Хʥǡ
Բ) ƬοԤåפޤåפԤϡ`every`
ɽǤιԿˤϥȤޤ`every ::N` ϤΥե
ΥǡΤ٤ƤΥ֥åƬåפޤ`skip N` ϤΥ
ƬʬιԤΤߤåפ뤳ȤդƤХʥ
ǡեŬѤƱͤΥץˤĤƤϡʲ:
`binary skip`
4 smooth
?commands plot datafile smooth
?plot datafile smooth
?plot smooth
?data-file smooth
?datafile smooth
?smooth
?splines
`gnuplot` ϡϥǡǤäΤ褦֤¾
ǡŬѤ롼ĤäƤޤ `smooth`
˥롼ײƤޤ줿ǡ
Сgnuplot γǥǡ뤫ޤŬڤʥǥǤ `fit`
ȤΤǤ礦ʲ⻲: `plot filters`
:
smooth {unique | frequency | fnormal | cumulative | cnormal
| csplines | acsplines | mcsplines bezier | sbezier
| path
| kdensity {bandwidth} {period}
| unwrap}
ץ `unique`, `frequency`, `fnormal`, `cumulatie`, `cnormal` ϡ
x ɸ˴ؤƥǡȤƤ x ͤФʬۤΤ
ͻҤ褷ޤ
spline ϡBezeir ϤΥץϡǡüüϢ³η
ꤷޤζϴؿդƱˡʤͤ x ɸ
˱褦Ʊζ֤Ȥ (ʲ: `set samples`)
ʬǤĤʤȤ褷ޤǡ礬Ԥ̤ͤڤƤ
硢ڤƤʤ줾ʬ̡Ϣ³ȤƤĤʤޤ
̡ˤĤʤʬƱΤϡȤڤ줿ꡢϢ³ˤʤä
ꤹ뤫⤷ޤ
`unwrap` ϡǡФ礭ʥפʤ褦ˡ2Фܤ
äޤ
⤷ `autoscale` ξ֤ǤСϰϤϸΥǡǤϤʤ
ǽŪʶФƷޤ
⤷ `autoscale` ξ֤Ǥʤĥץ饤硢
ץ饤ɸܲϡϥǡޤ褦 x ϰϤȡ
`set xrange` ꤷɸϰϤζʬξǹԤʤ
ޤ
᤹ʿ경ץŬѤˤϥǡʤϡ
顼åɽޤ
`smooth` ץϡؿΤȤˤ̵뤵ޤ˺ɸ⡼
Ǥϡ`smooth path` ΤͭǤ
3 plot (splot) Ǥʿ경ϡߤ 3 ν̤뼫 3
ץ饤˸ꤵƤޤŪˤϡƻ
(`smooth path`) ˥ץ饤äޤ3 ǡ 2
ͱƤФƤϡ`smooth csplines` Ϥ줬 2 ǡǤ뤫Τ褦
˺ѤޤĤ `splot` ޥɤǤϡ줫ĤΥɤ
ߤƤޤ
splot $DATA using 1:2:3 smooth path with lines
5 acsplines
?commands plot datafile smooth acsplines
?plot datafile smooth acsplines
?data-file smooth acsplines
?datafile smooth acsplines
?plot smooth acsplines
?plot acsplines
?splot smooth acsplines
?splot acsplines
?smooth acsplines
?acsplines
ץ `smooth acsplines` ϼʳ餫ʥץ饤ǥǡ
ޤǡ x ˴ؤñĴˤ줿 (ʲ: `smooth unique`)
1 ĤζĤ 3 ¿༰ΰʬˤʬŪ˹ޤ
3 ηϡġΥǡ˹礦褦˵ޤ
using ˤä 3 ܤͤͿ줿ϡͤǸġ˽
ߤĤޤǥեȤϡʲƱǤ:
plot 'data-file' using 1:2:(1.0) smooth acsplines
塢ŤߤŪ礭ϡΤ˻Ȥʬο
ꤷޤ⤷Ťߤ礭СġΥǡαƶ礭ʤꡢ
ζϡ٤礦Ʊ֤ 3 ץ饤ǤĤʤ
˶Ťޤ⤷ŤߤСζϤ꾯ʤʬǹ졢
ˤäƤʿŪˤʤޤκǤüʾϤ 1 Ĥζʬ
ʤǤꡢƤΥǡ˽ŤߤդǾ 2
äƺޤΩ줫СʿꤵνŤߤϡζФ
ʿ경ҡפˤäʬ䤵줿ؤΡŪʽŤߤȸ뤳Ȥ
ޤˤꡢΥե (ɸŪ) ʿꤵνŤߤȤ
ƻȤȤǤޤ
:
sw(x,S)=1/(x*x*S)
plot 'data_file' using 1:2:(sw($3,100)) smooth acsplines
splot 'data_file' using 1:2:3:(sw($4,100)) smooth acsplines
`splot ... smooth acsplines with lines` ϡϢ³ǡ x, y, z
ɸ˥ץ饤ƤϤޤ2 ξȤϰ㤤ǽ˥
ȤޤΤǡƤϤ륹ץ饤εƻϥ롼פIJǽ
ޤ
ٹ: ̤ 3 ξ硢Υץ饤ƤϤޤΤǡ
褦ʸ̤ˤϡŤͤʤ礭ʤФޤ
ޤ¿ηϩĹۤͤȤƻȤΤǡŤߤŤ뤽
֤ϡĤμؤμͱƤȤϰפʤȤդƤ
5 bezier
?commands plot datafile smooth bezier
?plot datafile smooth bezier
?plot smooth bezier
?data-file smooth bezier
?datafile smooth bezier
?plot bezier
?smooth bezier
?bezier
ץ `smooth bezier` ϡn (ǡθĿ) Υ٥ǥ
ޤζξüĤʤޤ
5 bins
?data-file smooth bins
?datafile smooth bins
?smooth bins
`smooth bins` `bins` ƱǤʲ: `bins`
5 csplines
?commands plot datafile smooth csplines
?plot datafile smooth csplines
?plot smooth csplines
?data-file smooth csplines
?datafile smooth csplines
?plot csplines
?smooth csplines
?csplines
?splot smooth csplines
ץ `smooth csplines` ϥǡ x ñĴ· (ʲ
: `smooth unique`) 3 ץ饤ǰ³Ĥʤޤ
ʿ경Ͼ˥ǡ̤ΤǡäƱΤδֳ֤ᤤ硢
γ餫ʶ˽Ĥ꤬ǤƤޤ⤷ޤ
`splot ... smooth csplines with lines` ϡϢ³ǡ x, y, z
ɸ˥ץ饤ƤϤޤ2 cspline Ȥϰ㤤
˥ȤޤΤǡƤϤ륹ץ饤εƻϥ롼פIJǽ
ޤ̤ˡץ饤̡ 3 Ĥν줾
줬Ĥκɸ x, y, z ̤ŪǤʤƻѥδؿͤ
ưޤϡ2 `plot ... smooth path` ץƱ
Ǥ
ζ xy, yz, xy Τ줫ʿ̾ˤ褦̤ʾϡñ
ηΤߤޤˤꡢ3 ʿ경
ɸͱƤ 2 դΥץ饤ƤϤΥԡѤ߽Ť
Ǥ褦ˤʤޤ
5 mcsplines
?commands plot datafile smooth mcsplines
?plot datafile smooth mcsplines
?plot smooth mcsplines
?data-file smooth mcsplines
?datafile smooth mcsplines
?plot mcsplines
?smooth mcsplines
?mcsplines
ץ `smooth mcsplines` ϡʿ경줿ؿñĴ
¸褦 3 ץ饤ǰ³Ĥʤޤϡ
ͤαƶ㸺ޤ
FN Fritsch & RE Carlson (1980) "Monotone Piecewise Cubic Interpolation",
SIAM Journal on Numerical Analysis 17: 238-246.
5 path
?plot datafile smooth path
?plot smooth path
?smooth path
?datafile smooth path
?path
#TeX ~
Ffigure_smooth_path
ץ `smooth path` ϡϥǡǸ硢ʤǽ x
ǥȤꤻˡ3 ץ饤ǰ³Ĥʤޤ
ϡĶ䡢롼פޤ൰ƻγ餫ʥץ饤ޤ
ʿ⡼ɤϡ2 , 3 ξ襳ޥɤǥݡȤƤ
ϥեζԤǶڤ줿Ф̡ζޤ
`smooth path with filledcurves closed` ˤϡ礫Ķ
Ȥݾڤ`smooth path with lines` ˤϡȽ
ƱǤĶǤʤгȤݾڤ
ʲ⻲ȤƤ
^ <a href="http://www.gnuplot.info/demo_6.0/smooth_path.html">
smooth_path.dem
^ </a>
5 sbezier
?commands plot datafile smooth sbezier
?plot datafile smooth sbezier
?plot smooth sbezier
?data-file smooth sbezier
?datafile smooth sbezier
?plot sbezier
?smooth sbezier
?sbezier
ץ `smooth sbezier` ϡǽ˥ǡñĴ· (ʲ:
`unique`) `bezier` 르ꥺŬѤޤ
5 unique
?commands plot datafile smooth unique
?plot datafile smooth unique
?plot smooth unique
?data-file smooth unique
?datafile smooth unique
?plot unique
?smooth unique
?unique
ץ `smooth unique` ϡǡ x ñĴˤޤƱ x
ĥǡ y ͤʿѤưĤ֤ޤƤη
̤ȤʬǷӤޤ
5 unwrap
?commands plot datafile smooth unwrap
?plot datafile smooth unwrap
?plot smooth unwrap
?data-file smooth unwrap
?datafile smooth unwrap
?plot unwrap
?smooth unwrap
?unwrap
ץ `smooth unwrap` ϡ2 Ĥ³Фۤ㤤Фʤ
˥ǡޤ: y ͤϰϤۤ褦ФƤϡ
ȤκФϰϤ˼ޤ褦 2Фܤäޤϡ
ᤷķϤͤŪϢ³ˤΤͭѤǤ
5 frequency
?commands plot datafile smooth frequency
?plot datafile smooth frequency
?plot smooth frequency
?data-file smooth frequency
?datafile smooth frequency
?plot frequency
?smooth frequency
?frequency
=histogram
ץ `smooth frequency` ϡǡ x ˴ؤñĴˤޤx
ɸƱϡ y ͤιפ y ͤȤƻİĤ֤
ޤ¿ͤΥǡΥҥȥγ (bin)
ϡ y ͤ 1.0 ˤơǤ¤ƱθĿ
ɽ褦ˤޤϡǡ 1 ꤷϡۤΤ
˹Ԥʤޤ
:
binwidth = <Ŭ> # x ͤγƳ
bin(val) = binwidth * floor(val/binwidth)
plot "datafile" using (bin(column(1))):(1.0) smooth frequency
plot "datafile" using (bin(column(1))) smooth frequency # Ʊ
ʲ⻲
^ <a href="http://www.gnuplot.info/demo/smooth.html">
smooth.dem
^ </a>
5 fnormal
?commands plot datafile smooth fnormal
?plot datafile smooth fnormal
?plot smooth fnormal
?data-file smooth fnormal
?datafile smooth fnormal
?plot fnormal
?smooth fnormal
?fnormal
ץ `smooth fnormal` ϡץ `frequency` Ʊͤư
ޤҥȥޤʤǡ x
ؤñĴˤơy ͤϤΤ٤Ƥ¤ 1 ˤʤ褦ޤ
x ɸƱϡ y ͤιפ y ͤȤƻİĤ
ޤ¿ͤΥǡΥҥȥγ (bin)
ˤϡ y ͤ 1.0 ˤơǤ¤Ʊθ
ɽ褦ˤޤϡǡ 1 ꤷϡۤ
˹Ԥʤޤ
ʲ⻲
^ <a href="http://www.gnuplot.info/demo/smooth.html">
smooth.dem
^ </a>
5 cumulative
?commands plot datafile smooth cumulative
?plot datafile smooth cumulative
?plot smooth cumulative
?data-file smooth cumulative
?datafile smooth cumulative
?plot cumulative
?smooth cumulative
?cumulative
ץ `smooth cumulative` ϡǡ x ˴ؤñĴˤޤx
ɸƱϡʲ x ͤĤ٤Ƥ (ʤߤΥǡ
κ¦) Ф y ͤŪʹפ y ͤȤƻİĤ
֤ޤϡǡʬ۴ؿΤѤǤ
ޤ
ʲ⻲
^ <a href="http://www.gnuplot.info/demo/smooth.html">
smooth.dem
^ </a>
5 cnormal
?commands plot datafile smooth cnormal
?plot datafile smooth cnormal
?plot smooth cnormal
?data-file smooth cnormal
?datafile smooth cnormal
?plot cnormal
?smooth cnormal
?cnormal
ץ `smooth cnormal` ϡx ˴ؤñĴǡy ͤ [0:1]
줿ǡޤƱ x ͤʣϡ
꾮 x ͤĤ٤ƤΥǡ (ʤߤΥǡ
⺸ˤ) ¤٤Ƥ y ͤ¤dzäͤ y ͤȤ
Ĥ褦ʰΥǡ֤Ѥޤϡǡ
ʬ۴ؿΤ˻Ȥޤ (äɸΰۤʤǡ
ΤͭѤǤ)
ʲ⻲
^ <a href="http://www.gnuplot.info/demo/smooth.html">
smooth.dem
^ </a>
5 kdensity
?commands plot datafile smooth kdensity
?plot datafile smooth kdensity
?plot smooth kdensity
?data-file smooth kdensity
?datafile smooth kdensity
?plot kdensity
?smooth kdensity period
?smooth kdensity
?kdensity
ץ `smooth kdensity` ϡ褵줿ͽʬۤФ륬
ˤˤ̩ɾ褷ޤͤϺǽΥǡꡢ
ȤƽŤߤ 2 ޤˤϡΰ֤֤졢
Υˤ٤Ƥ¤ؿȤ褵ޤ줿ҥ
ˤϡƽŤߤ 1/(θĿ) Ȥ٤Ǥ
Х:
ǥեȤǤϡgnuplot ʬۤΥǡͤФƺŬȤʤ褦ʥ
Ѥޤ
default_bandwidth = sigma * (4/3N) ** (0.2)
̾ϤȤƤݼŪǡʤХǤХϡ
Ū˻ꤹ뤳ȤǤޤ
plot $DATA smooth kdensity bandwidth <value> with boxes
ǻѤХϡGPVAL_KDENSITY_BANDWIDTH ¸ޤ
:
ŪʥǡФƤϡġΥʬϡ1 ζ֤֤
褦˰ɬפޤΰϡѤδؿȤ¬ꤵ줿ǡǡ
ϼ 2ФǤ¾ϡʣǯϤäơǯ˼줿
ǡǡμ 365 Ǥ
Τ褦ʾ硢μ襳ޥɤϤɬפޤ
plot $ANGULAR_DAT smooth kdensity period 2*pi with lines
4 ̤ʥե̾ (special-filenames)
?special-filenames
?special_filenames
?pseudofiles
?commands plot datafile special-filenames
?plot datafile special-filenames
?plot special-filenames
?datafile special-filenames
?data special-filenames
?special-filenames ++
?special-filenames +
?'-'
?'+'
?'++'
̤ʰ̣ĥե̾ȤơΤΤޤ: '', '-', '+',
'++'
Υե̾ '' ϡƱ plot ޥɾǡľϥեƤ
Ѥ뤳Ȥ gnuplot ˻ؼޤäơƱϥե 2 Ĥ
ǡ褹ˤϰʲΤ褦ˤޤ:
plot 'filename' using 1:2, '' using 1:3
filename ϡθ plot ޥɤǤ '' ǺѤǤޤ
ξ `save` ȡȤȤƤ̾ϿΤߤǤ
'+' '++' Ȥ̤ʥե̾ϡ`using` Τ襹
˥饤ؿȤ褦ˤ뤿λȤߤǤ̾ؿϥ
ץñ y (ޤ z) ͤƤޤե
'+' Ϥ줬ºݤϥեǤ褦ˡ`using` ˤ
1 ܤͤɸȤưɲäͤꤹ뤳Ȥǽ
ɸ `set samples` ޤŪɸֳܴ֤ϰϻʬ
ꤹ뤳ȤǤޤɸϡ`set trange` ꤵƤ
ꤷϰΤϤޤǤʤ `set xrange` ϰ
ΤϤޤ
: trange λѤϡΤǤ gnuplot λͤȤϰۤʤޤ
ˤ x ϰϤȤϰۤʤɸϰϤѤǤ뤳Ȥˤʤޤ
plot '+' using ($1):(sin($1)):(sin($1)**2) with filledcurves
'+' ľˡΩɸϰϤꤹ뤳ȤǤޤ̾δؿ
Ʊ͡Ωѿ̾Ƥ뤳ȤǤޤplot κǽǤ
Ϳ硢ɸϰϤˤϤ륭 `sample` ֤ɬ
פޤ (ʲ⻲: `plot sampling`)
plot sample [beta=0:2*pi] '+' using (sin(beta)):(cos(beta)) with lines
ʲϡɸֳܴ (1.5) ɸϰ˻ꤷǤɸϡ-3, 1.5,
0, 1.5, ... 24 ΰ֤Ǽޤ
plot $MYDATA, [t=-3:25:1.5] '+' using (t):(f(t))
ե '++' ϡu `set samples` 椵οv
`set isosamples` 椵οΡɸŪ [u,v] ɸγʻ
2 Υǡ֤ޤäơ'++' ˡurange
vrange ꤹɬפޤx y ϰϤϼưŪꤵ
뤫ޤŪ urange, vrange Ȥϰ㤦ͤǤޤ
:
splot '++' using 1:2:(sin($1)*sin($2)) with pm3d
plot '++' using 1:2:(sin($1)*sin($2)) with image
`'-'` Ȥ̤ʥե̾ϡǡ饤Ǥ뤳Ȥؼ
ޤʤǡޥɤθ³ƻꤷޤΤȤϥ
Τߤޥɤ³ޤäơ`plot` ޥɤФե
ȥ롢饤Ȥäץϡ`plot` Υޥ
饤˽ʤȤޤϡunix 륹ץȤˤ
<< (ҥɥ) ƱͤǤΥǡϡ餬ե뤫
ɤ߹ޤ줿Τ褦ˡ1 ԤˤĤ 1 ĤΥǡϤޤ
ƥǡνϡ1 ܤλϤʸ "e" ֤Ȥǻؼޤ
`'-'` ϡǡȥޥɤ˻ĤȤͭѤǤΤˤ
ޤ㤨С̡Υץꥱ `gnuplot` ˤξѥ
ϤǤ㤨СǥեˤϤεǽȤΤ
Ǥ礦`index` `every` Τ褦 `plot` ΥץͿ
ƤȡϻȤ뤳ȤΤʤǡϤᤷƤޤ
ñʾ٤Ƥξǡ`'-'` ǡɤ߹⡢ǽ
˥ǡ֥åƤɤ߹¿ʬñǤʲ:
`datablocks`
⤷`replot` ޥɤ `'-'` Ȥʤ顢ʤ 1 ٰʾǡ
ϤɬפǤ礦ʲ: `replot`, `refresh`֤
ǡ֥åȤǤ
Υե̾ ('') ϡľΥե̾ƤӻȤ뤳Ȥؼ
ϡ
plot '/ȤƤ/Ĺ/ե̾' using 1:2, '' using 1:3, '' using 1:4
Τ褦ʤȤǤ⤷Ʊ plot ޥɾǡ`'-'` `''` ξ
Ѥȡ饤ǡ 2 ĤνͿɬפꡢ
ܤΤΤѤ뤳ȤϤǤޤ
4 ѥפˤϥǡ (piped-data)
?commands plot datafile piped-data
?plot datafile piped-data
?datafile piped-data
?data piped-data
?plot piped-data
?piped-data
?pipes
=pipes
popen ؿäƤ륷ƥǤϡǡեϡ'<' ǻϤޤ
̾ˤäơ륳ޥɤѥϤ뤳ȤǤޤ㤨
pop(x) = 103*exp(-x/10)
plot "< awk '{print $1-1965, $2}' population.dat", pop(x)
ϡǽοƱ褷ޤx ɸ 1965 ǯ
ηвǯɽ褦ˤʤޤ¹ԤȤϡΥǡ
ΥȹԤ٤ƺʤФʤޤޤϾΥ
ɤκǽʬΤ褦Ѥ뤳ȤǤޤ (ޤ³ʬ):
plot "< awk '$0 !~ /^#/ {print $1-1965, $2}' population.dat"
ΥץϺǤޤ`using` ɤѤñ
ʥե륿ǹԤȤǽǤ
fdopen() ؿĥƥǤϡǡե뤫ѥפ˷ӤĤ
줿ǤդΥեǥץɤ߹ळȤǤޤ`n` ֤Υ
ǥץɤ߹ˤϡ`'<&n'` ȤƤˤꡢ
1 POSIX shell θƤӽФǡʣΥǡե뤫Υ
Ϥưפ˹Ԥ褦ˤʤޤ:
$ gnuplot -p -e "plot '<&3', '<&4'" 3<data-3 4<data-4
$ ./gnuplot 5< <(myprogram -with -options)
gnuplot> plot '<&5'
4 using
?commands plot datafile using
?plot datafile using
?plot using
?data-file using
?datafile using
?using
Ǥ褯ȤǡեνҤ `using` ǡϥե
ΤɤιԤ褹Τؼޤ
:
plot 'file' using <entry> {:<entry> {:<entry> ...}} {'format'}
<entry> ϡϥեΰĤΥեɤ뤿ñʤ
ֹ椫ĤΥǡκǽιԤΥ٥˰פʸ
ǰϤޤ줿xticlabels(2) Τ褦˥åǰϤޤʤ̤ʴؿ
줫Ǥ
Υȥ꤬åǰϤޤ줿ξ硢N ܤͤꤹΤ˴ؿ
column(N) ѤǤޤĤޤꡢcolumn(1) ɤ߹ޤ줿ǽιܤ
Ȥcolumn(2) ϼιܡȤäǤcolumn(1), column(2),
... άȤơ̤ʵ $1, $2, ... ѤǤޤ
̤ʵ $# ϡߤϹԤɾޤΤǡcolumn($#)
stringcolumn($#) ϡʾ硢뤤ϹԤˤäưۤʤĿ
ޤե뤫ϤξǤ⡢ɬǽƤ֤ޤ
ؿ `valid(N)` ǡN ܤͭʿǤ뤫ɤƥȤǤޤ
ͤ礱ƤꡢǤʤäꡢNaN ξ 0 ֤
=column
=columnheader
ϥեκǽιԤγˡǡͤǤϤʤ٥äƤ
硢Υ٥ plot ȥ˻ѤǤޤؿ
column() ϡֹʳ˥٥Ǥޤ㤨Сǡ
ե뤬ʲΤ褦ʾ:
Height Weight Age
val1 val1 val1
... ... ...
ʲ plot ޥɤƱ̣ˤʤޤ:
plot 'datafile' using 3:1, '' using 3:2
plot 'datafile' using (column("Age")):(column(1)), \
'' using (column("Age")):(column(2))
plot 'datafile' using "Age":"Height", '' using "Age":"Weight"
ʸ˰פɬפޤʸʸ̤ޤ
Υ٥ plot ȥ˻Ȥˤϡ`set key autotitle columnhead`
Ȥ뤫ޤϸ̤˥ȥꤹϴؿ `columnhead(N)`
ȤäƤ
ϥǡե 1...N Ȥºݤ˲äơgnuplot ϴ
ĤĤ "" ޤ㤨С$0 ޤ column(0) ϡ
ǡΤΥǡԤιֹ֤ޤʲ:
`pseudocolumns`
<entry> ˲ʤСΥȥΥꥹȤν˥ǥեȤͤ
Ȥޤ㤨 `using ::4` ϡ`using 1:2:4` Ȳᤵޤ
`using` ˤĤΥȥꤷϡ <entry> y ͤ
ƻȤ졢ǡֹ ( $0) x ȤƻȤޤ㤨
"`plot 'file' using 1`" "`plot 'file' using 0:1`" Ʊ̣Ǥ
`using` 2 ĤΥȥͿ硢 x, y ȤƻȤޤ
˥ȥɲäơϤΥǡѤ褦襹
ξܺ٤ˤĤƤϡʲ: `set style`, `fit`
C using ν (format)
5 format
?using format
?plot using format
format ꤹȡ C 饤֥ؿ 'scanf' ŬѤƥǡ
եγƹԤɤߤޤǤʤСƹԤϥۥ磻ȥڡ (
䥿) Ƕڤ줿ǡ (ե) ʤȤߤʤޤ
ʲ⻲: `datafile separator`
'scanf' ؿǤϿʥǡοϤȤޤ`gnuplot`
ƤϥǡưȤߤʤޤ顢`gnuplot` Ǥ `%lf`
ܼŪͣοϻꡢȤȤˤʤޤνʸˤ
ʤȤġ 7 İʲΡΤ褦ϻҤɬפ
ޤ
'scanf' Ͽȿδ֤˥ۥ磻ȥڡʤ ("\t")
("\n")ޤϲڡ ("\f") ȴԤޤʳϤ
˥åפʤФޤ
"\t", "\n", "\f" ȤȤñषŰȤ٤
Ǥ뤳ȤդƤ
5 using (using_examples)
?commands plot datafile using examples
?plot datafile using examples
?datafile using examples
?using examples
ϡ1 ܤΥǡФ 2 ܤ 3 ܤ¤ͤ plot ޤ
ʸϡǡڡڤǤʤڤǤ뤳
ؼƤޤƱȤ `set datafile separator comma` ꤹ
뤳ȤǤǽǤ
plot 'file' using 1:($2+$3) '%lf,%lf,%lf'
ϡʣʽǥǡե "MyData" ɤ߹
ޤ
plot 'MyData' using "%*lf%lf%*20[^\n]%lf"
νΰ̣ϰʲ̤Ǥ:
%*lf ̵ͤ
%lf ưɤ߹ (ǥեȤǤ x )
%*20[^\n] 20 Ĥβʳʸ̵
%lf ưɤ߹ (ǥեȤǤ y )
=filter
=NaN
3 黻 `?:` Ȥäƥǡե륿ĤηҲ𤷤ޤ
plot 'file' using 1:($3>10 ? $2 : 1/0)
ϡ1 ܤΥǡФơ3 ܤΥǡ 10 ʾǤ褦
2 ܤΥǡ plot ޤ`1/0` ̤ͤǤꡢ`gnuplot` ̤
̵뤹ΤǡäŬڤǤʤϱ뤳Ȥˤʤޤ
ޤϡ餫Ƥ NaN ȤäƤƱȤˤʤޤ
åǻϤޤäƤʤ¤ֹȤƻȤȤǤޤ
㤨 `using 0+(ʣʼ)` ͤʤȤǤޤơοϡ
åǥȤƤʤпͤɾ졢åǥ
ƤиġΥǡɤ߹िˤͤɾ롢Ȥ
פǤ
եޥåȥǡȤäƤ硢λ֤Υǡʣ
Ϥ餻뤳ȤǤޤξ硢¾Υǡγϰ֤Ȥ
֤Υǡ˶ޤޤƤ뤳ȤդƤ㤨Сǡ
ԤκǽǤڡޤ줿֥ǡǤʤСy ͤ
3 ܤͤȤƻꤵ٤Ǥ
(a) `plot 'file'` ȡ(b) `plot 'file' using 1:2`
(c) `plot 'file' using ($1):($2)` ˤ̯ʰ㤤뤳ȤդƤ
ʲ: `missing`
ǽñ
plot 'file' using 1:2
Ȼꤹ뤳Ȥǡξɤʤ˥ߤΥǡޤԤĥե
plot 뤳ȤǽˤʤޤɤƤǡե
ʸĤƤʤСΥƥȹԤ˥ʸ (#)
֤Ǥ礦
5 (pseudocolumns)
?pseudocolumns
?commands plot datafile using pseudocolumns
?plot datafile using pseudocolumns
?datafile using pseudocolumns
?using pseudocolumns
plot ʸ `using` μǤϡϥե˴ޤޤºݤΥǡ
˲äƴ⻲ȤǤ "" (pseudocolumns) ˴ޤޤ
Ƥޤ
column(0) ǡǤγν֤֡ 0 Ϥޤꡢ
Ԥ䥳ȹԤǤʤԤ2 ԤϢ³Ԥǥ
åȤޤͤ matrix ǡǤϡ
column(0) ϳ matrix Ǥˤʤޤ
ά $0 Ѳġ
column(-1) ֹ 0 Ϥޤꡢ1 ԤζԤ2 ԤϢ
³ԤǥꥻåȤޤϡޤϳ
ҾǡΥǡԤбޤޤǡ
̡ʬ¿ѷ̤ΤˤȤޤ
column(-2) 0 Ϥޤꡢ2 ԤϢ³Ԥޤϡ
ʣΥǡĥեΡߤΥǡ
index ֹǤʲ: `index`
column($#) ̤ʵ $# ϡ¸ߤɾޤΤǡ
ä column($#) ϡߤϹԤκǽ (DZ)
ȤޤƱͤ column($# - 1) ϡǽΰ
ʤɤȤʤޤ
5 (arrays)
?using arrays
?plot using arrays
褹ǡޤʹؿǤ硢`using`
" (column)" ϰʲΤ褦˲ᤷޤܺ٤ˤĤƤϰʲ:
`arrays`
1 ź
2 οǤμ¿ʬޤʸʸ
3 οǤεʬ
5 key
?using key
?plot using key
襹 (Ѥ߾夲ҥȥ䥯㥰) Ǥϡǡ
Ƭ西ȥ뤳Ȥ̵̣ʥ쥤ȤˤʤäƤ
ޤ(`using 2:3:xticlabels(1)` Τ褦) ǡƤ鼴
٥뤳Ȥ̵̣ˤʤäƤޤ襹Ǥϡ
`using 2:3:key(1)` ηȤäƥǡ˴ޤޤʸ
(key) 西ȥޤ̾ϡԤƬ 1 ܤ
ޤ`spiderplot` ƤȤƤ
5 xticlabels
?xticlabels
?using xticlabels
?plot using xticlabels
ιߤθФ (ticlabel) ʸؿˤäƺ뤳ȤǤ
̾ϰȤƥǡޤǤñʷϡǡ
ʸȤƤѤǡxticlabels(N) xticlabels(stringcolumn(N))
ξάȤƻȤޤʲ 3 ܤǤ x ιߤθФ
ƻѤޤ
plot 'datafile' using <xcol>:<ycol>:xticlabels(3) with <plotstyle>
θФϡǤդ輴 x,x2,y,y2,z ѤǤޤ
`ticlabels(<labelcol>)` ϡ`using` ǡΥǡκɸ
꤬ƺѤ˹Ԥɬפޤͭ X,Y[,Z] ɸȤij
ǡФơxticlabels() Ϳʸͤϡб
x ɸƱ x θФΥꥹȤɲäޤ`xticlabels()`
`xtic()` Ⱦά뤳ȤǤ¾μ˴ؤƤƱͤǤ
:
splot "data" using 2:4:6:xtic(1):ytic(3):ztic(6)
Ǥϡx y θФ x,y ɸͤȤ̤Ф
z θФϡб z ɸͤޤ
:
plot "data" using 1:2:xtic( $3 > 10. ? "A" : "B" )
ϡx θФʸʹؿѤΤǡǡե
γ x ιߤθФϡ3 ܤͤˤä "A" "B"
줫Ȥʤޤ
5 x2ticlabels
?using x2ticlabels
?plot using x2ticlabels
ʲ: `plot using xticlabels`
5 yticlabels
?using yticlabels
?plot using yticlabels
ʲ: `plot using xticlabels`
5 y2ticlabels
?using y2ticlabels
?plot using y2ticlabels
ʲ: `plot using xticlabels`
5 zticlabels
?using zticlabels
?plot using zticlabels
ʲ: `plot using xticlabels`
4 volatile
?datafile volatile
?data volatile
?plot datafile volatile
?plot volatile
?volatile
plot ޥɤΥ `volatile` ϡϥȥफե뤫
ɤ߹ǡɤ߹ˤͭǤϤʤȤ̣ޤ
ϡ`replot` ޥɤˡǽʸ¤ `refresh` ޥ
Ȥ褦 gnuplot ˻ؼޤʲ: `refresh`
3 ؿ (functions)
?commands plot functions
?plot functions
?functions
ޥ `plot`, `splot` Ǥϡե뤫ɤ߹ǡ
ǤʤȤ߹ߴؿ桼ؿ褹뤳ȤǤޤؿ
ϡΩʼ̾ϰϤϤäƥǡץ뤳Ȥɾޤ
ʲ: `set samples`, `set isosamples`
:
approx(ang) = ang - ang**3 / (3*2)
plot sin(x) title "sin(x)", approx(x) title "approximation"
ؿΥǥեȤ襹ꤹˡˤĤƤϡʲ:
`set style function`Ȥ߹ߴؿξˤĤƤϡʲ:
`expressions functions`ǴؿˡˤĤƤϡʲ:
`user-defined`
3 ѿ⡼ (parametric)
?commands plot parametric
?commands splot parametric
?plot parametric
?splot parametric
ѿ⡼ (`set parametric`) Ǥϡ`plot` Ǥ 2 ĤοȤ
`splot` Ǥ 3 ĤοȤͿɬפޤ
:
plot sin(t),t**2
splot cos(u)*cos(v),cos(u)*sin(v),sin(u)
ǡեƱ褦褵ޤǡե뤬
ΤͿˡǤդѿؿ˴˻ꤵ줿
ƤǤȡx ѿؿ (Ǥ `sin(t)`)
y ѿؿ (Ǥ `t**2`) Ȥδ֤ˡ¾νҤǡ
ؿϤߤǤϤޤΤ褦ʤȤȡʸ顼ˤ
ꡢѿؿˤϻꤵƤʤɽޤ
`with` `title` Τ褦¾νҤϡѿؿλ꤬λ
˻ꤷʤФޤ
plot sin(t),t**2 title 'Parametric example' with linespoints
ʲ⻲
^ <a href="http://www.gnuplot.info/demo/param.html">
ѿ⡼ɤΥǥ⡣
^ </a>
3 ϰ (ranges)
?commands plot ranges
?commands splot ranges
?plot ranges
?splot ranges
?ranges
ΥǤϡޥ `plot`, `splot` ΰֺǽιܤȤƽ
ϰϤΥץˤĤƤΤޤꤹȡ
ϰϤϡΤɤ `set range` ˤϰϤ¤ͥ褷ư
ޤޥ `plot` ̤ʾ˻ꤹ롢ġǤϰϤ
¤ΥץˤĤƤϰʲ: `sampling`
:
[{<dummy-var>=}{{<min>}:{<max>}}]
[{{<min>}:{<max>}}]
1 ܤηϰϻΩѿϰ (`xrange`ޤѿ⡼
Ǥ `trange`) Ѥǡ2 ܤηϽ°ѿϰѤǤץ
<dummy-var> Ωѿο̾ѤǤޤ (ǥեȤѿ̾
`set dummy` ѹǤޤ)
ѿ⡼ (parametric) ǤʤСϰϻϰʲνͿʤ
Фޤ:
plot [<xrange>][<yrange>][<x2range>][<y2range>] ...
ѿ⡼ (parametric) ǤϡϰϻϰʲνͿʤФ
ޤ:
plot [<trange>][<xrange>][<yrange>][<x2range>][<y2range>] ...
ʲ `plot` ޥɤϡ`trange` [-pi:pi], `xrange` [-1.3:1.3],
`yrange` [-1:1] ꤹǤ:
plot [-pi:pi] [-1.3:1.3] [-1:1] sin(t),t**2
`*` ϡmin (Ǿ) max () ˼ưϰϻ (autoscale) εǽ
ȤȤǽˤޤ֤Τɬפϰϻˤϡ
ϰ `[]` ȤäƤ
`plot` `splot` ΥޥɹԤǻꤵ줿ϰϤϤΥհĤˤΤ߱
ڤܤޤäơθΥդΥǥեȤϰϤѹˤ
`set xrange` `set yrange` ѤƤ
줿ФƤϡplot ޥɤǤΰŪϰϻλѤϡ
Ԥ̤ޤʤ⤷ޤ (ʲ: `set link`)
֥ǡФƤϡϰϤϡǡե뤫ɤ߹Τ˻Ѥ
ƱǡǰϤǻꤹɬפޤʲ:
`set timefmt`
:
ʲϸߤϰϤѤޤ:
plot cos(x)
ʲ x ϰϤΤߤλǤ:
plot [-10:30] sin(pi*x)/(pi*x)
ʲϾƱǤѿȤ t Ȥޤ:
plot [t = -10 :30] sin(pi*t)/(pi*t)
ʲ x y ξϰϤλǤ:
plot [-pi:pi] [-3:3] tan(x), 1/x
ʲϡy ϰϤΤߤλǤ:
plot [ ] [-2:sin(5)*-8] sin(x)**besj0(x)
ʲ x κͤ y κǾͤΤߤλǤ
plot [:200] [-pi:] $mydata using 1:2
ʲ x ϰϤǡȤƻꤷƤޤ:
set timefmt "%d/%m/%y %H:%M"
plot ["1/6/93 12:00":"5/6/93 12:00"] 'timedata.dat'
3 ץ (sampling)
?sampling
?commands plot sample
?plot sample
?plot sampling
=sample
4 1 Υץ (x ޤ t ) (1D sampling)
?sampling 1D
?plot sampling 1D
ǥեȤǤϡоݤδؿФơϰΤˤ錄äɸ (
ץ) ޤϰϤϡ˥ޥ `set xrange` ꤹ
plot ޥɤΰֺǽξ x ϰϻ뤫ޤϤ
դΤ٤ƤǤޤϰ˥ǡΤ褦˼ư̼
(autoscaling) 줿 x ϰϤǤե "+" ɸϡ
t θߤϰΤϤޤ x ϰϤƱǤƱǤ
Ƥޤ
ġФɸϰϤ¤ƳƤ뤳ȤǤ
:
ʲϡx ΤϰϤ 0 1000 ȤƥեΥǡ褷2
ĤδؿΤϰϤΰʬ줾褷ޤ:
set xrange [0:1000]
plot 'datafile', [0:200] func1(x), [200:500] func2(x)
ʲϡȤۤƱͤǤΤϰϤϥǡեƤˤäƷ
ꤷޤξ硢ɸܲؿϡΤ˼ޤ뤫⤷
ޤޤʤ⤷ޤ:
set autoscale x
plot 'datafile', [0:200] func1(x), [200:500] func2(x)
ʲΥޥɤϤޤǤƬϰ [0:10] ϡ¿ʬǽδؿɸ
ܲΤߤ˸ΤȻפޤºݤˤϡΤŬѤ졢
xrange ̵뤵Ƥޤޤ:
set xrange [0:50]
plot [0:10] f(x), [10:20] g(x), [20:30] h(x)
Τޤˤϡ `sample` 뤳Ȥ
[0:10] plot ޥΤŬѤ뼴ϰϤǤϤʤñ plot
ǤŬѤɸϰϤǤ뤳Ȥؼ뤳ȤǤ
plot sample [0:10] f(x), [10:20] g(x), [20:30] h(x)
ʲϡ3 դˤ餻ζĤˡޤ:
set xrange [-2:2]; set yrange [-2:2]
splot sample [h=1:10] '+' using (cos(h)):(sin(h)):(h)
4 2 Υץ (u v ) (2D sampling)
?sampling 2D
?plot sampling 2D
ؿ䵿ե '++' Фǡϡu, v ˱
äɸܲ (ץ) Ԥޤʲ: `special-filenames ++`
2 Υץ `plot`, `splot` ޥɤǻѤǤޤ
ʲϡ2 `plot` ޥɤФ 2 ץǤ
ϡ襹 `with vectors` ɽ륰դޤ
ʲ: `vectors`
set urange [ -2.0 : 2.0 ]
set vrange [ -2.0 : 2.0 ]
plot '++' using ($1):($2):($2*0.4):(-$1*0.4) with vectors
ʲ 3 `splot` ޥɤФ 2 ץǤ
ϡ`sampling.dem` ǻѤƤΤ˻ޥǤ
2 Ĥζ̤ϡ륰դϰΤⶹ u, v ϰϤɸ
ԤȤդƤ
set title "3D sampling range distinct from plot x/y range"
set xrange [1:100]
set yrange [1:100]
splot sample [u=30:70][v=0:50] '++' using 1:2:(u*v) lt 3, \
[u=40:80][v=30:60] '++' using (u):(v):(u*sqrt(v)) lt 4
u, v Υץϰϻˤϡץǡοȥڡ
椹롢Ūʥץֳ֤뤳ȤǤޤ:
splot sample [u=30:70:1][v=0:50:5] '++' using 1:2:(func($1,$2))
3 plot ޥɤ for 롼 (for loops in plot command)
?commands plot for
?commands splot for
?plot for
?splot for
?for loops
=iteration
¿ƱΥեؿƱ褹ϡ줾 plot
ɤη֤ (iteration) ǤԤΤǤ
:
plot for [<variable> = <start> : <end> {:<increment>}]
plot for [<variable> in "string of words"]
֤Ŭϰ (scope) ϡΥ (,) ޥɤνꡢΤ
줫˸줿ȤޤǤǤ褹ܤ (ʣ
) ¤Ǥϡޤ֤äƤƤ⤽㳰Ȥʤޤ
֤ѿ⡼ (parametric) ǤϵǽʤȤդƤ
:
plot for [j=1:3] sin(j*x)
:
plot for [dataset in "apples bananas"] dataset."dat" title dataset
Ǥϡ֤ϥե̾б륿ȥξǻȤ
Ƥޤ
:
file(n) = sprintf("dataset_%d.dat",n)
splot for [i=1:10] file(i) title sprintf("dataset %d",i)
ϡե̾ʸʹؿΤ褦 10
ΥեƱ褷ޤ֤ѿ (Ǥ 'i') ϰĤ
Ȥư졢 2 ٰʾѤǤޤ
:
set key left
plot for [n=1:4] x**n sprintf("%d",n)
ϡؿȤ褷ޤ
:
list = "apple banana cabbage daikon eggplant"
item(n) = word(list,n)
plot for [i=1:words(list)] item(i).".dat" title item(i)
list = "new stuff"
replot
ǤϡꥹȤ˽äƳƥƥåפʹԤγƹܤФưĤ
褬ԤޤγƹܤưŪ˼ޤΤǡΥꥹȤѹ
Τޤ replot 뤳ȤǤޤ
:
list = "apple banana cabbage daikon eggplant"
plot for [i in list] i.".dat" title i
list = "new stuff"
replot
ϡη֤ѿǤϤʤʸη֤ѿѤ
뤳ȰʳƱǤ
<end> ˵ * ѤС֤Ϥ٤Ƥͭʥ
ʤʤޤǤη֤ȤʤޤϡƹԤ˴ޤޤ뤹٤Ƥ
ν뤤ϥեΤ٤ƤΥǡå (2 ԤζԤǶڤ
) νƤϤޤ뤹٤ƤΥեʤɤ٤˽Τ
Ǥ
:
plot for [file in "A.dat B.dat"] for [column=2:*] file using 1:column
splot for [i=0:*] 'datafile' index i using 1:2:3 with lines
plot for [i=1:*] file=sprintf("File_%03d.dat",i) file using 2 title file
ٹ:
κǽΤ褦ˡ֤ϤäʤηǤҤˤǤޤ
äΤʤ֤¾ΤäΤʤ֤Ҥˤ
¿ʬͭפǤϤޤϡǡĤʤäξԤƱ
˽λƤޤǤgnuplot Ϥ줬ȷٹȯޤ
3 title
?commands plot title
?commands splot title
?plot title
?splot title
?columnheader
ǥեȤǤϳƶϡбؿե̾ǥ˰ɽ
ޤplot Υץ `title` ȤȤǡŪʥȥͿ
뤳ȤǤޤ
:
title <text> | notitle [<ignored text>]
title columnheader | title columnheader(N)
{at {beginning|end}} {{no}enhanced}
<text> ϡǰϤޤ줿ʸʸɾ뼰Τ
줫Ǥϥˤɽޤ
ϥǡκǽι (ʤƬ) ʸեɤȲ
ȥȤѤ륪ץ⤢ޤʲ:
`datastrings`ϡ`set key autotitle columnhead` ꤹХǥ
ȤεưȤʤޤ
ȥȥץͽ `notitle` ȤȤǥǤ
ޤʤȥ (`title ''`) `notitle` Ʊ̣ޤ
ץߤȤϡİʾζȥθƤ
(`tilte ' '`)`notilte` θʸĤ硢ʸ
̵뤵ޤ
`key autotitles` ꤵ (ǥե) `title` `notitle`
ꤵʤä硢Υȥ `plot` ޥɾˤؿ̾
ǡե̾ˤʤޤե̾ξϡꤵǤդΥǡ
ե뽤Ҥ⤽Υǥեȥȥ˴ޤޤޤ
֤䥿ȥΰ·ʤɤΥ쥤Ȥϡ`set key` Ǥ
ޤ
`at` ˤꡢΥȥưŪ˺ key Ȣ
ˤǤ֤ȤǤ褦ˤʤޤ`at {beginning|end}` Ѥ
ϡΥȥդζȤľ뤤ľ֤
Υץϡ`with lines` 褹ͭѤǤ¾
襹Ǥ̵̣Ǥ
`at <x-position>,<y-position>` ηѤСΥȥ
Ǥդΰ֤֤ȤǤޤǥեȤǤϡΰֻ
ɸȲᤷޤ㤨 `at 0.5, 0.5` ϡդμ˽̼
䶭ˤϴطʤ˥Τɿ̣ޤˡ
֤륿ȥνϡkey Υץαƶޤʲ:
`set key`
:
ʲ y=x ȥ 'x' ɽޤ:
plot x
ʲϡx 2 ȥ "x^2" ǡե "data.1" ȥ
"measured data" ɽޤ:
plot x**2 title "x^2", 'data.1' t "measured data"
ʲϡեƬԤγ˥ȥޤʣΥǡ褷
ƥȥϡΩǤϤʤбθ֤ޤ:
unset key
set offset 0, graph 0.1
plot for [i=1:4] 'data' using i with lines title columnhead at end
ʲϡ2 Ĥ̡Υդ key ξ 1 սˤޤ:
set key Left reverse
set multiplot layout 2,2
plot sin(x) with points pt 6 title "Left plot is sin(x)" at 0.5, 0.30
plot cos(x) with points pt 7 title "Right plot is cos(x)" at 0.5, 0.27
unset multiplot
3 with
?commands plot with
?commands splot with
?commands plot style
?commands splot style
?plot with
?plot style
?splot with
?splot style
?style
?with
ؿǡɽˤϤΥΤΰĤȤȤǤޤ
`with` ΤѰդƤޤ
:
with <style> { {linestyle | ls <line_style>}
| {{linetype | lt <line_type>}
{linewidth | lw <line_width>}
{linecolor | lc <colorspec>}
{pointtype | pt <point_type>}
{pointsize | ps <point_size>}
{arrowstyle | as <arrowstyle_index>}
{fill | fs <fillstyle>} {fillcolor | fc <colorspec>}
{nohidden3d} {nocontours} {nosurface}
{palette}}
}
ǡ<style> ϰʲΤ줫:
lines dots steps vectors yerrorlines
points impulses fsteps xerrorbar xyerrorbars
linespoints labels histeps xerrorlines xyerrorlines
financebars surface arrows yerrorbar parallelaxes
ޤϡ
boxes boxplot ellipses histograms rgbalpha
boxerrorbars candlesticks filledcurves image rgbimage
boxxyerror circles fillsteps pm3d polygons
isosurface zerrorfill
ޤ
table mask
ǽΥ롼פΥϡʸ° 2 Υ롼
Υϡɤ٤°äƤޤʲ: `fillstyle`
˥֥ĥ⤢ޤġΥξܺ٤ˤĤ
Ƥϡʲ: `plotting styles`
Ǹ̤ʥ 2 Ĥϡ褹ΤǤϤޤʲ
: `set table`, `with mask` `table` ϡɽνϤ
ȥե뤫ǡ֥åηޤ뤬 `with mask`
Ǥ plot ޥɤǤϡ¿ѷΰνϤ
plot ޥɤΤθ³ǤޥΤ˻Ȥޤ
ǥեȤΥϡ`set style function` `set style data`
Ǥޤ
ǥեȤǤϡ줾δؿǡեϡȤȤǤ뷿
ãޤǰۤʤȤޤ٤Ƥüѥɥ饤Ф
6 ĤΰۤʤݡȤƤơ⤷ᤵ줿硢
˺ѤƤޤνϷǤν
ΤС`test` ȤƤ
ĤӤʤС<line_type> <point_type>
ꤷƤͤϡǻȤꤹ
(ޤϿ) ǤѤüǻȤɽ
ˤ `test` ޥɤȤäƤ
礭 <line_width> <point_size> ѹǤޤ
ϤγơüΥǥեȤͤФŪͤȤƻꤷ
礭ΤѤ褦ѹǤޤܺ٤ϡʲ:
`set pointsize`ǥåȤ <point_size> ȡ
`set pointsize` ǥåȤ礭ϡǥեȤΥݥȥ
˳ݤ뤳ȤդƤʤθ̤Ѥ
ޤ㤨С`set pointsize 2; plot x with points ps 3` ϡǥ
ȤΥ 3 ܤǤäơ6 ܤǤϤޤ
饤ΰʬ뤤ϳ plot ˤ `pointsize variable`
ȤǽǤξ硢Ϥˤɲä 1 ᤵޤ
2D Ǥ 3 3D Ǥ 4 Υǡɬפˤʤޤġ
ΥϡΤ̤Ƥ pointsize ˡǡե뤫
ˤͤΤȤƷꤵޤ
`set style line` Ȥä//ȤСΥ
ֹ <line_style> ˥åȤ뤳ȤǤȤȤǤ
2 3 ξ (`plot` `splot` ޥ)˥ޥ
`set palette` ꤷ餫ʥѥåȤοȤޤ
ϡ z ɸͤޤ `using` ˤ륪ץɲͿ
̤οɸбޤͤϡ (`palette frac`) ޤ
顼ܥåϰϤбŤ줿ɸ (`palette` `palette z`)
Τ줫ǻǤޤʲ: `colorspec`, `set palette`,
`linetypes`
`nohidden3d` ϡ`splot` ޥɤˤΤŬ
ޤ̾Хʥץ `set hidden3d` ϥվ
ŬѤޤơ `nohidden3d` ץĤ뤳
Ȥǡ hidden3d ν뤳ȤǤޤ`nohidden3d`
ޡ줿̰ʳθġ (ʬ٥) ϡ̾
¾β餫ǤDZƤޤ褵ޤ
Ʊͤˡ `nocontours` ϡХ `set contour` ꤬
ͭʾǤ⡢̤ plot Ф赡ǽդˤޤ
Ʊͤˡ `nosurface` ϡХ `set surface` ꤬ͭ
ʾǤ⡢̤ plot Ф 3 դˤޤ
ɤϰż褦ʷǾάǽǤ
`linewidth`, `pointsize`, `palette` ץƤü֤ǥݡ
ȤƤ櫓ǤϤʤȤդƤ
:
ʲϡsin(x) ľ褷ޤ:
plot sin(x) with impulses
ʲϡx 褷x**2 ǥեȤ褷ޤ:
plot x w points, x**2
ʲϡtan(x) ؿΥǥեȤǡ"data.1" ޤ褷ޤ:
plot tan(x), 'data.1' with l
ʲϡ"leastsq.dat" ľ褷ޤ:
plot 'leastsq.dat' w i
ʲϡǡե "population" 褷ޤ:
plot 'population' with boxes
ʲϡ"exper.dat" 顼Сդޤ褷ޤ (顼С
3 뤤 4 ΥǡɬפȤޤ):
plot 'exper.dat' w lines, 'exper.dat' notitle w errorbars
⤦Ĥ "exper.dat" Υ顼Сդޤ (errorlines) Ǥ
ˡ (顼С 3 뤤 4 Υǡɬ):
plot 'exper.dat' w errorlines
ʲϡsin(x) cos(x) ޡդޤ褷ޤޤ
ƱǤޡϰۤʤäΤȤޤ:
plot sin(x) with linesp lt 1 pt 3, cos(x) with linesp lt 1 pt 4
ʲϡ"data" 3 ǡ礭̾ 2 ܤ褷ޤ:
plot 'data' with points pointtype 3 pointsize 2
ʲϡ"data" 褷ޤ4 ܤɤǡ pointsize
ȤƻѤޤ:
plot 'data' using 1:2:4 with points pt 5 pointsize variable
ʲϡ2 ĤΥǡФơΤ߰ۤʤѤ褷ޤ:
plot 'd1' t "good" w l lt 2 lw 3, 'd2' t "bad" w l lt 2 lw 1
ʲϡx*x ζɤĤ֤ȿӤ褷ޤ:
plot x*x with filledcurve closed, 40 with filledcurve y=10
ʲϡx*x ζȿȢ褷ޤ:
plot x*x, (x>=-5 && x<=5 ? 40 : 1/0) with filledcurve y=10 lt 8
ʲϡ餫Ѳ뿧Ƕ̤褷ޤ:
splot x*x-y*y with line palette
ʲϡ2 ĤοΤĤ̤ۤʤ⤵ɽޤ:
splot x*x-y*y with pm3d, x*x+y*y with pm3d at t
2 print
?commands print
?print
:
print <> {, <>, ...}
`print` ޥɤϡ1 ġޤʣμͤϤޤϤϡ
`set print` ǥ쥯ȤƤʤ¤ꡢ̤عԤޤ
: `expressions`ʲ⻲: `printerr`
<> ϡgnuplot ͭǤդμǡͤǤ⡢ʸǤ⡢
ʸ֤ؿǤ⡢Ǥ⡢ޤѿ̾Ǥ뤳ȤǤޤ
ǡ֥åϤ뤳ȤǽǤ`print` sprintf gprintf
ؿȤ߹碌ơ˽ʽνϤԤȤǽǤ
print ޥǷ֤ȤȤǡñԤʣͤ뤳Ȥ
ǽǤ
:
print 123 + 456
print sinh(pi/2)
print "rms of residuals (FIT_STDFIT) is ", FIT_STDFIT
print sprintf("rms of residuals is %.3f after fit", FIT_STDFIT)
print "Array A: ", A
print "Individual elements of array A: ", for [i=1:|A|] A[i]
print $DATA
2 printerr
?commands printerr
?printerr
`printerr` `print` ޥɤȤۤƱǤ `set print`
ޥɤθ̤³Ƥ֤ǤϤ stderr Ȥ
㤤ޤ
νϤ˸ߤΥե̾ (ޤϴؿ֥å̾) ȹֹ줿
ϡ˥ޥ `warn` ѤƤ
2 pwd
?commands pwd
?pwd
`pwd` ޥɤϥȥǥ쥯ȥ̤̾ɽޤ
ȥǥ쥯ȥʸѿ¸ꡢʸǻȤ
ϡѿ GPVAL_PWD ȤȤǤ뤳ȤդƤʲ:
`show variables all`
2 quit
?commands quit
?quit
`quit` ϡޥ `exit` ƱǤʲ: `exit`
2 raise
?commands raise
?commands lower
?raise
?lower
:
raise {plot_window_id}
lower {plot_window_id}
ޥ `raise` `lower` ϡϷΤĤˤǽ
ƤʤѤ륦ɥޥ͡ɽͥ赡ǽˤ¸
ǽޤ
set term wxt 123 # ǽ襦ɥ
plot $FOO
lower # ¸ߤ襦ɥΤߤ
set term wxt 456 # 2 ܤ (1 ܤξˤ֤)
plot $BAZ
raise 123 # 1 ܤ襦ɥ
ΥޥɤϡޤƤˤʤʤȻפäƤ
2 refresh
?commands refresh
?refresh
ޥ `refresh` ϡ`replot` ˻Ƥޤ 2 Ĥǰ㤤
ޤ`refresh` ϡɤ߹ǡѤơߤ
褷ޤϡ`refresh` (ǥХ '-' )
饤ǡ衢ƤѲǡե뤫˻
ȤȤ̣ޤޥ `refresh` ϡ¸ߤ
˿ǡɲäΤˤϻȤޤ
ޥä˥।ȥॢȤǤϡŬڤʾ `replot`
ˤष `refresh` Ѥޤ:
plot 'datafile' volatile with lines, '-' with labels
100 200 "Special point"
e
# ʥޥǼ¹
set title "Zoomed in view"
set term post
set output 'zoom.ps'
refresh
2 remultiplot
?commands remultiplot
?remultiplot
`remultiplot` ϡľ multiplot ݤ̾դǡ֥
$GPAL_LAST_MULTIPLOT ¸ޥƼ¹Ԥޤʲ
: `new multiplots`
ʳ: ľ plot ޥɤλѤߤ multiplot ΰǤС
`replot` ϰۤ `remultiplot` ƤӽФޤ
multiplot դɽƤ֤ϡۥåȥư/ʤɤ
ޥ `remultiplot` ƤӽФޤ
2 replot
?commands replot
?replot
`replot` ޥɤʤǼ¹ԤȡǸ˼¹Ԥ `plot` ޤ
`splot` ޥɤƼ¹ԤޤϡץåȤۤʤ `set`
ץǤߤꡢƱץåȤۤʤ֤˽ϤꤹȤ
Ǥ礦
`replot` ޥɤФϺǸ˼¹Ԥ `plot` ޤ `splot`
ޥɤΰ (ۤ ',' ȶ) ɲä졢줫Ƽ¹Ԥޤ
`replot` ϡϰ (range) Ƥϡ`plot` `splot` Ʊ
Ȥ뤳ȤǤޤäơľΥޥɤ `splot` ǤϤʤ `plot`
ξϡؿ⤦ĤμߤǥץåȤΤ `replot` Ȥ
Ǥޤ
:
plot '-' ; ... ; replot
Ͽ侩ޤϡ줬ʤ˺ƤƱǡ٤ƤϤ
᤹뤳Ȥˤʤ뤫ǤƤξ硢˥ޥ `refresh`
Ȥޤϡɤ߹ǡȤäƥդ褷ޤ
Ǹ˼¹Ԥ `plot` (`splot`) ޥɤƤˡˤĤƤ
ʲ⻲: `command-line-editing`
ľ襳ޥɤΤɽ뤳Ȥ䡢 `history`
ԡˡˤĤƤϡʲ⻲: `show plot`
gnuplot ǤǤϡmultiplot ΤϺǤ`replot` ޥ
ɤϤΤǸ plot ǤޤǤgnuplot С
6 Ǥϡmultiplot Τ˻Ѥޥɤǡ֥å
$GPVAL_LAST_MULTIPLOT ¸Ͽޥ `remultiplot`
Ȥä multiplot ΤΤ˺Ƽ¹ԤǤޤ
ʳ (ܺ٤Ϻ gnuplot Ǥѹβǽ):
ľ˽դ multiplot ΰä硢`replot` ޥɤϸ
ߤϼưŪ `remultiplot` ȤưޤĤջब
ʲ: `new multiplots`, `remultiplot`
2 reread
?commands reread
?reread
[С 5.4 Ǥ侩]
Ūʷ֤ (iteration) ٻΥޥɤ侩Ȥޤ
ʲ: `iterate`
`reread` ޥɤϡ`load` ޥɤǻꤷ `gnuplot` ϥե
뤫μ¹ԤľˤΥեƬƳޤϡե
κǽ餫 `reread` ޥɤޤǤΥޥɤ̵¥롼פܼŪ˼
Ƥ뤳ȤˤʤޤɸϤϤκݤϡ`reread` ޥɤ
θϤޤ
2 reset
?commands reset
?reset
reset {bind | errors | session}
ޥ `reset` ϡ`set` ޥɤǤ롢դ˴ؤƤ
ץǥեȤͤᤷޤΥޥɤϡload ޥ
ɥե¹ԤǥǥեȤꡢ
Ǹξ֤ᤷȤʤɤǤ
ʲΤΤϡ`reset` αƶޤ:
`set term` `set output` `set loadpath` `set linetype` `set fit`
`set encoding` `set decimalsign` `set locale` `set psdir`
`set overflow` `set multiplot`
`reset` ϡɬץΩ夬ä֤ˤᤵʤȤ
դƤϡե gnuplotrc $HOME/.gnuplot
$XDG_CONFIG_HOME/gnuplot/gnuplotrc ΥޥɤǥǥեȤͤѹ
ϡꥻåȤƤޤǤ `reset session`
ȤСΥޥɤƼ¹Ԥޤ
?reset session
=session
`reset session` ϡ桼ѿ桼ؿ٤Ƥǥ
ȤƥΤνե gnuplotrc ȸĿ
Ѥνߥե $HOME/.gnuplot$XDG_CONFIG_HOME/gnuplot/gnuplotrc
Ƽ¹Ԥޤʲ: `initialization`
?reset errors
=error state
`reset errors` ϡ顼ѿ GPVAL_ERRNO GPVAL_ERRMSG Τߤ
ꥢޤ
?reset bind
=bind
`reset bind` ϡǥեȤξ֤ޤ
2 return
?commands return
?return
:
return <expression>
ޥ `return` ϡ ޥ `exit` `quit` ߤΥɥ֥
åμ¹ԤϥȥλΤƱˡǺѤޤ֤ͤ
ؿ֥åμ¹ԥɤξǤΤ̣߰ޤʲ:
`function blocks`
:
function $myfun << EOF
local result = 0
if (error-condition) { return -1 }
... body of function ...
return result
EOF
2 save
?commands save
?save set
?save
?save fit
:
save {functions | variables | terminal | set | fit | datablocks}
'<filename>' {append}
ɤꤷʤäϡ`gnuplot` ϡ桼ؿ桼ѿ
set ꤹ륪ץֺǸ˼¹Ԥ `plot` `splot` ޥ
ɤƤ¸ޤ`set term` `set output` θߤξ֤ϡ
ȤȤƽФޤ
¸եˤϥƥȷǽϤ `load` ޥɤɤ߹
ȤǤޤ
`save terminal` ϡ`terminal` ξ֤ȵĤ˽
ޤϼˡäȤδ֤ `terminal` ؤ
¸Ƥ `terminal` ξ֤ɤ߹ळȤǰ terminal
᤹ʤɤΩޤñ gnuplot åǤϡ
ߤ terminal ¸/¾ˡǤ륳ޥ `set term push`
`set term pop` Ȥष⤷ޤʲ:
`set term`
`save variables` ϡ٤ƤΥ桼ѿФޤǡ֥
ѿ GPVAL_* GPFUN_* MOUSE_* ARG* ϽФޤ
`save fit` ϡľ `fit` ޥɤǻѤѿΤߤ¸ޤ
¸եϡ `via` ɤȤȤ fit ޥɤν
ѤΥѥեȤѤǤޤ
ե̾ϰ˰ϤƤʤФʤޤ
̤ʥե̾ "-" ˤ `save` ޥɤɸϤ˽Ϥ뤳
Ǥޤpopen ؿݡȤ褦ʥƥ (Unix ʤ) Ǥϡ
save νϤѥͳ¾γץϤȤǤޤ
硢ե̾Ȥƥޥ̾Ƭ '|' ĤΤȤޤ
ϡ`gnuplot` ȥѥפ̤̿ץˡ`gnuplot`
˴ؤӤեޤܺ٤ϡʲ
: `batch/interactive`
:
save 'work.gnu'
save functions 'func.dat'
save var 'state.dat'; save datablocks 'state.dat' append
save set 'options.dat'
save term 'myterm.gnu'
save '-'
save '|grep title >t.gp'
2 set-show
?commands set
?commands show
?set
?show
?show all
`set` ޥɤϼ¤¿ΥץꤹΤ˻Ȥޤ
`plot`, `splot`, `replot` ޥɤͿޤDzΥդޤ
ΤۤȤɤΥץФơޥ `show` б븽
ɽޤ`show palette` `show colornames` ʤɤΤ
ΥޥɤΤߡ̤Ƥޤ
`set` ޥɤѹ줿ץϡб `unset` ޥ
ɤ¹Ԥ뤳ȤǥǥեȤξ֤᤹ȤǤޤʲ⻲:
`reset`ƤΥѥǥեȤͤᤷޤ
=iteration
`set` `unset` ޥɤˤϷ֤ѤǤޤʲ:
`plot for`
3 Ѥñ (angles)
?commands set angles
?commands show angles
?set angles
?show angles
?angles
?commands set angles degrees
?set angles degrees
?angles degrees
?degrees
ǥեȤǤ `gnuplot` ϶˺ɸդΩѿñ̤ϥ饸
ޤ`set polar` `set angles degrees` ꤹȡñ
٤ˤʤꡢǥեȤϰϤ [0:360] Ȥʤޤϥǡե
äǤ礦٤ϡ`set mapping` ޥɤꤹ
뤳Ȥˤ 3 ǤͭǤ
:
set angles {degrees | radians}
show angles
`set grid polar` ǻꤵ٤⡢`set angles` ǻꤷñ̤ɤޤ
ɽޤ
`set angles` Ȥ߹ߴؿ sin(x), cos(x), tan(x) ΰ asin(x),
acos(x), atan8x), atan2(x), arg(x) νϤˤƶͿޤж
䡢٥åؿΰˤϱƶͿޤʣǿȤ
жؿνϤˤϱƶФޤδؿȤȤϡ
`set angles radians` Ϥΰδ֤˰ä¸
ʤФʤޤ
x={1.0,0.1}
set angles radians
y=sinh(x)
print y #{1.16933, 0.154051} ɽ
print asinh(y) #{1.0, 0.1} ɽ
set angles degrees
y=sinh(x)
print y #{1.16933, 0.154051} ɽ
print asinh(y) #{57.29578, 5.729578} ɽ
ʲ⻲
^ <a href="http://www.gnuplot.info/demo/poldat.html">
poldat.dem: `set angles` Ѥ˺ɸΥǥ
^ </a>
3 (arrow)
?commands set arrow
?commands unset arrow
?commands show arrow
?set arrow
?unset arrow
?show arrow
?arrow
?noarrow
`set arrow` ޥɤȤȤˤꡢվǤդΰ֤ɽ
뤳ȤǤޤ
:
set arrow {<tag>} from <position> to <position>
set arrow {<tag>} from <position> rto <position>
set arrow {<tag>} from <position> length <coord> angle <ang>
set arrow <tag> arrowstyle | as <arrow_style>
set arrow <tag> {nohead | head | backhead | heads}
{size <headlength>,<headangle>{,<backangle>}} {fixed}
{filled | empty | nofilled | noborder}
{front | back}
{linestyle | ls <line_style>}
{linetype | lt <line_type>}
{linewidth | lw <line_width>}
{linecolor | lc <colorspec>}
{dashtype | dt <dashtype>}
unset arrow {<tag>}
show arrow {<tag>}
<tag> ϳ̤Ǥꤷʤϡλ
̤ѤκǤ⾮ưŪ˳ƤޤȤȤǡ
ѹꡢǤޤ¸ߤ°
ϡ `set arrow` ޥɤѹ°
ꤷƤ
κǽüΰ֤ϡ "from" ǻꤷޤ⤦Ĥü
ʲ 3 ĤΰۤʤȤߤΤ줫ǻǤޤ<position>
x,y 뤤 x,y,z ǻꤷޤƤ˺ɸϤ뤿
`first`, `second`, `graph`, `screen`, `character` ֤Ȥ
ޤɸꤷʤХǥեȤǤ 0 ȸʤޤܺ٤ϰ
: `coordinates`ǽüФɸҤϡ2 ܤü
ϱƶޤ
1) "to <position>" ϡ⤦Ĥüкɸꤷޤ
2) "rto <position>" ϡ"from" ΰ֤Τꤷޤξ硢
(п) `graph`, `screen` ɸФƤϡȽ
εΥͿ줿ŪͤбޤпФƤϡͿ
줿Ūͤϡ齪ؤܿбޤäơп
硢ŪͤȤ 0 ͤͿ뤳Ȥϵޤ
3) "length <coordinate> angle <angle>" ϡʿǤ
ꤷޤlength ˤǤդκɸϤŬѤǤޤangle ñ̤Ͼ
٤ˤʤäƤޤ
¾°⡢餫Υǡޤϥޥ
`set arrow` Ǥ줾Ϳ뤳ȤǽǤ¾°ξܺ٤ˤĤ
Ƥϰʲ: `arrowstyle`
:
(1,2) ؤ桼ѤΥ饤 5 ˤ:
set arrow to 1,2 ls 5
ΰκѤ (-5,5,3) إֹ 3 ˤ:
set arrow 3 from graph 0,0 to -5,5,3
ü 1,1,1 ѹ 2 ˤˤ:
set arrow 3 to 1,1,1 nohead lw 2
x=3 νإդβޤDZľˤ:
set arrow from 3, graph 0 to 3, graph 1 nohead
T ξü˻ıľˤ:
set arrow 3 from 0,-5 to 0,5 heads size screen 0.1,90
ŪʵΥպɸͿˤ:
set arrow from 0,-5 rto graph 0.1,0.1
x пŪʽꤷ:
set logscale x
set arrow from 100,-5 rto 10,10
100,-5 1000,5 ޤǤޤ (y) ФƤ
Ūʺɸ 10 " 10" ̣ΤФп (x) ФƤ
Ūʺɸ 10 "ܿ 10" ȤƯޤ
2 ֤äˤ:
unset arrow 2
Ƥäˤ:
unset arrow
Ƥξ (ν) ˤ:
show arrow
^ <a href="http://www.gnuplot.info/demo/arrowstyle.html">
Υǥ
^ </a>
3 ư̼ (autoscale)
?commands set autoscale
?commands unset autoscale
?commands show autoscale
?set autoscale
?unset autoscale
?show autoscale
?autoscale
?noautoscale
ư̼ܵǽ (autoscale) x, y, z γƼФΩˡޤϰ礷
ƻǤޤǥեȤǤƤμФƼư̼Ԥޤ
ޤΰ (`plot`) ȤΤߤ autoscale ϡ
Τ plot ޥɤ˥ե饰 `noautoscale` ĤФǤ礦
ʲ: `datafile`
:
set autoscale {<axis>{|min|max|fixmin|fixmax|fix} | fix | keepfix}
set autoscale noextend
unset autoscale {<axis>}
show autoscale
ǡ<axis> () `x`, `y`, `z`, `cb`, `x2`, `y2`, `xy`,
`paxis <p>` Τ줫Ǥ̾θ `min` ޤ `max` ɲä
ȡ `gnuplot` ˤμκǾ͡ޤϺͤΤߤư̼ܤ
뤳Ȥˤʤޤ
̾ꤷʤϡƤμư̼ܤоݤȤʤޤ
Ωѿ (`plot` ΤȤ x `splot` ΤȤ x,y ) μư̼
ǽϡ褵ǡ˹礦褦ˤμϰϤĴޤ
ؿΤ (ϥǡʤ) ξ硢μμư̼ܵǽϡʤ
̤ޤ
°ѿ (`plot` ΤȤ y `splot` ΤȤ z ) μư̼ܵ
ǽϡ褵ǡؿ˹礦褦ˤμϰϤĴޤ
ϰϤĴϡߤؤαĹԤȤޤ㤨С
üΥǡκɸߤٰפ硢ǡ趭Ȥδ
ˤϲʤڡǤ뤳Ȥˤʤޤ`noextend` ȤȤǡ
;פʥڡκǤޤޥ `set offset` Ȥ
Ȥǡ䤹ȤǤޤʤˤĤƤϡʲ:
`set xrange`, `set offsets`
ѿ⡼ (parametric) Ǥ⼫ư̼ܵǽͭǤ (ʲ:
`set parametric`)ξ硢¿ν°ѿΤǡx, y, z
˴ؤơ¿椬Ԥޤѿ⡼ɤǤΩѿ (
ѿ) `plot` Ǥ t `splot` Ǥ u, v Ǥѿ⡼
Ǥϡư̼ܵǽ (t, u, v, x, y, z) ƤϰϤ椷x,
y, z ϰϤμư˹Ԥޤ
꤬ 2 μɽ졢⤳μФ褬Ԥʤ
äˤϡx2range y2range xrange yrange ͤѤ
ϡϰϤΤ餷μ¹Ԥ䡢ϰϤĤ˼ư̤
פ˹ԤޤΤǡˤäͽʤ̤⤿餹ǽ
ޤΤˡ 2 ϰϤ 1 ϰϤŪ˥
(link) ˡޤʲ: `set link`
4 noextend
?set autoscale noextend
?set autoscale keepfix
?set autoscale fix
?autoscale noextend
?noextend
?keepfix
?fix
set autoscale noextend
ǥեȤǤϡư̼ܵǽϼϰϤθ³ǡΤޤࡢ
Ǥᤤ٥֤ꤷޤ `fixmin`, `fixmax`,
`fix`, `noextend` ϡ֤ޤǤϰϤμư gnuplot
Ԥ碌ʤ褦ˤޤξ缴ϰϤθ³ϡüˤǡ
κɸͤ˴˰פޤ`set autoscale noextend` ϡ
`set autscale fix` ƱǤϰϻꥳޥɤθ˥
`noextend` ɲäСĤμϰϤαĹǽ̵ˤ뤳Ȥ
Ǥޤ:
set yrange [0:*] noextend
`set autoscale keepfix` ϡfix ѹ˻Ĥޤޡ٤Ƥ
ư̼ܤˤޤ
4 (examples)
?autoscale examples
?set autoscale examples
:
ʲ y μư̼ܵǽꤷޤ (¾μˤϱƶͿޤ):
set autoscale y
ʲ y κǾͤФƤΤư̼ܵǽꤷޤ (y κ͡
¾μˤϱƶͿޤ):
set autoscale ymin
ʲ x2 ٤ؤμưϰϳ絡ǽ̵ˤäǡ
⡢ޤϴؿФ٤ϰϤݻޤ:
set autoscale x2fixmin
set autoscale x2fixmax
ʲ x, y ξμư̼ܵǽꤷޤ:
set autoscale xy
ʲ x, y, z, x2, y2 μư̼ܵǽꤷޤ:
set autoscale
ʲ x, y, z, x2, y2 μư̼ܵǽػߤޤ:
unset autoscale
ʲ z ΤߤˤĤƼư̼ܵǽػߤޤ:
unset autoscale z
4 ˺ɸ⡼ (polar)
?commands set autoscale polar
?set autoscale polar
˺ɸ⡼ (`set polar`) Ǥϡxrange yrange ϼư̼ܥ⡼ɤǤ
ʤʤޤư¼ϰѤ `set rrange` Ѥ硢xrange
yrange Ϥ˹礦褦˼ưŪĴޤˤ
ĴСθŪ xrange yrange ޥɤȤȤ
Ǥޤʲ: `set rrange`
ʲ⻲
^ <a href="http://www.gnuplot.info/demo/poldat.html">
˺ɸΥǥ⡣
^ </a>
3 bind
?commands show bind
?show bind
=bind
`show bind` ϡߤΥۥåȥγ (binding) ɽޤ
: `bind`
3 bmargin
?commands set bmargin
?set bmargin
?bmargin
ޥ `set bmargin` ϡ;Υꤷޤܺ٤
ʲ: `set margin`
3 դ (border)
?commands set border
?commands unset border
?commands show border
?set border
?set border polar
?unset border
?show border
?border
?noborder
`set border` `unset border` `plot` `splot` ǤΥդȤ
ɽ椷ޤȤɬ⼴ȤϰפʤȤդƤ
`plot` Ǥפޤ`splot` ǤפƤޤ
:
set border {<integer>}
{front | back | behind}
{linestyle | ls <line_style>}
{linetype | lt <line_type>} {linewidth | lw <line_width>}
{linecolor | lc <colorspec>} {dashtype | dt <dashtype>}
{polar}
unset border
show border
`set view 56,103` Τ褦Ǥդɽ줦 `splot` Ǥϡ x-y
ʿ̾ 4 ĤγѤ (`front`), (`back`) , (`left`),
(`right`) Τ褦˸ƤФޤƱ 4 ĤγѤŷ̤ˤ
ޤäơ㤨 x-y ʿ̾θȱγѤĤʤ
"α (bottom right back)" ȸŷμγѤĤʤ
"ľ (front vertical)" ȸƤ֤Ȥˤޤ (̿̾ˡϡ
Ԥɽ뤿˻Ȥޤ)
Ȥϡ12 ӥåȤ沽Ƥޤ: 4 ӥåȤ `plot`
볰ȡ`splot` ФƤ̤γȡ 4 ӥåȤ `splot` αľ
ʳȡƾ 4 ӥåȤ `splot` ŷ̤γȤ椷ޤ
ƳȤϡɽбܤο¤ˤʤޤ:
@start table - first is interactive cleartext form
ӥå plot splot
1 κ
2 κ
4 α
8 α
16 ̤ʤ ľ
32 ̤ʤ ľ
64 ̤ʤ ľ
128 ̤ʤ ľ
256 ̤ʤ ŷκ
512 ̤ʤ ŷα
1024 ̤ʤ ŷκ
2048 ̤ʤ ŷα
4096 ˺ɸ ̤ʤ
#\begin{tabular}{|c|c|c|} \hline
#\multicolumn{3}{|c|}{ն沽} \\ \hline \hline
# ӥå & plot & splot \\ \hline
# 1 & & κ \\
# 2 & & κ \\
# 4 & & α \\
# 8 & & α \\
# 16 & ̤ʤ & ľ \\
# 32 & ̤ʤ & ľ \\
# 64 & ̤ʤ & ľ \\
# 128 & ̤ʤ & ľμ \\
# 256 & ̤ʤ & ŷκ \\
# 512 & ̤ʤ & ŷα \\
# 1024 & ̤ʤ & ŷκ \\
# 2048 & ̤ʤ & ŷα \\
# 4096 & ˺ɸ & ̤ʤ \\
%c c c .
%ӥå @plot@splot
%_
%1@@κ
%2@@κ
%4@@α
%8@@α
%16@̤ʤ@ľ
%32@̤ʤ@ľ
%64@̤ʤ@ľ
%128@̤ʤ@ľ
%256@̤ʤ@ŷκ
%512@̤ʤ@ŷα
%1024@̤ʤ@ŷκ
%2048@̤ʤ@ŷα
%4096@˺ɸ@̤ʤ
@end table
^<table align="center" border="1" rules="groups" frame="hsides" cellpadding="3">
^<colgroup>
^ <col align="right">
^ <col align="center">
^ <col align="center">
^</colgroup>
^<thead>
^<tr> <th>ӥå</th> <th>plot</th> <th>splot</th></tr>
^</thead>
^<tbody>
^<tr> <td>1</td> <td></td> <td>κ</td></tr>
^<tr> <td>2</td> <td></td> <td>κ</td></tr>
^<tr> <td>4</td> <td></td> <td>α</td></tr>
^<tr> <td>8</td> <td></td> <td>α</td></tr>
^<tr> <td>16</td> <td>̤ʤ</td> <td>ľ</td></tr>
^<tr> <td>32</td> <td>̤ʤ</td> <td>ľ</td></tr>
^<tr> <td>64</td> <td>̤ʤ</td> <td>ľ</td></tr>
^<tr> <td>128</td> <td>̤ʤ</td> <td>ľ</td></tr>
^<tr> <td>256</td> <td>̤ʤ</td> <td>ŷκ</td></tr>
^<tr> <td>512</td> <td>̤ʤ</td> <td>ŷα</td></tr>
^<tr> <td>1024</td> <td>̤ʤ</td> <td>ŷκ</td></tr>
^<tr> <td>2048</td> <td>̤ʤ</td> <td>ŷα</td></tr>
^<tr> <td>4096</td> <td>˺ɸ</td> <td>̤ʤ</td></tr>
^</tbody>
^</table>
ǥեȤͤ 31 ǡ `plot` Ǥ 4 γơ
`splot` Ǥ̤ z Ȥ̣ޤ
3 4 ܤαľʶȤ̤ˡޥ `splot` ϥǥեȤǡ
̤Τ줾γѤ饰դξ̤ؤαľ褷ޤ`set border`
Ϥαľ椷ޤˡ`set/unset cornerpoles` Ȥä
2 Ǥ϶Ϥ٤ƤǤΰ־ޤ (`front`)
⤷Ǥβϡ`set border back` ȤƤ
3 (hidden3d) Ǥϡ̾϶Ǥ
Ʊͤ˱оݤˤʤޤ`set border behind` ȤȤΥǥե
ȤεưѤޤ
<linestyle>, <linetype>, <linewidth>, <linecolor>, <dashtype> ꤷ
ơˤȿǤ뤳ȤǤޤ (ߤν֤
ȤΤ˸ꤵޤ)
ˡι (tics) 褹ݤ⡢褹뤫
褹뤫˴ؤ餺Υ饤Ѥޤ
`plot` Ǥϡ 2 ͭˤ뤳ȤǡȺʳζ
ȤǤޤܺ٤ϡʲ: `xtics`
"`unset surface; set contour base`" ʤɤˤä `splot` ̤ˤΤ
褹硢ľŷϤ餬ꤵƤƤ褵ޤ
`set grid` Υץ 'back', 'front', 'layerdefault' Ǥ⡢
ζ֤Ǥޤ
`polar` ϡ˺ɸդ˱߷ζĤޤ
:
ʲϡǥեȤޤ:
set border
ʲϡ`plot` ǤϺȲ`splot` Ǥ̤κȺ
ޤ:
set border 3
ʲϡ`splot` Ǽ˴Ȣޤ:
set border 4095
ʲϡαľ̤ŷΤʤȢޤ:
set border 127+256+512 # ޤ set border 1023-128
ʲϡ`plot` ФƾȱΤߤȤ
ޤ:
unset xtics; unset ytics; set x2tics; set y2tics; set border 12
3 (boxwidth)
?commands set boxwidth
?commands show boxwidth
?set boxwidth
?show boxwidth
?boxwidth
ޥ `set boxwidth` `boxes`, `boxerrorbars`, `boxplot`,
`candlesticks`, `histograms` ˤΥǥեȤ
뤿˻Ȥޤ
:
set boxwidth {<width>} {absolute|relative}
show boxwidth
ǥեȤǤϡ٤礦ܤ褦˳ơޤ
ȤϰۤʤǥեȤꤹˤ `set boxwidth` ޥɤ
ޤ`relative` ξϡǥեȤФǤȲ
ޤ
`relative` ꤷʤä硢 (boxwidth) Ȥƻꤵ
줿Ūͤϡߤ x ñ̤Ǥο (`absolute`) ǤȲ
ޤx п (ʲ: `set log`) Ǥ硢boxwidth
ϼºݤˤ x=1 ǤΤ "Ū" ȤʤꡢʪŪĹΤ̤
ݻޤ (ʤ x ɸäˤȤʤäƶʤä
ޤ)п x ϰϤ x=1 ΥƤϡŬڤ
Фˤϲ٤Ƥߤɬפ뤫Τޤ
ǥեȤͤϡ`boxes` `boxerrorbars` Ѥɲä
ǡŪͤФˤä֤ޤ
ܺ٤ϡʲ: `style boxes`, `style boxerrorbars`
ưŪ˥åȤˤ
set boxwidth
ưŪͤȾʬˤˤ
set boxwidth 0.5 relative
Ū 2 ˤˤ
set boxwidth 2 absolute
3 3 ȢαԤ (boxdepth)
?commands set boxdepth
?commands show boxdepth
?set boxdepth
?show boxdepth
?boxdepth
set boxdepth {<y extent>} | square
ޥ `set boxdepth` ϡ`splot with boxes` Ǻä 3 դ
Τ߱ƶޤϡy γȢαԤ (Ȣ) ꤷޤ
`set boxdepth square` ϡy αԤx y μν̼ܤȤ̵
طˡܤ̤ˤʤ褦褦Ȥޤ
3 - (chi_shapes)
?command set chi_shapes
?set chi_shapes
?command unset chi_shapes
?unset chi_shapes
?chi_shapes
set chi_shapes fraction <value>
unset chi_shapes
(concave hull) ե륿ϡĹ chi_length -
(chi-shapes) ޤchi_length ѿꤵƤʤС
϶¿ѷ () ˤĹդΨͤޤ
ΨΥǥեȤ 0.6 ǤϤΥޥɤѹǤޤ
ͤ 1.0 ˤȷ̤˽̤ޤޤ꾮ȡ
ʬˤʤޤʲ: `concavehull`
ޥ `unset chi_shapes` Ψ 0.6 chi_length ѿ̤
ˤޤ
3 顼⡼ (color)
?commands set color
?set color
gnuplot ϡ`plot` `splot` ޥɤγǤˡ
Ф°ƤޤǥեȤǤϡѹ
Ȥǰ³ƱΤ̤Ǥ褦ˤޤ`set monochrome`
⤦Ĥˡϡ/ѥǶ̤Ǥ
Ѥޤޥ `set color` ϡ⡼ɤǤǥե
ȤΥ顼νޤ
ʲ: `set monochrome`, `set linetype`, `set colorsequence`
3 顼ޥå (colormap)
?commands set colormap
?set colormap
?colormap
?show colormap
=alpha channel
=transparency
=palette
:
set colormap new <colormap-name>
set colormap <colormap-name> range [<min>:<max>]
show colormaps
`set colormap new <name>` ϡ顼ޥå <name> ߤ
ѥå˽Фޤ¸顼ޥåפϡ32bit
ARGB 顼ͤȤƤΤʤǽǤθ plot
̾ꤷƻѤ뤳ȤǤޤ
ʲϡŤ֤Ϣ³ѥåȤ 'Reds' Ȥ̾
Υ顼ѥå¸顼ޥåפΤ٤ƤΥȥ
ƩǤ̾դ顼ޥåפϡ pm3d ̤˿դ
Τ˻ȤäƤޤ̾դ顼ޥåפΥեͥͤϡ
ARGB °˽ʤ 0 Ʃ0xff ƩǤ뤳Ȥ
դƤ
set palette defined (0 "dark-red", 1 "white")
set colormap new Reds
do for [i=1:|Reds|] { Reds[i] = Reds[i] | 0x3F000000 }
splot func(x,y) with pm3d fillcolor palette Reds
z ͤ餳Υ顼ޥåפؤμϡüͤб z κǾͤȺ
ͤꤹ뤳ȤĴǤޤ:
set colormap Reds range [0:10]
ϰϤꤷʤ硢뤤ϺǾͤȺͤƱͤξϡߤ
cbrange θ³ͤѤޤʲ: `set cbrange`
顼ޥåפϡĹΰǡɤꤹΤˤȤޤ
ʲ: `pixmap colormap`
3 (colorsequence)
?commands set colorsequence
?set colorsequence
?colorsequence
:
set colorsequence {default|classic|podo}
`set colorsequence default` ϡϷ˰¸ʤ 8 ν
ޤʲ: `set linetype`, `colors`
`set colorsequence classic` ϡϷ̤ˤΥɥ饤ФѰդ
ޤμϡ4 100 Ķޤޤ
¿ϡ֡Сġ硢忧ǻϤޤޤ줬С 5
ΥǥեȤεưǤ
`set colorsequence podo` ϡWong (2011) [Nature Methods 8:441] ǿ侩
Ƥ롢P D (Protanopia, Deuteranopia) οԤưפ˶
Ǥ 8 Ȥޤ
ξǤ⡢ĹȤοˤĤƤϤ˥ޥǤ
ʲ: `set linetype`, `colors`
3 clabel
?commands set clabel
?commands unset clabel
?commands show clabel
?set clabel
?unset clabel
?show clabel
?clabel
Υޥɤ侩Ǥ `set cntrlabel` ѤƤ
`set clabel "format"` `set cntrlabel format "format"` ˡ
`unset clabel` `set cntrlabel onecolor` ֤äƤޤ
3 åԥ (clip)
?commands set clip
?commands unset clip
?commands show clip
?set clip
?unset clip
?show clip
?clip
:
set clip {points|one|two|radial}
unset clip {points|one|two|radial}
show clip
ǥեȤξ:
unset clip points
set clip one
unset clip two
unset clip radial
ΰζ濴ǡϡɽΥ
εγˤϤߤƤޤ褦ʾǤ⡢̾褷ޤ
`set clip points` ϡ2 ǤΤ褦濴ΰˤ
Ǥ⡢Τ褦åԥޤ (Ĥޤ褷ޤ)
濴ΰ賰ˤ褦ʥǡϡ褷褷ޤ
`unset clip` ξϡʬΰüϰ (xrange yrange)
γˤСʬ褷ʤ褦ˤޤ
`set clip one` ξϡüϰˤäơĤ⤦
üϰϳˤ褦ʬΡϰ˴ޤޤʬ褹褦
`gnuplot` ˻ؼޤ
`set clip two` ϡξüϰϳˤʬΡϰʬ
褹褦 `gnuplot` ˻ؼޤ
ʬΤϰϳǤ褦ʬϷ褷褷ޤ
`set clip radial` ϡ˺ɸ⡼ɤǤΤ߸ϤޤϡΥ
åԥ`set rrange [0:MAX]` dzꤹ߾ФƹԤޤ
λȤߤϡ`set clip {one|two}` Ȥ߹碌ƻѤޤʤ
R > RMAX Ǥ 2 Ĥδ֤ R = RMAX αߤˤäڤ
ʬϡ`clip two` `clip radial` ξꤵƤΤ褵
ޤ
:
* `set clip` ϡ襹 `lines`, `linespoints`, `points`,
`arrows`, `vectors` ʬΤߤ˱ƶޤ
* `pm3d` ̤¾Ȥεͤޤä֥Ȥ˻Ѥ뿧Ĺ
Υåԥϡ`set pm3d clipping` ǹԤޤǥեȤϡ
ߤ zrange Ф餫ʥåԥǤ
* ֥ȤΥåԥϡġΥ֥ (object)
`clip` `noclip` °椷ޤ
* ߤ gnuplot ǤǤϡ˺ɸ⡼ɤ "plot with vectors" ϡƥ
ȤƤޤȾ¤Ф륯åԥ⤷ޤ
3 ٥ (cntrlabel)
?commands set cntrlabel
?commands show cntrlabel
?set cntrlabel
?show cntrlabel
?cntrlabel
:
set cntrlabel {format "format"} {font "font"}
set cntrlabel {start <int>} {interval <int>}
set cntrlabel onecolor
`set cntrlabel` ϡ (ǥե) `splot ... with labels`
ݤΥվΥ٥椷ޤԤξ硢٥ϥ٥뵭
° `pointinterval` `pointnumber` ˽äƳ˱ä
ޤǥեȤǤϥ٥ 5 ܤʬξ
졢20 Ĥʬ˷֤ޤΥǥեȤϡʲƱǤ:
set cntrlabel start 5 interval 20
ͤϥޥ `set cntrlabel` ǡ뤤 `splot` ޥɤ˴
֤ꤹ뤳ȤѹǤޤ:
set contours; splot $FOO with labels point pointinterval -1
ֳ֤ͤꤹȡ٥ϳ 1 ĤĤޤ
`set samples` `set isosamples` 礭ͤξ¿
Ĥޤ
(key) ˤϡ٥줾 (linetype) Ѥƽ
ޤǥեȤǤϡKȤΥ٥ͿΤǡ줾
Ф̡Υ٥뤬ޤޥ `set cntrlabel onecolor`
٤ƤƱ褹ΤǡˤϰĤΥ٥Τߤ
ޤΥޥɤϡŤޥ `unset clabel` ֤ΤǤ
3 (cntrparam)
?commands set cntrparam
?commands show cntrparam
?set cntrparam
?show cntrparam
?cntrparam
`set cntrparam` ˡӤ餫褹ˡ
椷ޤ`show contour` ϸߤ `contour` Ǥʤ `cntrparam`
ɽޤ
:
set cntrparam { { linear
| cubicspline
| bspline
| points <n>
| order <n>
| levels { <n>
| auto {<n>}
| discrete <z1> {,<z2>{,<z3>...}}
| incremental <start>, <incr> {,<end>}
}
{{un}sorted}
{firstlinetype N}
}
}
show cntrparam
Υޥɤ 2 ĤεǽäƤޤĤ뤿
z ͤǤΥ٥ο <n> Ǥʤ
Фޤ<z1>, <z2> ... ϼ¿ͤοǤ
⤦ĤϡġθܤǤ
ʿ경椹륭:
`linear`, `cubicspline`, `bspline` --- () ˡꤷޤ
`linear` ʤС϶̤줿ͤʬŪľǷӤޤ
`cubicspline` (3 ץ饤) ʤСʬŪľϤ֤ʤ餫
褦֤ޤ¿ǤIJǽޤ
`bspline` (B-spline) ϡ餫ʶȤݾڤޤ
z ΰ֤ƤǤ
`points` --- ǽŪˤϡƤϡʬŪľǹԤޤ
ǻꤹϡ`bspline` ޤ `cubicspline` Ǥζ˻Ȥʬ
ο椷ޤºݤˤ cubicspline bspline ζ (ʬ)
`points` ʬοѤʤޤ
`order` --- bspline μǤμ礭ʤˤĤơ
Ϥʤ餫ˤʤޤ (⼡ bspline ˤʤۤɡ
ʬŪľΥƤޤ)Υץ `bspline` ⡼ɤǤ
ͭǤǤͤϡ2 (ľ) 10 ޤǤǤ
٥椹륭:
`levels auto` --- 줬ǥեȤǤ<n> ϲΥ٥οǤꡢ
ݤΥ٥οϡñʥ٥褦Ĵᤵޤ̤ z
ɸ zmin zman ϰϤˤȤϤδ֤ dz ܤ
ʤ褦ޤǡdz 10 Τ٤ 1, 2, 5 ܡ
줫Ǥ (2 Ĥδ֤ٳڤ褦)
`levels discrete` --- ϻꤵ줿 z = <z1>, <z2> ... Ф
ޤꤷĿΥ٥θĿȤʤޤ`discrete`
⡼ɤǤϡ`set cntrparams levels <n>` ȤϾ̵뤵ޤ
`levels incremental` --- z = <start> Ϥޤꡢ<increment>
ƹԤ³θĿãޤǽޤ<end> Ϥο
ꤹΤ˻Ȥޤϸ `set cntrparam levels <n>` ˤ
ƾѹޤz пξ硢`set ztics` ξƱͤˡ
<increment> ܿȤƲᤷ<end> ϻѤޤ
γƤ椹륭:
ǥեȤǤϡϻεսޤ (`unsorted`)ʤ
`set cntrparam levels increment 0, 10, 100` ϡ100 Ϥޤäơ0
11 ܤޤ `sorted` ɲäȡ
νѹ㤨кǤϡǽ 0
褦ˤʤޤ
ǥեȤǤϡϡб̤˻ѤΡ
ޤʤ`splot x*y lt 5` κǽ 6 Ǥ
`hidden3d` ⡼ɤͭʾ硢ƶ̤ˤ 2 ĤȤΤǡǥե
ȤǤϡǽȶ̤̤ƱȤäƤޤ
ޤ˾ޤޤˤϡʲ 2 Ĥˡ
ޤ
(1) `set hidden3d offset N` ˤꡢ̤̤ѹ뤳ȡ
`offset -1` ȤΤǤʤ餹٤ƤȤ֤Ĥ
ޤ
(2) ץ `set cntrparam firstlinetype N` ˤꡢ̤ǻѤ
ȤΩʡǻѤﷲꤹ뤳ȡϡä
ޥˤͭѤǤ礦N <= 0 ξϥǥ
Ȥޤ
ޥ `set cntrparam` ̵ǻѤȡꤷ٤ƤΥ
ͤǥեȤ˥ꥻåȤޤ
set cntrparam order 4 points 5
set cntrparam levels auto 5 unsorted
set cntrparam firstlinetype 0
4 cntrparam (cntrparam examples)
?commands set cntrparam examples
?set cntrparam examples
?cntrparam examples
:
set cntrparam bspline
set cntrparam points 7
set cntrparam order 10
ʲϥ٥δब礨 5 ĤΥ٥뤬˼ưŪޤ:
set cntrparam levels auto 5
ʲ .1, .37, .9 ˥٥ꤷޤ:
set cntrparam levels discrete .1,1/exp(1),.9
ʲ 0 4 ޤǡ1 䤹٥ꤷޤ:
set cntrparam levels incremental 0,1,4
ʲϥ٥ο 10 ꤷޤ (äκǸ (end) ޤϼư
ꤵ٥οѹޤ):
set cntrparam levels 10
ʲϥ٥οݻޤޥ٥γͤʬͤꤷޤ:
set cntrparam levels incremental 100,50
ʲϥޥﷲѤޤ:
set linetype 100 lc "red" dt '....'
do for [L=101:199] {
if (L%10 == 0) {
set linetype L lc "black" dt solid lw 2
} else {
set linetype L lc "gray" dt solid lw 1
}
}
set cntrparam firstlinetype 100
set cntrparam sorted levels incremental 0, 1, 100
˴ؤƤϡʲ: `set contour`Υ
٥ν˴ؤƤϡʲ: `set cntrlabel`
ʲ⻲ȤƤ
^ <a href="http://www.gnuplot.info/demo/contours.html">
Υǥ (contours.dem)
^ </a>
^ <a href="http://www.gnuplot.info/demo/discrete.html">
桼٥Υǥ (discrete.dem).
^ </a>
D contours 5
D discrete 3
3 顼ܥå (colorbox)
?commands set colorbox
?commands show colorbox
?commands unset colorbox
?set colorbox
?show colorbox
?unset colorbox
?colorbox
ѥåȤǤοդѤ륰դˤơä pm3d ǤΥդǤϡ
ѥåȤΥǡ`unset colorbox` ǥåդˤʤä
ʤ¤ꡢդβΥ顼ܥå (colorbox) ޤ
set colorbox
set colorbox {
{ vertical | horizontal } {{no}invert}
{ default | bottom | user }
{ origin x, y }
{ size x, y }
{ front | back }
{ noborder | bdefault | border [line style] }
}
show colorbox
unset colorbox
ǡϡץ `vertical` () `horizontal`
() ꤷޤ
顼ܥåΰ֤ϡ`default`, `bottom`, `user` Τ줫
ޤ `bottom` ϡʲƱʥ硼ȥåȤǤ:
set colorbox horizontal user origin screen 0.1, 0.07 size 0.8, 0.03.
`bottom` ǻꤷΤ褦˥顼ܥåդβˤȤϡ
ѤɲåڡǤ礦: `set bmargin screen 0.2`
`origin x, y` `size x, y` ϡ`user` `bottom` ֤ǤΤʰ
ֹ碌Τ˻Ȥޤx, y ͤϡǥեȤǤϥɸ
ᤷޤ 3 դ˴ؤƤϷŪʥץ˲
`set view map` ˤ splot ޤ 2 ǤϡǤդκɸ
Ȥޤ
`back`/`front` ϡ顼ܥåդ˽ǽ
椷ޤ
`border` ϶ ON ˤޤ (ǥե) `noborder` ϶
OFF ˤޤ`border` θͿȡ
褹 line style ΥȤƻȤޤ㤨:
set style line 2604 linetype -1 linewidth .4
set colorbox border 2604
line style `2604`ʤ٤ΥǥեȤζ (-1) Ƕ
褷ޤ`bdefault` (ǥե) ϡ顼ܥåζ˥
եȤζ line style Ȥޤ
顼ܥåμ `cb` ȸƤФ졢̾μΥޥɤ椵ޤ
ʤ `set/unset/show` `cbrange`, `[m]cbtics`, `format cb`,
`grid [m]cb`, `cblabel` ʤɤ¿ʬ `cbdata`, `[no]cbdtics`,
`[no]cbmtics` ʤɤȤǤ礦
ѥ̵ `set colorbox` ϥǥեȤΰ֤ؤޤ
`unset colorbox` ϥ顼ܥåΥѥǥեͤ˥ꥻå
ξǥ顼ܥå OFF ˤޤ
ʲ⻲: `set pm3d`, `set palette`, `set style line`
3 ̾ (colornames)
?colornames
Ffigure_colornames
gnuplot ϸꤵ줿Ŀο̾äƤޤϡpm3d ѥ
åȤǤĤʤ뿧ϰϤΤˡ뤤ϸġ饤
οΤˡޤϸߤΥ顼ѥåȤФ륰ǡ
Τ˻Ȥޤޥ `show colornames` Ѥ뤳
ǡäƤ뿧̾ΰȤ RGB ʬ뤳ȤǤޤ
:
set style line 1 linecolor "sea-green"
set palette defined (0 "dark-red", 1 "white")
print sprintf("0x%06x", rgbcolor("dark-green"))
0x006400
3 (contour)
?commands set contour
?commands unset contour
?commands show contour
?set contour
?unset contour
?show contour
?contour
?contours
?nocontour
ޥ `set contour` 3 ̤֤ȤǤޤ
ץ `splot` ǤΤͭǤϡʻҾǡ (grid data)
ɬפȤޤʤĤ y-ΩФ뤹٤Ƥ¤٤졢
μ˼ y-ΩФ뤹٤Ƥ¤ӡʲƱͤ³ǡ
եǤy-ΩƱΤʬΥΤñζ (ʳʸ
ڴޤޤʤ) Ǥܺ٤ϰʲ: `grid_data`
ǡʻҾˤʤäƤʤ硢`set dgrid3d` ȤäƺǽŬڤʳ
ҤγʻҤ˥ǡƤϤ뤳ȤǤޤ
:
set contour {base | surface | both}
unset contour
show contour
3 ĤΥץɤ˰ꤷޤ`base`
x/y ιߤΤ̤졢`surface` ǤϤ
̼Τξ졢`both` Ǥ̤ȶ̾ξޤ
ꤵƤʤ `base` ǤȲꤵޤ
˱ƶͿѥˤĤƤϡʲ:
`set cntrparam`Υ٥˴ؤƤϡʲ:
`set cntrlabel`
Υץϡ٥֤Τǡ̼ȤΤ¾θ
ѤʤȤդƤ̤οդǶڤ줿
褬¾ȶ̤Ǥ褦ʿ˳Ƥϡ襹
contourfill ѤƤʲ: `contourfill`
`set contour` ͭʾ硢`splot with <style>` points, lines,
impulses, labels Ǥ˱ä֤Ǥޤ`with pm3d`
ϡpm3d ̤ޤ
`set contour` ͭʺݤˡե뤫ɤ߹
ʤɤΤ¾Ǥ⺮ϡsplot ޥΤ̿
˥ `nocontours` ɲäʤȤޤ
̤å (ʲ: `unset surface`) ˤơΤߤΥ
դˤ뤳ȤǽǤ 2 ͱƤȥץΥ٥ϰ
Τ褦ˤǤޤ:
set view map
splot DATA with lines nosurface, DATA with labels
ΥС gnuplot ǤϡʲΤ褦ˡȤʤ¿ʳ
ˡȤä 3 եǡ֥å¸θ
2 plot ޥɤѤƤ褷Ƥޤ
set contour
set table $datablock
splot DATA with lines nosurface
unset table
# $datablock ˡ1 Ĥ 1 Ĥ index
plot for [level=0:*] $datablock index level with lines
ʲ⻲: `splot datafile`ޤ
^ <a href="http://www.gnuplot.info/demo/contours.html">
Υǥ (contours.dem)
^ </a>
^ <a href="http://www.gnuplot.info/demo/discrete.html">
٥Υ桼Υǥ (discrete.dem)
^ </a>
⻲ȡ
3 ճѤλ (cornerpoles)
?command set cornerpoles
?set cornerpoles
?cornerpoles
ǥեȤǡsplot 3 ̤Τ줾γѤ龲̤ؤαľ
褷ޤαľϡ`unset cornerpoles` ǾäȤǤޤ
3 ֤ɤ٤ (contourfill)
?commands set contourfill
?commands show contourfill
?set contourfill
?show contourfill
3 襹 `with contourfill` ϡ1 Ĥ pm3d ̤z ˿
ľʿ̷ǶڤҤڤʬޤޥ `set contourfill`
ϡڤʿ̷֤ȸġҤ˳Ƥ뿧椷ޤ
:
set contourfill auto N # zrange N ʬҤ
set contourfill ztics # z γƼڤʬ
set contourfill cbtics # cb γƼڤʬ
set contourfill {palette | firstlinetype N}
ǥեȤ `set contourfill auto 5 palette` ǡϸߤ z
ϰϤ 5 ʬ (6 Ĥʿ̤Ƕڤ)Ҥˤ z б
ѥåȤοƤޤ
ץ `ztics`, `cbtics` ϡzrange ʬμμΰ
֤ǹԤޤ㤨Сz=2.5, z=7, z=10 ˻ꤷڤʬˤϡʲ
ΥޥɤѤޤ
set ztics add ("floor" 2.5, "boundary X" 7, "ceiling" 10)
set contourfill ztics
Ҥοդ˥ѥåȤȤʤϡǤϢ³ϰϤ
˾Ƥ뤳ȤǤޤ
set for [i=101:110] linetype i lc mycolor[i]
set contourfill firstlinetype 101
`set contourfill palette` ǥѥåȤˤ뿧դǤޤ
D contourfill 3
3 / (dashtype)
?commands set dashtype
?commands show dashtype
?set dashtype
?show dashtype
ޥ `set dashtype` ϡ/ѥֹǻȤǤ褦
ϿޤϤȤƤǡ/ѥֹǼ
ĤƤʤСɤǤŪ/ѥĤ
ޤ
:
set dashtype 5 (2,4,2,6) # 5 ֤ dashtype ޤϺ
plot f1(x) dt 5 # dashtype Ȥä plot
plot f1(x) dt (2,4,2,6) # Ʊ
set linetype 5 dt 5 # Υѥ linetype 5 Ǿ˻Ȥ
set dashtype 66 "..-" # ʸǿ dashtype
ʲ: `dashtype`
D dashtypes 2
3 datafile
?set datafile
?show datafile
ޥ `set datafile` ϡ`plot`, `splot`, `fit` ޥɤϥǡ
ɤˡ (field) βλ椹륪ץ
ޤ
ߤϡΤ褦ʥץĤƤޤϡ
θΥޥɤɤ߽Ф뤹٤ƤΥǡե˰ͤŬѤޤ
Ȥ̷⤹ǥեƱʤФʤ硢
ˡ˴ؤƤϡʲ: `functionblocks`
4 set datafile columnheaders
?set datafile columnheaders
=columnheaders
ޥ `set datafile columnheaders` ϡϤκǽιԤǡͤ
ƤǤϤʤcolumnheader ȤƲ᤹뤳Ȥݾڤޤϡ
plot, splot, fit, stats γƥޥɤϥǡ٤Ƥ˱ƶޤ
`unset datafile columnheaders` ̵ˤȡŪ
columnheader() ؿ using ˤ뤫plot ȥ뤬ե˴
ϢŤƤ硢Ʊ̤ե˥ˤޤʲ:
`set key autotitle`, `columnheader`
4 set datafile fortran
?set datafile fortran
?show datafile fortran
?fortran
ޥ `set datafile fortran` ϡϥե Fortran D Q
̤ͤʥåǽˤޤ̤ʥåϽ
٤ޤΤǡºݤˤΥǡե뤬 Fortran D Q
äƤˤΤߤ٤ǤΥץϡθ
`unset datafile fortran` Ԥ̵ˤǤޤ
4 set datafile nofpe_trap
?set datafile nofpe_trap
?fpe_trap
?nofpe_trap
=floating point exceptions
ޥ `set datafile nofpe_trap` ϡϥե뤫ǡɤ߹
ߤκݤˡ٤Ƥοɾư㳰ϥɥκƽ
ʤ褦 gnuplot ̿ᤷޤˤꡢȤƤ礭ʥե뤫
ΥǡϤʤ®ʤޤư㳰˥ץ
ब۾ェλƤޤϤޤ
4 set datafile missing
?set datafile missing
?show datafile missing
?set missing
?missing
:
set datafile missing "<string>"
set datafile missing NaN
show datafile missing
unset datafile
ޥ `set datafile missing` ϡϥǡեǷ»ǡ
Ҥ̤ʸ뤳Ȥ `gnuplot` ˻ؼޤ`missing`
ؤǥե (ʸ) Ϥޤgnuplot ϡַ»ǡפȡ̵
͡(㤨 "NaN" 1/0) ̤ޤ㤨СϢ³ǡ
Ф륰դޤϡ̵ͤˤäƤڤޤ»ǡ
ξϤǤϤޤ
ͤԤ̤ǿͤǤϤʤʸ줿ϡ줬 `missing`
ǻꤹʸ˥ޥåơ̾»ǡǤϤʤ̵
ͤȤƲᤷޤ
դˡ`set datafile missing NaN` ȤȡǡοͤǤϤ
(NaN) Ϥ٤Ʒ»ǡȤưޤ
^ <a href="http://www.gnuplot.info/demo/imageNaN.html">
imageNaN ǥ
^ </a>
ȤƤ
gnuplot plot ޥɤ using ꤬ľͤ `using N`,
`using ($N)`, `using (function($N))` Τ褦˻Ȥ N ˷»
ͥե饰Τޤξϡ㤨 func($N) ϰɾ
ޤ
ߤΥС gnuplot ϡ(column(N)) ηľܻȤΤ
"missing" (») Υե饰Ĥͤ˴Ū˰¸
Ǥ⡢ɾκΤޤ
餹٤Ƥξǡgnuplot ϥǡΤ줬ʤä
ΤȤưޤ˷礱Ƥǡͤ (㤨 csv
ζեɤΤ褦) ¸Ƥ硢ϤΥå
̤뤫⤷ޤ NaN ͤɾСϷ»ǡ
ǤϤʤʥǡȤưޤ⤷Τ褦ͤ٤
»ͤȤϡޥ `set datafile missing NaN`
ѤƤ
4 set datafile separator
?set datafile separator
?show datafile separator
?datafile separator
?separator
ޥ `set datafile separator` ϡθϥեΥǡ
ʬΥʸ (whitespace) ǤʤơǻꤹʸǤ
`gnuplot` ˻ؼޤΥޥɤκǤŪʻϡɽ
Ȥǡ١եȤ csv (ڤ) եɤǤ
礦ǥեȤΥǡʬΥʸ϶ (whitespace) Ǥ
:
set datafile separator {whitespace | tab | comma | "<chars>"}
:
# ֶڤΥե
set datafile separator "\t"
# ڤΥե
set datafile separator comma
# ϥե뤬 * | Τ줫Ƕڤ줿ľ
set datafile separator "*|"
4 set datafile commentschars
?set datafile commentschars
?commentschars
ޥ `set datafile commentschars` ϡǡեΥȹ
γʸȤƤɤʸȤꤷޤꤷʸΰĤ
ǡԤκǽʸȤƸ줿硢ΥǡԤΤʹߤ
ʬ̵뤷ޤǥեʸϡVMS Ǥ "#!"ʳǤ "#"
Ǥ
:
set datafile commentschars {"<string>"}
show datafile commentschars
unset commentschars
äơǡեΰʲιԤϴ̵뤵ޤ:
# 1 2 3 4
ʲι
1 # 3 4
ϡ2 ܤ˥ߤꡢθͭʥǡ 3 ܤ 4 ܤˤ
ǧޤ
:
set datafile commentschars "#!%"
4 set datafile binary
?set datafile binary
ޥ `set datafile binary` ϡǡեɤ߹˥Х
եǥեȤꤹΤ˻Ȥޤϡ줬 `plot`
ޤ `splot` ޥɤǻȤΤΤƱǤ<binary list>
륭ɤ˴ؤƤϡܤϡʲ: `binary matrix`,
`binary general`
:
set datafile binary <binary list>
show datafile binary
show datafile
unset datafile
:
set datafile binary filetype=auto
set datafile binary array=(512,512) format="%uchar"
?show datafile binary
show datafile binary # ߤΰɽ
3 (desimalsign)
?commands set decimalsign
?commands show decimalsign
?commands unset decimalsign
?set decimalsign
?show decimalsign
?unset decimalsign
?decimalsign
=locale
ޥ `set decimalsign` ϡθФ뤤 `set label` ʸ
˽ξޤ
:
set decimalsign {<value> | locale {"<locale>"}}
unset decimalsign
show decimalsign
<value> ϡ̾ξ֤ƻȤʸǤŵŪ
Τϥԥꥪ '.' 䥳 ',' Ǥ¾ˤͭѤʤΤǤ礦
<value> άȡζڤϥǥե (ԥꥪ)
ѹޤunset decimalsign <value> άΤƱ̤
ޤ
:
¿Υ衼åѽǤϷˤ:
set decimalsign ','
ΤȤդƤ: Ūʸꤷ硢ϼ
ʤɤ gnuplot gprintf() ؿǽϤͤΤߤ˱ƶ
ϥǡν sprintf() ؿǽϤͤˤϱƶ
ϤϤηεưѹϡ˰ʲ
ѤƤ:
set decimalsign locale
ϡgnuplot ˡϤȽϤνĶѿ LC_ALL, LC_NUMERIC,
LANG θߤ˽äΤȤ碌褦ˤޤ
set decimalsign locale "foo"
ϡgnuplot ˡϤȽϤν "foo" ˽äΤ
ޤΥ뤬ȡ뤵Ƥɬפޤ⤷
"foo" Ĥʤä硢顼åϤ졢
ѹޤlinux ƥǤϡ˥ȡ뤵
ΰ "locale -a" Ǹ뤳ȤǤޤlinux Υ
ʸϤ "sl_SI.UTF-8" Τ褦ʷƤޤWindows
Υʸ "Slovenian_Slovenia.1250"ޤ "slovenian" Τ
ʷǤʸβϡC Υ饤֥꤬Ԥ
ȤդƤŤ C 饤֥ǤϡΥݡ
(㤨п 3 ζڤʸʤ) ʬŪˤƤʤ
ޤ
set decimalsign locale; set decimalsign "."
ϡߤΥ˹äɤʾǤ⡢ƤϤФƻ
Ѥ褦ꤷޤgnuplot ؿ gprintf() Ȥäƽ
ͤŪ˻ꤵ줿 '.' ˤʤޤ ()
3 ʻҾǡ (dgrid3d)
?commands set dgrid3d
?commands unset dgrid3d
?commands show dgrid3d
?set dgrid3d
?unset dgrid3d
?show dgrid3d
?dgrid3d
?nodgrid3d
=kdensity
?nogrid
ޥ `set dgrid3d` ϡʻҾǡʻҾǡؤμǽ
ͭˤΤΥѥꤷޤʻҾǡι¤ˤĤ
Ƥξܺ٤ϡʲ: `splot grid_data`νϡ3 ̤ؤ
ƤϤѤǤ뤳Ȱʳˡ2 ʬۿޤΤˤȤޤ
ξ硢 'z' ͤ϶ɽŪʽŤդ˴Ϳޤ
:
set dgrid3d {<rows>} {,{<cols>}} splines
set dgrid3d {<rows>} {,{<cols>}} qnorm {<norm>}
set dgrid3d {<rows>} {,{<cols>}} {gauss | cauchy | exp | box
| hann} {kdensity} {<dx>} {,<dy>}
unset dgrid3d
show dgrid3d
ǥեȤǤ `dgrid3d` ̵ˤʤäƤޤͭʾϡե
ɤ߹ޤ 3 ΥǡϡʻҶ̤ƤϤΤ˻Ѥ
ֻߤץǡ (ʻҾǡ) ǤȸʤޤʻҤˡϡ
`set dgrid3d` ʸͿѥ row_size/col_size ιԿǺ
ʬ䤹뻶ߥǡϤ (bounding box) ޤʻҤ x
() y () ֳ֤Ǥz ͤϻߤǡ z ͤ
Ťդʿѡޤϥץ饤֤ȤƷޤѤС
§Ūʴֳ֤γʻҤƤγʻǸǡγ꤫ʶͤɾ
ޤƸǡˤζ̤褷ޤ
dgrid3d ⡼ɤͭʴ֤ϡѤ˳ʻҶ̤ġ
ʬϡб splot ޥɤ˥ `nogrid`
ɲäɬפޤ
ǥեȤοϹԤοΥǥեȤͤ 10 Ǥ
Υǡͤ뤿ΤĤΥ르ꥺबѰդ
ơɲäΥѥǤΤ⤢ޤ֤ϡʻ
˶ᤤǡۤɡγʻФƤ궯ƶͿޤ
`splines` 르ꥺϡĤĤˤַԤޤ
ɲåѥޤ
`qnorm` 르ꥺϳƳʻϥǡνŤդʿѤޤ
ˤϡʻεΥεտΤ٥ǽŤդޤΥ٥
ɲåѥͤȤƻǤޤǥեȤ 1 Ǥ
Υ르ꥺबǥեȤˤʤäƤޤ
ǸˡŤդʿѤηѤˡĤʿ경Ťդؿ (kernel)
ѰդƤޤ: z = Sum_i w(d_i) * z_i / Sum_i w(d_i), z_i
i ܤΥǡͤǡd_i ϸߤγʻ i ܤΥǡΰ֤
εΥǤ٤ƤνŤդؿߤγʻ˶ᤤΥǡˤ
礭ʽŤߡΥǡˤϾŤߤդޤ
ʲνŤդؿѤǤޤ:
gauss : w(d) = exp(-d*d)
cauchy : w(d) = 1/(1 + d*d)
exp : w(d) = exp(-d)
box : w(d) = 1 d<1 ξ
= 0 ¾
hann : w(d) = 0.5*(1+cos(pi*d)) d<1 ξ
w(d) = 0 ¾
5 Ĥʿ경ŤդؿΤĤѤ硢2 ĤޤǤ
åѥ dx dy ǤޤϡΥη˺ɸΰ
ѴΤ˻Ȥޤ:
d_i = sqrt( ((x-x_i)/dx)**2 + ((y-y_i)/dy)**2 ), ǡx,y ϸߤ
ʻκɸǡx_i,y_i i ܤΥǡκɸǤdy Υǥե
ͤ dx ǡΥǥեȤͤ 1 ˤʤäƤޤѥ dx
dy ϡǡʻء֥ǡ켫Ȥñ̤ǡפδͿԤϰϤ
ǽˤޤ
ץ `kdensity` ϡŤդؿ̾θǥץ
ѴΥѥ֤Τǡϥ르ꥺѹơ
ʻѤ˷ͤŤߤ ( z = Sum_i w(d_i) * z_i ) Ǥϳʤ
褦ˤޤz_i ٤ξ硢ϻ¾ 2 ѿνŤդɾ
褷ޤ: ( 5 ĤΤΰĤ) Ťդؿƥǡ
졢νŤߤ¤٤Ƥγʻɾ졢ƸΥǡ
ˤγ餫ʶ̤褵ޤϡ1 ΥǡФ
`smooth kdensity` ץԤȤȤޤˤƱǤ
˴ؤƤϡkdensity2d.dem, heatmap_points.dem ȤƤ
Ffigure_dgrid3d
ץ `dgrid3d` ϡߤǡŤդʿѤǵ§ŪʳʻҤ
֤ѤñʻȤߤ˲ޤФ줿ˡ
¸ߤޤΤǡñˡԽʬǤС`gnuplot` γǤ
褦ˡǥǡ٤Ǥ礦
ͥåȾΰʲΥǥ⻲
^ <a href="http://www.gnuplot.info/demo/dgrid3d.html">
dgrid3d
^ </a>
^ <a href="http://www.gnuplot.info/demo/scatter.html">
scatter
^ </a>
^ <a href="http://www.gnuplot.info/demo/heatmap_points.html">
heatmap_points
^ </a>
D heatmap_points 1
D heatmap_points 2
D heatmap_points 3
3 ѿ (dummy)
?commands set dummy
?commands show dummy
?set dummy
?show dummy
?unset dummy
?dummy
ޥ `set dummy` ϥǥեȤβѿ̾ѹޤ
:
set dummy {<dummy-var>} {,<dummy-var>}
show dummy
ǥեȤǤϡ`gnuplot` `plot` Ǥϡѿ⡼ɡ뤤϶˺
ɸ⡼ɤǤ "t", Ǥʤ "x" Ωѿ (ѿ) ȤƱͤ
`splot` Ǥϡѿ⡼ɤǤ (`splot` ϶˺ɸ⡼ɤǤϻȤޤ)
"u" "v", Ǥʤ "x" "y" ΩѿȤޤ
ѿϡʪŪ˰̣Τ̾뤤Ϥ̾ȤƻȤ
Ǥ礦㤨С֤δؿ褹:
set dummy t
plot sin(t), cos(t)
:
set dummy u,v
set dummy ,s
ϡ2 ܤѿ s Ȥޤѿ̾ǥեȤ᤹ͤ
ˤϰʲΤ褦ˤƤ
unset dummy
3 ʸ (encoding)
?commands set encoding
?commands show encoding
?set encoding
?show encoding
?encoding
?encodings
?utf8
?sjis
=UTF-8
=SJIS
ޥ `set encoding` ʸΥ (encoding) ޤ
:
set encoding {<value>}
set encoding locale
show encoding
ͭ (value) ϰʲ̤Ǥ
default - Ϸ˥ǥեȤΥɤλѤ̿
iso_8859_1 - UTF-8 ǤŪ衼åѥɡΥ
ɤ PostScript Ǥ 'ISO-Latin1' Ǥ
iso_8859_15 - 桼ޤ iso_8859_1 ΰ
iso_8859_2 - /衼åѤǻѤ륨
iso_8859_9 - (Latin5 ȤΤ) ȥ륳ǻѤ륨
koi8r - ɤȤ Unix Υʸ
koi8u - Unix Υ饤Υʸ
cp437 - MS-DOS Υɥڡ
cp850 - 衼åѤ OS/2 Υɥڡ
cp852 - /衼åѤ OS/2 Υɥڡ
cp950 - MS Ǥ Big5 (emf terminal Τ)
cp1250 - /衼åѤ MS Windows Υɥڡ
cp1251 - ӥ֥륬ꥢޥɥ˥ (8 ӥå)
cp1252 - 衼åѤ MS Windows Υɥڡ
cp1254 - ȥ륳 MS Windows Υɥڡ (Latin5 γĥ)
sjis - Shift_JIS ܸ쥨
utf8 - ʸ Unicode ȥݥȤΡĹ (ޥ
) ɽ
ޥ `set encoding locale` ϡ¾ΥץȤϰ㤤ϸ
Υ¹ԻδĶꤷ褦ȤޤƤΥƥǤ
ϴĶѿ LC_ALL, LC_CTYPE, LANG Τ줫ˤä椵ޤ
λȤߤϡ㤨 wxt, pdf ϷǡUTF-8 EUC-JP Τ褦ʥޥ
Хʸɤ̤ɬפǤΥޥɤդ
ɤΥͭɽˤϱƶͿޤ
ʲ⻲: `set locale`, `set decimalsign`
̤˥ɤϡ줬եȤ˱ƶͿ褦ˡ
Ϸ˹Ԥʤɬפޤ
3 ü (errorbars)
?commands set errorbars
?commands show errorbars
?set errorbars
?show errorbars
?errorbars
?commands set bars
?commands show bars
?set bars
?show bars
?bars
ޥ `set errorbars` ϡ (errorbar) ξü
boxplot ˤĤȢҤξüΥޡ椷ޤ
:
set errorbars {small | large | fullwidth | <size>} {front | back}
{line-properties}
unset errorbars
show errorbars
`small` 0.0 (ʤ)`large` 1.0 ƱǤꤷ
ʤХǥեȤͤ 1.0 Ǥ
`fullwidth` ϡerrorbar ȼ boxplot histograms ˤ
ߴϢޤ errorbar ξüбȢƱ
ޤȢΤѹ뤳ȤϤޤ
`front`, `back` ϡɤ٤ĹΤĤ errorbar Τߤ
Ϣޤ (boxes, candlesticks, histograms)
(errorbar) ϡǥեȤǤϴϢȢζƱ°
褷ޤѤѰդ°ѹǤޤ
set errorbars linecolor black linewidth 0.5 dashtype '.'
3 ؿ (fit)
?commands set fit
?commands show fit
?set fit
?show fit
?set fit quiet
?set fit verbose
?set fit brief
?set fit results
?set fit prescale
?set fit limit
?set fit maxiter
?set fit errorscaling
?set fit errorvariables
?set fit logfile
?set fit script
?set fit v4
?set fit v5
ޥ `set fit` ϡ`fit` ޥѤΥץ椷ޤ
:
set fit {nolog | logfile {"<filename>"|default}}
{{no}quiet|results|brief|verbose}
{{no}errorvariables}
{{no}covariancevariables}
{{no}errorscaling}
{{no}prescale}
{maxiter <value>|default}
{limit <epsilon>|default}
{limit_abs <epsilon_abs>}
{start-lambda <value>|default}
{lambda-factor <value>|default}
{script {"<command>"|default}}
{v4 | v5}
unset fit
show fit
ץ `logfile` ϡ`fit` ޥɤνϤФ
ޤ <filename> ϡñ䤫ŰǰϤɬפ
ե̾ꤷʤä硢ޤ `unset fit` Ѥ
ϡեϥǥեȤͤǤ "fit.log"ޤϴĶѿ
`FIT_LOG` ͤ˥ꥻåȤޤͿ줿ե̾ / \
äƤ硢ϥǥ쥯ȥ̾Ȳᤵ졢եϤΥǥ
쥯ȥ "fit.log" Ȥʤޤ
ǥեȤǤϡΥե˽ϡ÷ϤˤϤ
ޤ`set fit quiet` Ϥ÷Ϥդˤ`results` Ϻǽ
ΤߤϤޤ`brief` ϡɲä fit Τ٤Ƥη֤˴ؤ 1
Ԥޤ`verbose` ϡС 4 Τ褦ʾܺ٤ʷ
Ԥޤ
ץ `errorvariables` ON ˤȡ`fit` ޥɤǷ줿
ġƤϤѥθΥѥ̾ "_err" Ĥ
̾Υ桼ѿ˥ԡޤϼˡƤϤؿȥǡ
襰դξ˥ѥȤθѤ˽ϤΤ˻Ȥ
:
set fit errorvariables
fit f(x) 'datafile' using 1:2 via a, b
print "error of a is:", a_err
set label 1 sprintf("a=%6.2f +/- %6.2f", a, a_err)
plot 'datafile' using 1:2, f(x)
ץ `errorscaling` ꤹ (ǥե)ѥη
ּ (reduced -square) ǿ̤ޤϡ̤Ȥ
ּͤˤʤ롢ƤϤɸк (FIT_STDFIT) ǡ
뤳ȤƱˤʤޤץ `noerrorscaling` Ǥϡ
ɾϡ̤ʤƤϤѥɸкˤʤޤ
ǡνŤߤꤷʤСѥθϾ˿̤ޤ
ץ `prescale` ˤȡMarquardt-Levenberg 롼
ˡƥѥͤνͤ˽äƻ˥Ѵ
ϡƥѥ礭ˤʤ礭ʰ㤤ˡͭ
Ǥͤ 0 ƤϤѥˤϡ褷Ƥ
ѴϹԤޤ
ȿθ³ͤϡץ `maxiter` ¤Ǥޤ 0
`default` Ȥȡϸ³ʤȤ̣ޤ
ץ `limit` ϡ«Ф뤿ΤäȤ⾮θ³
(1e-5) ΥǥեȤͤѹΤ˻Ȥޤĺ¤ο
̤ΨѲʤϡƤϤϡּ«פȽǤޤ
ץ `limit_abs` ϡĺ¤Ѳθ³ () ɲä
ޤǥեȤ 0 Ǥ
르ꥺ˴ؤ̤硢 Marquardt-Levenberg
르ꥺɤΤäƤ硢˱ƶͿʲΥץ
ѤǤޤ: `lambda` νͤϡ̾KưŪ ML-
ɬפʤХץ `start_lambda` ȤäƤͿ뤳Ȥ
ޤ `default` ȤȡƤӼư꤬ͭˤʤޤ
`lambda_factor` ϡоݤȤؿΦּ̣ͤꤲ
/ȤϾ `lambda` ä/Ҥꤷ
`default` ȤȡǥեȤΰҤǤ 10.0 ˤޤ
ץ `script` ϡfit ǤȤ˼¹Ԥ `gnuplot` ޥ
ɤꤹΤǤʲ: `fit`ϥǥեȤ `replot`
Ķѿ `FIT_SCRIPT` ̤ͥϾǤ
ץ `covariancevariables` ˤȡǽŪʥѥ
ζʬ桼ѿ¸ޤƥѥȤФƤζʬ
¸ѿ̾ϡ"FIT_COV_" ˺ǽΥѥ̾ "_" 2
ΥѥĤʤ̾ˤʤޤ㤨Хѥ "a" "b"
Ƥϡζʬѿ̾ "FIT_COV_a_b" Ȥʤޤ
С 5 Ǥϡޥ fit νѹ졢 `error`
ꤵƤʤñ̽Ť (`unitweights`) ǥեȤˤʤ
ץ `v4` gnuplot С 4 ΥǥեȤεư
ޤʲ⻲: `fit`
3 եȥѥ (fontpath)
?commands set fontpath
?commands show fontpath
?set fontpath
?show fontpath
?fontpath
:
set fontpath "/directory/where/my/fonts/live"
set term postscript fontfile <filename>
[version 5.4 Ǥ侩]
`fontpath` Υǥ쥯ȥϡpostscript Ϸ PostScript
եȤˤΤߴطޤ
¾ gnuplot ϷˤϲαƶͿޤ
ʤեȤᤳޤʤСΥޥɤϤʤˤɬפ
ᤳǤ⡢ʲ˼¾Υѥ˥եȤĤʤ
ˤΤɬפʤǤ
Ǥ gnuplot ϡեȤޤʣΥǥ쥯ȥĥõ
뤳ȤǥեȴեȤޤͤƤޤ
ߤϡʲξˡ֤äƤޤ
(1) `set term postscript fontfile` ޥɤͿХѥ
(2) ߤΥǥ쥯ȥ (ȥǥ쥯ȥ)
(3) `set loadpath` ǻꤷǥ쥯ȥΤ٤
(4) `set fontpath` ǻꤷǥ쥯ȥ
(5) Ķѿ GNUPLOT_FONTPATH ˻ꤵƤǥ쥯ȥ
: libgd νϷ (png gif jpeg sixel) Ѥ˥ե̾ǻꤹ
ȤθѥϡĶѿ GDFONTPATH Ǥޤ
3 ι߽ (format)
?commands set format
?commands show format
?set format
?show format
?format
?format cb
ɸιߤθФϡޥ `set format` ޤ `set tics format`
ޤϸ̤˥ޥ `set {}tics format` ǽǤޤ
ǡФŪʽλˡˤĤƤϡʲ: `using format`
:
set format {<axes>} {"<format-string>"} {numeric|timedate|geographic}
show format
ǡ<axes> () `x`, `y`, `xy`, `x2`, `y2`, `z`, `cb`ޤϲ
ꤷʤ (ξ礽νϤ٤ƤμŬѤޤ) Τ줫
Ǥʲ 2 ĤΥޥɤƱǤ:
set format y "%.2f"
set ytics format "%.2f"
ʸĹ 100 ʸޤǡ¤ƤޤǥեȤν
ʸ "% h" ǡLaTeX ϤνϷǤ "$%h$" Ǥ¾ "%.2f"
"%3.0em" Τ褦ʽޤ뤳Ȥ¿Ǥ礦"set format" θ
˲Ĥ˼¹ԤȡǥեȤᤷޤ
ʸ "" ꤷ硢ȤɽޤФϤĤޤ
Ȥäˤϡ `unset xtics` ޤ `set tics scale 0` Ѥ
Ƥ
ʸǤϡʸ (\n) ĥʸ (enhanced text) ѤΥ
åפȤޤ ξϡñ (') Ǥʤ (") Ȥä
ʲ⻲: `syntax`
"%" ƬˤĤʤʸϤΤޤɽޤäơʸ
ڡʸʤɤ뤳ȤǤޤ㤨 "%g m" ȤС
ͤθ " m" ɽޤ"%" Ȥɽˤ "%g %%"
褦 2 ĽŤͤޤ
ߤ˴ؤܤˤĤƤϡʲ⻲: `set xtics`ޤ
ˡǽϤ˥ǥեȰʳξʬΥʸȤˤ
Ƥϡʲ: `set decimalsign`
ʲ⻲
^ <a href="http://www.gnuplot.info/demo/electron.html">
쥯ȥ (Ż) ǥ (electron.dem).
^ </a>
4 gprintf
?gprintf
ʸؿ gprintf("format",x) ϡgnuplot ޥɤ `set format`,
`set timestamp` ʤɤƱͤΡgnuplot ȼνҤȤޤ
νҤϡɸŪ C δؿǤ sprintf() ΤΤƱ
ǤϤޤgprintf() ϡϰĤĤޤ
Τˡgnuplot ˤ sprintf("format",x1,x2,...) ؿѰդ
Ƥޤgnuplot νץΰˤĤƤϡʲ:
`format specifiers`
4 (format specifiers)
?commands set format specifiers
?set format specifiers
?format specifiers
?format_specifiers
Ѳǽʽ (/ե⡼ɤǤʤ) ϰʲ̤Ǥ:
@start table - first is interactive cleartext form
%f 꾮ɽ
%e, %E ؿɽ; ؿ "e", "E" Ĥ
%g, %G %e (ޤ %E) %f ά
%h, %H %g "e%S" Ǥʤ "x10^{%S}" "*10^{%S}" Ĥ
%x, %X 16 ɽ
%o, %O 8 ɽ
%t 10 ʤβ
%l ߤпܤȤ벾
%s ߤпܤȤ벾; ñ (scientific power)
%T 10 ʤλؿ
%L ߤпܤȤؿ
%S ñ̤λؿ (scientific power)
%c ñʸ
%b ISO/IEC 80000 ˡ (ki, Mi, Gi, Ti, Pi, Ei, Zi, Yi) β
%B ISO/IEC 80000 ˡ (ki, Mi, Gi, Ti, Pi, Ei, Zi, Yi) Ƭ
%P Фܿ
#\begin{tabular}{|cl|} \hline
#\multicolumn{2}{|c|}{٥οͽ}\\
#\hline \hline
# & \\ \hline
#\verb@%f@ & 꾮ɽ \\
#\verb@%e@, \verb@%E@ & ؿɽ; ؿ "e", "E" Ĥ \\
#\verb@%g@, \verb@%G@ & \verb@%e@ (ޤ \verb@%E@) \verb@%f@ ά \\
#\verb@%h@, \verb@%H@ & \verb@%g "e%S" Ǥʤ "x10^{%S}" "*10^{%S}" Ĥ@\\
#\verb@%x@, \verb@%X@ & 16 ɽ \\
#\verb@%o@, \verb@%O@ & 8 ɽ \\
#\verb@%t@ & 10 ʤβ \\
#\verb@%l@ & ߤпܤȤ벾 \\
#\verb@%s@ & ߤпܤȤ벾; ñ (scientific power) \\
#\verb@%T@ & 10 ʤλؿ \\
#\verb@%L@ & ߤпܤȤؿ \\
#\verb@%S@ & ñ̤λؿ (scientific power) \\
#\verb@%c@ & ñʸ \\
#\verb@%b@ & ISO/IEC 80000 ˡ (ki, Mi, Gi, Ti, Pi, Ei, Zi, Yi) β\\
#\verb@%B@ & ISO/IEC 80000 ˡ (ki, Mi, Gi, Ti, Pi, Ei, Zi, Yi) Ƭ\\
#\verb@%P@ & Фܿ \\
%c l .
%@
%_
%%f@꾮ɽ
%%e, %E@ؿɽ; ؿ "e", "E" Ĥ
%%g, %G@%e (ޤ %E) %f ά
%%h, %H@%g "e%S" Ǥʤ "x10^{%S}" "*10^{%S}" Ĥ
%%x, %X@16 ɽ
%%o, %O@8 ɽ
%%t@10 ʤβ
%%l@ߤпܤȤ벾
%%s@ߤпܤȤ벾; ñ (scientific power)
%%T@10 ʤλؿ
%%L@ߤпܤȤؿ
%%S@ñ̤λؿ (scientific power)
%%c@ñʸ
%%b@ISO/IEC 80000 ˡ (ki, Mi, Gi, Ti, Pi, Ei, Zi, Yi) β
%%B@ISO/IEC 80000 ˡ (ki, Mi, Gi, Ti, Pi, Ei, Zi, Yi) Ƭ
%%P@Фܿ
@end table
^<table align="center" border="1" rules="groups" frame="hsides" cellpadding="3">
^<colgroup>
^ <col align="center">
^ <col align="left">
^</colgroup>
^<thead>
^<tr> <th></th> <th></th></tr>
^</thead>
^<tbody>
^<tr> <td><tt>%f</tt></td> <td>꾮ɽ</td></tr>
^<tr> <td><tt>%e</tt>, <tt>%E</tt></td> <td>ؿɽ; ؿ "e", "E" Ĥ</td></tr>
^<tr> <td><tt>%g</tt>, <tt>%G</tt></td> <td><tt>%e</tt> (ޤ <tt>%E</tt>) <tt>%f</tt>ά</td></tr>
^<tr> <td><tt>%h</tt>, <tt>%H</tt></td> <td><tt>%g</tt> "e%S" "x10^{%S}" "*10^{%S}" Ĥ</td></tr>
^<tr> <td><tt>%x</tt>, <tt>%X</tt></td> <td>16 ɽ</td></tr>
^<tr> <td><tt>%o</tt>, <tt>%O</tt></td> <td>8 ɽ</td></tr>
^<tr> <td><tt>%t</tt></td> <td>10 ʤβ</td></tr>
^<tr> <td><tt>%l</tt></td> <td>ߤпܤȤ벾</td></tr>
^<tr> <td><tt>%s</tt></td> <td>ߤпܤȤ벾; ñ (scientific power)</td></tr>
^<tr> <td><tt>%T</tt></td> <td>10 ʤλؿ</td></tr>
^<tr> <td><tt>%L</tt></td> <td>ߤпܤȤؿ</td></tr>
^<tr> <td><tt>%S</tt></td> <td>ñ̤λؿ (scientific power)</td></tr>
^<tr> <td><tt>%c</tt></td> <td>ñʸ</td></tr>
^<tr> <td><tt>%b</tt></td> <td>ISO/IEC 80000 ˡ (ki, Mi, Gi, Ti, Pi, Ei, Zi, Yi) β</td></tr>
^<tr> <td><tt>%B</tt></td> <td>ISO/IEC 80000 ˡ (ki, Mi, Gi, Ti, Pi, Ei, Zi, Yi) Ƭ</td></tr>
^<tr> <td><tt>%P</tt></td> <td>π ܿ</td></tr>
^</tbody>
^</table>
ñ ('scientific' power) ϡؿ 3 ܿǤ褦ʤΤǤ
ñ̻ؿ (`"%c"`) ʸؤѴ -18 +18 ޤǤλؿФ
ݡȤƤޤϰϳλؿξ硢̾λؿ
ޤ
ۤ˻ȤȤΤǤ뽤 ("%" ȽҤδ֤˽) ˤϡ
ΤĤޤ: "-" Ͽͤˤ"+" οˤ
Ĥ" " () ο "-" Ĥ٤οξ˶
ĤĤ"#" Ͼʲο 0 ǤäƤ⾮Ĥ
Ͻᡢľ "0" (ʸǤʤ) Ƭ
˶ʬ 0 ᡢθ
Τ٤̣ޤ (ξϺǾ塢ξϾ
η)
ƤνݡȤƤʤ OS ⤢Ǥ礦դˤ
ʳΤΤ⥵ݡȤ OS ⤢Ǥ礦路ϡŬڤʻ
Ĵ١Ƽ¸ƤߤƤ
:
set format y "%t"; set ytics (5,10) # "5.0" "1.0"
set format y "%s"; set ytics (500,1000) # "500" "1.0"
set format y "%+-12.3f"; set ytics(12345) # "+12345.000 "
set format y "%.2t*10^%+03T"; set ytic(12345)# "1.23*10^+04"
set format y "%s*10^{%S}"; set ytic(12345) # "12.345*10^{3}"
set format y "%s %cg"; set ytic(12345) # "12.345 kg"
set format y "%.0P pi"; set ytic(6.283185) # "2 pi"
set format y "%.0f%%"; set ytic(50) # "50%"
set log y 2; set format y '%l'; set ytics (1,2,3)
#"1.0", "1.0", "1.5" ɽ (3 1.5 * 2^1 ʤΤ)
ݤȻؿɬפȤʤ褦ʽ 9.999 ͤʿ
꤬뤳Ȥޤ
Υǡǡ (time/date) ξ硢ʸ 'strftime'
ؿ ('gnuplot' "man strftime" ȤƤߤƤ) ˴ؤͭ
ԤɬפޤȤϽΰ˴ؤƤϡʲ:
`set timefmt`
4 ǡ (time/date specifiers)
?commands set format date_specifiers
?commands set format time_specifiers
?set format date_specifiers
?set format time_specifiers
?set date_specifiers
?set time_specifiers
?date_specifiers
?time_specifiers
ˤϡл 2 ĤΥ롼פޤ
ϡ ιߤΥ٥ꡢʸ˥ɤΤ
Ȥޤʲ: `set xtics time`, `strftime`, `strptime`
ϰʲ̤Ǥ
@start table - first is interactive cleartext form
%a ̾ξά (Sun,Mon,...) (ϤǤ̵)
%A ̾ (Sunday,Monday,...) (ϤǤ̵)
%b, %h ̾ξά (Jan,Feb,...)
%B ̾ (January,February,...)
%d (01--31)
%D "%m/%d/%y" δά (ϤΤ)
%F "%Y-%m-%d" δά (ϤΤ)
%k (0--23; 1 ޤ 2 )
%H (00--23; 2 )
%l (1--12; 1 ޤ 2 )
%I (01--12; 2 )
%j ǯ̻ (001--366)
%m (01--12)
%M ʬ (00--60)
%p "am" ޤ "pm"
%r "%I:%M:%S %p" δά (ϤΤ)
%R "%H:%M" δά (ϤΤ)
%S (ϤǤ 00--60 ϤǤϼ¿)
%s 1970 ǯǽ餫ÿ
%T "%H:%M:%S" δά (ϤΤ)
%U ǯ̻ (CDC/MMWR ֳŪ) (ϤǤ̵)
%w ֹ (0--6, = 0) (ϤǤ̵)
%W ǯ̻ (ISO 8601 νֹ) (ϤǤ̵)
%y (2000-2068 ǯ 0-681969-1999 ǯ 69-99)
%Y (4 )
%z ॾ[+-]hh:mm
%Z ॾ̾ʸ̵
#\begin{tabular}{|cl|} \hline
#\multicolumn{2}{|c|}{ջ}\\
#\hline \hline
# & \\ \hline
#\verb@%a@ & ̾ξά (Sun,Mon,...) \\
#\verb@%A@ & ̾ (Sunday,Monday,...) \\
#\verb@%b@, \verb@%h@ & ̾ξά (Jan,Feb,...) \\
#\verb@%B@ & ̾ (January,February,...) \\
#\verb@%d@ & (01--31) \\
#\verb@%D@ & \verb@"%m/%d/%y"@ δά (ϤΤ)\\
#\verb@%F@ & \verb@"%Y-%m-%d"@ δά (ϤΤ)\\
#\verb@%k@ & (0--23; 1 ޤ 2 ) \\
#\verb@%H@ & (00--23; 2 ) \\
#\verb@%l@ & (1--12; 1 ޤ 2 ) \\
#\verb@%I@ & (01--12; 2 ) \\
#\verb@%j@ & ǯ̻ (001--366) \\
#\verb@%m@ & (01--12) \\
#\verb@%M@ & ʬ (00--60) \\
#\verb@%p@ & "am" ޤ "pm" \\
#\verb@%r@ & \verb@"%I:%M:%S %p"@ δά (ϤΤ)\\
#\verb@%R@ & \verb@"%H:%M"@ δά (ϤΤ)\\
#\verb@%S@ & (ϤǤ 00--60 ϤǤϼ¿)\\
#\verb@%s@ & 1970 ǯǽ餫ÿ \\
#\verb@%T@ & \verb@"%H:%M:%S"@ δά (ϤΤ)\\
#\verb@%U@ & ǯ̻ (CDC/MMWR ֳŪ) (ϤǤ̵)\\
#\verb@%w@ & ֹ (0--6, = 0) \\
#\verb@%W@ & ǯ̻ (ISO 8601 νֹ) (ϤǤ̵)\\
#\verb@%y@ & (0-991969-2068 ǯβ 2 ) \\
#\verb@%Y@ & (4 ) \\
#\verb@%z@ & ॾ[+-]hh:mm \\
#\verb@%Z@ & ॾ̾ʸ̵ \\
%c l .
%@
%_
%%a@̾ξά (Sun,Mon,...)
%%A@̾ (Sunday,Monday,...)
%%b, %h@̾ξά (Jan,Feb,...)
%%B@̾ (January,February,...)
%%d@ (01--31)
%%D@"%m/%d/%y" δά (ϤΤ)
%%F@"%Y-%m-%d" δά (ϤΤ)
%%k@ (0--23; 1 ޤ 2 )
%%H@ (00--23; 2 )
%%l@ (1--12; 1 ޤ 2 )
%%I@ (01--12; 2 )
%%j@ǯ̻ (1--366)
%%m@ (01--12)
%%M@ʬ (0--60)
%%p@"am" ޤ "pm"
%%r@"%I:%M:%S %p" δά (ϤΤ)
%%R@"%H:%M" δά (ϤΤ)
%%S@ (ϤǤ 0--60 ϤǤϼ¿)
%%s@1970 ǯǽ餫ÿ
%%T@"%H:%M:%S" δά (ϤΤ)
%%U@ǯ̻ (CDC/MMWR ֳŪ)
%%w@ֹ (0--6, = 0)
%%W@ǯ̻ (ISO 8601 νֹ)
%%y@ (0-991969-2068 ǯβ 2 )
%%Y@ (4 )
%%z@ॾ[+-]hh:mm
%%Z@ॾ̾ʸ̵
@end table
^<table align="center" border="1" rules="groups" frame="hsides" cellpadding="3">
^<colgroup>
^ <col align="center">
^ <col align="left">
^</colgroup>
^<thead>
^<tr> <th>ս</th> <th></th></tr>
^</thead>
^<tbody>
^<tr> <td><tt>%a</tt></td> <td>̾ξά (Sun,Mon,...)</td></tr>
^<tr> <td><tt>%A</tt></td> <td>̾ (Sunday,Monday,...)</td></tr>
^<tr> <td><tt>%b</tt>, <tt>%h</tt></td> <td>̾ξά (Jan,Feb,...)</td></tr>
^<tr> <td><tt>%B</tt></td> <td>̾ (January,February,...)</td></tr>
^<tr> <td><tt>%d</tt></td> <td> (01–31)</td></tr>
^<tr> <td><tt>%D</tt></td> <td><tt>%m/%d/%y</tt> δά (ϤΤ)</td></tr>
^<tr> <td><tt>%F</tt></td> <td><tt>%Y-%m-%d</tt> δά (ϤΤ)</td></tr>
^<tr> <td><tt>%k</tt></td> <td> (0–23; 1 ޤ 2 )</td></tr>
^<tr> <td><tt>%H</tt></td> <td> (00–23; 2 )</td></tr>
^<tr> <td><tt>%l</tt></td> <td> (1–12; 1 ޤ 2 )</td></tr>
^<tr> <td><tt>%I</tt></td> <td> (01–12; 2 )</td></tr>
^<tr> <td><tt>%j</tt></td> <td>ǯ̻ (1–366)</td></tr>
^<tr> <td><tt>%m</tt></td> <td> (01–12)</td></tr>
^<tr> <td><tt>%M</tt></td> <td>ʬ (0–60)</td></tr>
^<tr> <td><tt>%p</tt></td> <td>"am" ޤ "pm"</td></tr>
^<tr> <td><tt>%r</tt></td> <td><tt>%I:%M:%S %p</tt> δά (ϤΤ)</td></tr>
^<tr> <td><tt>%R</tt></td> <td><tt>%H:%M</tt> δά (ϤΤ)</td></tr>
^<tr> <td><tt>%S</tt></td> <td> (ϤǤ 0–60 ϤǤϼ¿)</td></tr>
^<tr> <td><tt>%s</tt></td> <td>1970 ǯǽ餫ÿ</td></tr>
^<tr> <td><tt>%T</tt></td> <td><tt>%H:%M:%S</tt> δά (ϤΤ)</td></tr>
^<tr> <td><tt>%U</tt></td> <td>ǯ̻ (CDC/MMWR ֳŪ)</td></tr>
^<tr> <td><tt>%w</tt></td> <td>ֹ (0–6, = 0)</td></tr>
^<tr> <td><tt>%W</tt></td> <td>ǯ̻ (ISO 8601 νֹ)</td></tr>
^<tr> <td><tt>%y</tt></td> <td> (0-991969-2068 ǯβ 2 )</td></tr>
^<tr> <td><tt>%Y</tt></td> <td> (4 )</td></tr>
^<tr> <td><tt>%z</tt></td> <td>ॾ[+-]hh:mm</td></tr>
^<tr> <td><tt>%Z</tt></td> <td>ॾ̾ʸ̵</td></tr>
^</tbody>
^</table>
%W (ISO νֹ) ˴ؤܺ٤ϡʲ: `tm_week`
%U (CDC/MMWR: ꥫͽɴֳؽαֳŪֹ)
ϡ˳ϤǤʤ˳ϤǤ뤳Ȥ %W ƱͤǤ
ٹ: С 5.4.2 gnuplot Ǥϡ %W %U Ϥ
Ǥޤ"week_date.dem" ñ̥ƥȤȤƤ
лϡ 0 Τ줫¦λֳִ֤Ĺɽޤ
лϰʲ̤Ǥ
@start table - first is interactive cleartext form
%tD 0 ؤŪ
%tH 0 ؤŪλ (24 Ǥδᤷʤ)
%tM 0 ؤŪʬ
%tS ľ tH, tM ܤбÿ
#\begin{tabular}{|cl|} \hline
#\multicolumn{2}{|c|}{}\\
#\hline \hline
# & \\ \hline
#\verb@%tD@ & 0 ؤŪ \\
#\verb@%tH@ & 0 ؤŪλ (24 Ǥδᤷʤ) \\
#\verb@%tM@ & 0 ؤŪʬ \\
#\verb@%tS@ & ľ tH, tM ܤбÿ \\
%c l .
%@
%_
%%tD@ 0 ؤŪ
%%tH@ 0 ؤŪλ (24 Ǥδᤷʤ)
%%tM@ 0 ؤŪʬ
%%tS@ľ tH, tM ܤбÿ
@end table
^<table align="center" border="1" rules="groups" frame="hsides" cellpadding="3">
^<colgroup>
^ <col align="center">
^ <col align="left">
^</colgroup>
^<thead>
^<tr> <th></th> <th></th></tr>
^</thead>
^<tbody>
^<tr> <td><tt>%tD</tt></td> <td> 0 ؤŪ</td></tr>
^<tr> <td><tt>%tH</tt></td> <td> 0 ؤŪλ (24 Ǥδᤷʤ)</td></tr>
^<tr> <td><tt>%tM</tt></td> <td> 0 ؤŪʬ</td></tr>
^<tr> <td><tt>%tS</tt></td> <td>ľ tH, tM ܤбÿ</td></tr>
^</tbody>
^</table>
ɽˤϡƬ 0 뤿 "0" () ˤĤ뤳
ȤǤޤǾνꤹ뤿ˤĤ뤳Ȥ
ޤ %S %t ٻĤΤǡλ/ʬ/ä
ȤǤޤ
5 (Examples)
?commands set format date_specifiers examples
?commands set format time_specifiers examples
?set format date_specifiers examples
?set format time_specifiers examples
?set date_specifiers examples
?set time_specifiers examples
?date_specifiers examples
?time_specifiers examples
ս:
x ͤ1976 ǯ 12 25 ο뾯λбÿǤ
ꤷޤΰ֤μιߥ٥ʸϡʲΤ褦ˤʤޤ:
set format x # ǥեȤǤ "12/25/76 \n 23:11"
set format x "%A, %d %b %Y" # "Saturday, 25 Dec 1976"
set format x "%r %D" # "11:11:11 pm 12/25/76"
set xtics time format "%B" # "December"
:
սϡÿǤλ֤ͤλפλ˥
ɤޤäơ 0 23 ޤǡʬ 0 59 ޤǤΤߤư
ͤϡݥå (1970 ǯ 1 1 ) դ
ޤÿǤλ֤ͤ 0 ФŪʻ/ʬ/äοͤ
ƽϤˤϡֽ %tH %tM %tS Ѥޤ-3672.50 ä
ϰʲΤ褦˽Ϥޤ
set format x # ǥեȤǤ "12/31/69 \n 22:58"
set format x "%tH:%tM:%tS" # "-01:01:12"
set format x "%.2tH hours" # "-1.02 hours"
set format x "%tM:%.2tS" # "-61:12.50"
3 ʻ (grid)
?commands set grid
?commands unset grid
?commands show grid
?set grid
?set grid vertical
?unset grid
?show grid
?grid
ޥ `set grid` ϳʻޤ
:
set grid {{no}{m}xtics} {{no}{m}ytics} {{no}{m}ztics}
{{no}{m}x2tics} {{no}{m}y2tics} {{no}{m}rtics}
{{no}{m}cbtics}
{polar {<angle>}}
{layerdefault | front | back}
{{no}vertical}
{<line-properties-major> {, <line-properties-minor>}}
unset grid
show grid
ʻǤդμǤդ/Фͭ/̵ˤǤ
ȾФǤߤν֤ݡ
ȤϰϤǡ餫饤Ѥ뤳ȤǤޤ
(ʲ: `set style line`)
2 Ǥ϶˺ɸʻҤǤޤϡgnuplot ˺ɸ⡼
(polar) ΤȤ `set grid` ΥǥեȤεưǤŪ
`set grid polar <angle> rtics` ȤС˺ɸ⡼ɤǤʤ˴ؤ
餺¹ԤǤޤƱߤ r μ/Ǹ褦ư
¤ <angle> γѤޤƱߤμϤιߤϡ
`set ttics` 椷ޤư¤γʻˤޤ
`set grid` ˡɬפͭˤʤäƤʤФʤޤ
`gnuplot` ϡ¸ߤʤФʻҤ̿ñ̵뤷ޤ
Ǥ꤬ͭˤʤФФʻҤޤ
ʻФꤷʤСʻƱ郎Ȥ
ǥեȤζ˺ɸγ٤ 30 ٤Ǥ
`front` ꤹȡʻϥդΥǡξޤ`back`
ꤵ줿ϳʻϥդΥǡβޤ`front`
С̩ǡdzʻʤʤ뤳ȤɤȤǤޤ
եȤǤ `layerdefault` ǡ 2D Ǥ `back` ƱǤ
3D ΥǥեȤϡʻҤȥդȤ 2 Ĥñ̤ʬΥʻ
ϸˡȤǡޤϴؿ˽ޤ`hidden3d`
⡼ɤǤϡ줬켫Ȥ¤ӴƤޤΤǡʻν֤Υ
ץ̵뤵졢ʻⱣˤޤΥץ
ϡºݤˤϳʻǤʤ`set border` ˤ붭Ȥ
ι (ʲ: `set xtics`) ˤƶڤܤޤ
3 Ǥϡx y ι֤߰ФʻϡǥեȤǤ
z=0 ʿԤ̾ˤޤ `vertical` ϡʻ
xz ̤ yz ̤ˤ zmin zmax ޤ褦ˤޤ
z γʻ̤ޤμʬŪȢ
ƤˤϤǤ礦ʲ: `set border`
3 (hidden3d)
?commands set hidden3d
?commands unset hidden3d
?commands show hidden3d
?set hidden3d
?unset hidden3d
?show hidden3d
?hidden3d
?nohidden3d
`set hidden3d` ޥɤ϶ (ʲ: `splot`) DZԤ
褦˻ؼޤν르ꥺ˴ؤɲõǽ⤳Υ
ޥɤǤޤ
:
set hidden3d {defaults} |
{ {front|back}
{{offset <offset>} | {nooffset}}
{trianglepattern <bitpattern>}
{{undefined <level>} | {noundefined}}
{{no}altdiagonal}
{{no}bentover} }
unset hidden3d
show hidden3d
gnuplot ̾ɽȤϰۤʤꡢǤͿ줿ؿޤϥǡ
γʻºݤζ̤ζ̤ظˤäƱƤǤ
ʤΤƱ褦˽ޤ줬ǽ뤿ˤϡζ̤
'ʻҾ' (ʲ: `splot datafile`) Ǥɬפꡢޤ
`with lines` `with linespoints` ƤʤФޤ
`hidden3d` ͭʤȤϡʻǤʤʬξ
(ʲ: `set contour`) Ᵽޤʣ̤褷Ƥϡ
ƶ̤ϼʬȤ¾ζ̤DZʬޤ̾ؤ
ɽ (`set contour surface`) ϵǽޤ
վ˶̤Ĥʤ֤Ǥ⡢hidden3d `points`, `labels`,
`vectors`, `impulses` 3 襹˱ƶͿޤ
`vectors` ϡʤʬʬ (ʤ) Ȥɽޤ
γơνŪ˽Ȥϡ`with`
̤Υץ `nohidden3d` ɲäƤ
hidden3d ϡpm3d ⡼ɤ褵줿ñɤζ̤ˤϱƶͿޤ
pm3d ζ̤ФƱͤθ̤ʤС
`set pm3d depthorder` ȤäƤʣ pm3d ̤̾
`hidden3d` Ȥ߹碌ˤϡץ `set hidden3d front`
ѤƤϡhidden3d ƤǤpm3d ̤ޤ
Ĥ¾Ǥθ˶Ū褹ΤǤ
ؿͤϳʻҸΩθɾޤ뤳Ȥνʬ
ϸġδؿ͡뤤ϥǡδ֤ϤΥ르ꥺˤä
֤ޤϡ`hidden3d` 褹 `nohidden3d` 褹
Ǵؿθۤʤ뤳Ȥ̣ޤʤʤСԤξ
ͤϳɸɾ뤫Ǥΰ㤤˴ؤˤĤƤϡ
ʲ: `set samples`, `set isosamples`
̤αʬõΤ˻Ȥ륢르ꥺϡΥޥɤ
椵뤤ĤɲåץäƤޤ`defaults` ꤹ
ФϤ٤ơʲǽҤ٤褦ʥǥեȤͤꤵޤ
`defaults` ꤵʤäˤϡŪ˻ꤵ줿ץ
ߤƶʳΤΤϰͤѤޤäơ
Υץͤ뤳Ȥʤñ `set {no}hidden3d`
ΤߤDZ/դǤ뤳Ȥˤʤޤ
ǽΥץ `offset` '¦' 褹˱ƶͿ
ޤ̾϶̤ɽ̤뤿ˡ¦ϡɽ¦
礭ֹ郎Ȥޤ`offset <offset>` ˤäơɲä
ͤǥեȤ 1 ȤϰۤʤʬͤѹǤޤ`nooffset`
`offset 0` ̣ɽƱȤȤˤʤޤ
Υץ `trianglepattern <bitpattern>` Ǥ<bitpattern>
0 7 ޤǤοǡӥåȥѥȲᤵޤƶ̤ϻѷ
ʬ䤵ޤΥӥåȥѥγƥӥåȤϤλѷγդɽ
ꤷޤӥå 0 ϳʻҤοʿաӥå 1 ϳʻҤοľաӥ
2 ϡγʻҤ 2 Ĥλѷʬ䤵ȤгդǤǥե
ȤΥӥåȥѥ 3 ǡƤοʿդȿľդɽг
դɽʤȤ̣ޤгդɽ 7 ꤷޤ
ץ `undefined <level>` ϡƤʤ (礱Ƥǡ
ޤ̤δؿ) ޤͿ줿 x,y,z ϰϤĶƤ
ŬѤ륢르ꥺؼޤΤ褦ϡǤ
ɽƤޤޤϥǡޤ
ޤܤƤζǤƱͤ˼졢äƶ̤˷꤬
ޤ<level> = 3 ξ硢 `noundefined` Ʊǡɤ
ΤƤޤ¾ξǤΤ
Ȥʤ٤Ǥ<level> = 2 Ǥ̤ϼΤƤޤϰϤĶ
ϼΤƤޤ<level> = 1 Ǥϡ줬ǥեȤǤϰ
ĶΤƤޤ
`noaltdiagonal` ꤹȡ`undefined` ͭΤȤ (ʤ <level>
3 Ǥʤ) ˵ʲξΥǥեȤǤμ谷ѹǤ
϶̤γƳʻҾʬϰгˤä 2 Ĥλѷʬ
ޤ̾ϤгƤʻҤФƱƤ
⤷ʻҤ 4 ĤγѤΤĤ `undefined` ˤȤ
ƤơγѤ̾г˾äƤϡξλ
ѷƤޤޤ⤷ǥեȤǤ
`altdiagonal` ͭˤʤäƤ硢γʻҤˤĤƤ¾г
졢̤η礭Ǿˤʤ褦ˤޤ
`bentover` ץϺ٤ `trianglepattern` ȤȤ˵̤Τ
椷ޤʤꤷ勞ζ̤Ǥϡ ASCII ʸ˽
ˡ̤ 1 ĤγʻҤ 2 Ĥʬ줿ѷɽȿ¦
Ƥޤ (ʤλͳѷޤʤƤ ('bent over')
) ޤ:
C----B
4 ѷ: A--B ɽ 4 ѷ: |\ |
("set view 0,0") | /| ("set view 75,75" perhaps) | \ |
|/ | | \ |
C--D | \|
A D
̤γʻҤгդ <bitpattern> 2 bit ˤäƸ褦ˤϤʤ
ƤϤʤ硢г CB ϤɤˤʤȤˤʤꡢ줬
̤ɽˤΤˤޤǥեȤ `bentover`
ץϡΤ褦ʾ礽ɽ褦ˤޤ⤷
ʤʤ顢`nobentover` Ƥ
D hidden 6
ʲ⻲
^ <a href="http://www.gnuplot.info/demo/hidden.html">
Υǥ (hidden.dem)
^ </a>
^ <a href="http://www.gnuplot.info/demo/singulr.html">
ʣʱΥǥ (singulr.dem).
^ </a>
3 ޥ (history)
?commands set history
?set history
:
set history {size <N>} {quiet|numbers} {full|trim} {default}
Ƕ gnuplot ޥǥեȤǤ $HOME/.gnuplot_history
¸ޤΥե뤬Ĥ餺 XDG ǥȥåץݡ
ͭʾ硢gnuplot $XDG_STATE_HOME/gnuplot_history
Ѥޤ
gnuplot νλ˥ҥȥե¸Կhistory size
¤ޤ`set history size -1` Ȥȡҥȥե˽
Կ¤ʤʤޤ
ǥեȤǤϡޥ `history` ϳƥޥɤ˹ֹϤ
`history quiet` ϡμ¹ԤФƤΤֹάޤ
`set history quiet` ϡΤ٤Ƥ `history` ֹάޤ
ץ `trim` ϡߤΥޥɤФƱΤ뤳
ǡޥνʣԤο餷ޤ
ǥեȤ: `set history size 500 numbers trim`
3 Ωץ (isosamples)
?commands set isosamples
?commands show isosamples
?set isosamples
?show isosamples
?isosamples
ؿ̤Ȥ褹θΩ (ʻ) ̩٤ϥޥ `set isosamples`
ѹǤޤ
:
set isosamples <iso_1> {,<iso_2>}
show isosamples
ƶ̥դ <iso_1> Ĥ u-Ω <iso_2> Ĥ v-Ωޤ
<iso_1> ΤꤹС<iso_2> <iso_1> Ʊͤꤵޤ
ǥեȤǤϡu, v 줾 10 ܤɸܲԤޤɸܿä
¿ФΤʥդޤ֤ޤ
ѥϡǡեˤϲƶͿޤ
ΩȤϡ̤ΰĤѿꤷơ⤦Ĥѿˤä
ΤȤǤΩϡ̤ɽñˡͿޤ
s(u,v) ѿ u ꤹ뤳Ȥ u-Ω c(v) = s(u0,v)
졢ѿ v ꤹ뤳Ȥ v-Ω c(u) = s(u,v0) Ǥޤ
ؿζ̥դʤƤ硢`set samples`
ƸΩɸܲο椷ޤʲ: `set samples`,
`set hidden3d`롼ϡؿɸܲϳƸΩθ
ǹԤȲꤷƤΤǡؿζ̤β٤ѹȤ
ϡ`isosamples` Ʊ褦 `samples` ѹΤ˾ޤǤ礦
3 Ͷ (isosurface)
?commands set isosurface
?commands show isosurface
?set isosurface
?show isosurface
:
set isosurface {mixed|triangles}
set isosurface {no}insidecolor <n>
ޥ `splot $voxelgrid with isosurface` ̤ϡǥե
ȤǤϻͳѷȻѷκǹޤͳѷѤ뤳Ȥǡ
ܤʣΰݤ餹̤ޤΥޥɤˤϡѷΤߤ
⥶̤褹륪ץѰդƤޤ
ǥեȤǤϡͶ̤ϡ̤οɤޤˡϡ
hidden3d ̤ξƱǡܤȤʤ˥եåȤ <n> ɲä
ͤѤޤ̤¦ȳ¦ξƱɤˤϡ
`set isosurface noinsidecolor` ѤƤ
3 isotropic
?commands set isotropic
?set isotropic
?isotropic
:
set isotropic
unset isotropic
`set isotropic` ϡդΥȥڥx, y, z ˱褦ñ
ĹƱˤʤ褦˹碌ޤϼΥޥɤƱͤǡ
˻Ȥޤ: `set size ratio -1; set view equal xyz`
ϡ2 3 դξ˱ƶޤ
`unset isotropic` ϡ2 3 դξǤ«
ϰʲθŤޥɤƱͤǤФˤϤñǤ
礦: `set size noratio; set view noequal_axes`
3 jitter
?commands set jitter
?set jitter
?jitter
=beeswarm
:
set jitter {overlap <yposition>} {spread <factor>} {wrap <limit>}
{swarm|square|vertical}
:
set jitter # 1 ʸ jitter
set jitter overlap 1.5 # 1.5 ʸ jitter
set jitter over 1.5 spread 0.5 # Ʊ塢 x ΰưȾʬ
ǡ 1 ġޤξκɸΥͤ¤Ƥ硢¿
˸ߤο˾ä礬ޤjitter (ɤ餮) ϡ
Ťʤκɸˤ餷ͤͿ뤳ȤǤ˼˹ޤ
ŤʤäƤȸʤͤϡʸñ̡뤤Ǥդκɸ
ץȤäƻǤޤʲ: `coordinates`jitter ϡ2
դ `with points` `with impulses` ˱ƶͿޤϡ
3 ΥܥǡˤƶͿޤ
ǥեȤ jitter ưϡ x Τ߰ưޤϡ֥ӡ
॰ա(bee swarm plot) ȸƤФäΥѥޤ
ץΥ `square` ϡư x ɸ˲äơ
`overlap` ǻꤷΥϾʤȤΥ줿̡γؤˤ褦 y
ɸ·ޤ
jitter x ǤϤʤ y (Τ) ˱碌ˤϡ `vertical`
ѤƤ
ʸñ̤ǤκΰưΥϡ `wrap` ¤ޤ
ŤʤȽȡɤ餮礭ϡǥեȤǤ 1 ʸñ
̤Ǥ뤳ȤդƤäƥդθܤϡϷΥե
ȥХΨˤäѹƤޤޤ
ˤϡŤʤȽ y ɸϤñ ( `first`)
ꤷΥȳ緸ŬڤͤĴƤʲ:
`coordinates`, `pointsize`
ٹ: jitter ϡ"pointsize variable" ξΩޤ
`set jitter` ϡ3 ΥܥǡǤͭѤǤܥʻҥǡ
ϡ֤줿ε§ʻҤǤ뤿ᡢ¿λǡ
Ťʤäꡢ⥢ѥꤷޤѤϡƳ
˰ư褹뵭֤Ȥ뤳Ȥ
ǽǤ
3 (key)
?commands set key
?commands unset key
?commands show key
?set key
?unset key
?show key
?key
?nokey
?legend
ޥ `set key` ϡΰγƥդФ륿ȥȥץ
(ʬȢ) (ޤɽ) ͭˤޤεǽϡ
`set key off` `unset key` Ȥ뤳Ȥ̵ˤǤޤθġ
ܤˤĤƤϡб plot ޥɤǥ `notitle` Ѥ
뤳Ȥ̵ˤǤޤΥȥʸϡץ
`set key autotitle` 䡢ġ `plot` `splot` ޥɾ `title`
ɤǤޤ
֤˱ƶ륪ץνˤĤƤϰʲ:
`key placement`
#TeX \\
Ƥ˱ƶ륪ץνˤĤƤϰʲ:`key layout`
(Ūץ):
set key {on|off} {default}
{font "<face>,<size>"} {{no}enhanced}
{{no}title "<text>" {<font or other text options>}}
{{no}autotitle {columnheader}}
{{no}box {<line properties>}} {{no}opaque {fc <colorspec>}}
{width <width_increment>} {height <height_increment>}
unset key
ǥեȤǤϡϥΰ¦αγѤ֤ޤ
ɲä `font` ϡΤ٤ƤǤФǥեȤˤʤޤ
ĺˡβΤϤ롢ѤΥץΥȥ
Ϳ뤳ǤޤΥȥˤϡġ西ȥΥեȡ
ֹ碌ĥʸȤ̤ΤΤȤȤǤޤ
ˤϡplot ޥɤγǤФơΥȥʸȡ
դ襹ʬ椫 1 Ԥɽޤ
ʸϡưŪޤplot ޥ `title "text"`
뤳ȤŪͿ뤳ȤǤޤplot ޥɤǥ
`notitle` ȤȤΥդԤޤȥ
plot ޥɤ `title ""` ȤƤ
ǤϡбԤɲäޤ (ʲ: `cntrlabel`)
ե̾ؿ̾˥ `keyentry` Ϳߡ plot
ޥɤȤȤǡ;ʬ˹Ԥɲä뤳ȤǤޤʲ
: `keyentry`
βȤ桼°ȤǤޤ (`box {...}`)
`height` `width` ʬϡʸñ̤ǻꤷϤʬ
ȢΥ礭꾮ꤷޤϡΥ
Ϥත礭ΤͭѤǤ
ǥեȤǤϡϰĤΥդƱ˺ޤʤ
ȥȥϡб륰դƱޤϡ
դˤξǤ֤֤뤳Ȥ̣ޤ
`set key opaque` ϡ٤ƤΥդ褬ä
ξ硢ΰطʿꤷɤĤ֤θ
εȥȥޤ
`set key noopaque` ǥǥեȤǤޤ
ʸϡǥեȤǤϳĥʸ⡼ (`enhanced`) Ѥ
ϥץ `noenhanced` ѹǤΡ뤤㥿
ȥΤߡ뤤ϥեȥѹ뤳ȤǽǤ
`set key default` ϡʲΥǥեȤ key ޤ
set key notitle
set key nobox noopaque
set key fixed right top vertical Right noreverse enhanced autotitle
set key noinvert samplen 4 spacing 1 width 0 height 0
set key maxcolumns 0 maxrows 0
4 3 դ (3D key)
?set key 3D
?set key splot
?key 3D
?key splot
?set key fixed
?key fixed
3 (`splot`) ֤ϡǥեȤǤ `fixed` ץ
Ѥޤϡ`inside` ˤ֤˻Ƥޤפʰ㤤
Ĥޤ3 դλžꥹ뤹ȡȼ
ʤäζѲޤ֤ `inside` ξϡ
Ȥˤζư뤿ᡢưޤ`fixed` ξ
ϡѤ䥹ѹ̵뤷֤Τǡդž
Ƥ⡢ΰ֤ϥХΰĤξ˸ꤵ줿ޤޤˤʤޤ
ʤ2 դǤϡ`fixed` ץϴ `inside` ƱǤ
`splot` 硢ǥեȤǤϰۤʤθġ
Фơ̡ιܤޤѹˤϡʲ:
`set cntrlabel`
4 Υץ (key examples)
?set key examples
?key examples
ʲϥǥեȤΰ֤ɽޤ:
set key default
ʲϡɸǤλ () ֤ޤ
set key at screen 0.85, 0.85
ʲϡդ겼 () ֤ľǾޤ
set key below horizontal
ʲϡΰκ֤ʸϺ·Ȥ
ȥͿȤǰϤߤޤ
set key left bottom Left title 'Legend' box lw 3
4 Ԥɲ (extra key entries)
?key entries
?keyentry
Ffigure_keyentry
̾ƥդФ 1 ԤΥȥ꤬ưޤ
˸ܤ٤椷ϡޥ `plot`, `splot` ˥
`keyentry` Ĥ뤳Ȥǡ;ʬԤɲäǤޤplot
˥ե̾ؿ̾Ϳˡ`keyentry` ξ˻ꤷ
(εΤ˻Ѥ) ȥȥθ
˻ꤷޤ̾Υȥեȡʸ`at` ɸĥʸ
Ф륪ץϡ٤ŬѤޤ
:
set key outside right center
plot $HEATMAP matrix with image notitle, \
keyentry "Outcomes" left, \
keyentry with boxes fc palette cb 0 title "no effect", \
keyentry with boxes fc palette cb 1 title "threshold", \
keyentry with boxes fc palette cb 3 title "typical range", \
keyentry title "as reported in [12]", \
keyentry with boxes fc palette cb 5 title "strong effect"
`keyentry "Outcomes" left` ιԤϡ̾ݻ륹ڡˡʸ
·֤ޤϡΤϤäƥȥ
ޤ뤳ȤǽˤޤƱ keyentry title Ϳϡξ
ʸƱԤ˸졢ˤ 2 Υȥǽ
ʤޤ
ֹ碌ѤΥ `left/right/center` , `boxed` ʤɤѤ
ޤ
:
plot ..., keyentry "West Linn" boxed title "locations"
4 μưȥ (key autotitle)
?commands set key autotitle
?set key autotitle
?key autotitle
?autotitle
?autotitle columnheader
?key autotitle columnheader
`set key autotitle` ϡγƥդplot ޥɤǻѤǡ
եؿ̾ˤäꤹ褦ˤޤ줬ǥե
εưǤ`set key noautotitle` ϡμưŪʥդΥȥդ
̵ˤޤ
=columnheader
ޥ `set key autotitle columnheader` ϡϥǡƬԤγ
ΥȥƥʸȲᤷб襰դΥȥȤ
ƻѤޤ褵̤ʣǡδؿǤϡ
gnuplot Ϥɤȥ˻ȤФΤ狼ޤΤǡ
硢plot ޥɾǡ㤨аʲΤ褦Ū˥ȥ
ɬפޤ
plot "datafile" using (($2+$3)/$4) title columnhead(3) with lines
: `set key autotitle columnheader` ȤȡȤ (key)
`unset key` ̵ˤʤäƤǤ⡢1 ܤǡȤƤǤϤʤ
ΥإåȤƽޤϡ`stats` `fit` Τ褦
ʤޥɤФƤƱͤǤǡƬԤդΥȥǤ
ʤ columnheader ȤƻѤϡ`set datafile columnheaders`
ȤƤ
ޤξǤ⡢plot ޥɤŪ `title` `notitle`
ɤꤹС `set key autotitle` ˤͥ
ޤ
4 Υ쥤 (key layout)
?set key layout
?key layout
Υ쥤ѥץ:
set key {vertical | horizontal}
{maxcols {<max no. of columns> | auto}}
{maxrows {<max no. of rows> | auto}}
{columns <exact no. of columns>}
{keywidth [screen|graph] <fraction>}
{Left | Right}
{{no}reverse} {{no}invert}
{samplen <sample_length>} {spacing <line_spacing>}
{width <width_increment>} {height <height_increment>}
{title {"<text>"} {{no}enhanced} {center | left | right}}
{font "<face>,<size>"} {textcolor <colorspec>}
ǤưŪ˹ԡޤ¤٤ϡΥɤαƶ
ޤǥեȤϡ`vertical` ǡϲǽʸ¤ʤ
褦ȤޤǤϡľ;͵뤦ϽĤ·¤٤ޤ
ʤʤп¤٤ޤľϡ'maxrows' Ǿ
Ǥޤ
`horizontal` ξϡǽʸ¤Կʤ褦Ȥʿ
ϡ'maxcols' Ǿ¤Ǥޤ
ưԿˤǤʤ⤷ޤξ硢
`set key columns <N>` Τ˻Ǥޤξ硢ץ
(`samplen`) Τ (`keywidth`) Ĵɬפ뤫⤷
ǥեȤǤϡǽΥ٥뤬ΰ־˸졢³
٥뤬β¤ǹԤޤץ `invert` ϡǽΥ٥
ΰֲ֤³٥ξ¤٤ƹԤޤΥץ
ϡΥ٥νĤ¤Ӥν֤Ѥ߾夲Υҥȥ
(`histograms`) Ȣν֤˹碌ȤǤ礦
`set key title "text"` ϡξˡΤϤ륿ȥ֤ޤ
ΥȥΥեȡʸι·Ӥ¾ʸ°ϡ
ޥɤ `"text"` ľɬפʥɤ֤ȤǻǤޤ
¾ξǻꤷեȤʸ°ϡΤ٤ƤʸŬ
Ѥޤ
ǥեȤΥ쥤Ȥϡ륵ץ ()
γƹԤκ֤ȥʸ֤ޤΥץʸ
֤ϡ`reverse` ɤǵžǤޤΥեȥι
·ϡ`Left``Right` (ǥե) ǻؼޤ륵ץ
ʿϡۤʸñ̤οͤǤޤ (`samplen`)
TeX, LaTeX ϤνϷ䡢ʸޤϷ
ϡ`gnuplot` ɬפθѤ꤬ޤϤǤޤΤǡưŪ
Υ쥤Ȥϡܤ餷Τˤʤޤ֤
ϡ`set key left Left reverse` Ȥȹ礻⤷ޤŬ
ڤΤŪꤹȤ⤷ޤ
4 (key placement)
?commands set key placement
?set key placement
?key placement
ѥץ:
set key {inside | outside | fixed}
{lmargin | rmargin | tmargin | bmargin}
{at <position>}}
{left | right | center} {top | bottom | center}
{offset <dx>,<dy>}
ǤϡưŪ֤̾ޤŪ
ι䡢¾ξؤ西ȥ֤ˤĤƤϡʲ:
`multiple keys`
#TeX \begin{minipage}{0.5\textwidth}
֤λȤߤκǤפʳǰϡΰ衢ʤ⤫
ȤȤȡΰζȤδ֤; (margin) ͤ뤳ȤǤ
ΰ˱äơ `left/center/right` (l/c/r)
`top/center/bottom` (t/c/b) ϡ (key) ΰ¦Τɤ
椷ޤ
⡼ `inside` Ǥϡϥ `left` (l), `right` (r), `top`
(t), `bottom` (b), `center` (c) ˤäưʲοޤΤ褦ΰζ
˸äƽϤޤ:
#TeX \end{minipage}
#TeX \hspace{0.15\textwidth}
#TeX \begin{minipage}{0.35\textwidth}
t/l t/c t/r
c/l c c/r
b/l b/c b/r
#TeX \end{minipage}
⡼ `outside` ǤƱͤ˼ưŪ֤ޤΰζ
ФơȤषܤФơȤ٤Ǥ礦
դζϡΰγξ뤿ˡ¦˰
ư뤳Ȥˤʤޤ¾Υ٥μޤ⤷
ϥǥХˤäƤϥ顼⤷ޤν
Ϥ˹碌Ƥɤ趭ư뤫ϡ˽Ҥ٤ΰ֡ӽ
;夲˰¸ޤ4 濴·Υץ (`center`) ˴
ƤϡɤζưΤ˴ؤ뤢ޤϤޤѤؤν
ΥץˤĤƤϡŤ;夲 `vertical` ξϺޤϱ
`horizontal` ξϾޤϲζ줾¦Ŭڤ
ưޤ
#TeX \begin{minipage}{0.5\textwidth}
; (margin) νϡŤ;夲ˤʤưŪ֤ǽ
ˤƤޤ`lmargin` (lm), `rmargin` (rm), `tmargin` (tm),
`bmargin` (bm) ΤΰĤ̷⤷ʤ 1 ΥɤȤ߹
ƻѤ硢ΰ֤ϡʲοޤ˼褦˥ڡγ¦˱
֤ޤ
`above` `over` `tmargin` Ʊ̣ǡ
`below` `under` `bmargin` Ʊ̣Ǥ
#TeX \end{minipage}
#TeX \hspace{0.1\textwidth}
#TeX \begin{minipage}{0.4\textwidth}
l/tm c/tm r/tm
t/lm t/rm
c/lm c/rm
b/lm b/rm
l/bm c/bm r/bm
#TeX \end{minipage}
ΥСȤθߴΤˡ`above`, `over`, `below`, `under`
l/c/r Ť;夲Υɤʤȡ`center` `horizontal`
Ѥޤ `outside` t/b/c Ť;夲Υ
ʤȡ`top`, `right`, `vertical` (Ĥޤ t/rm Ʊ) Ѥ
ޤ
ΰ (<position>) ϡΥСƱñ x,y,z ꤷ
Ƥ⤤ǤκǽΥץԤκɸκɽϤ뤿 5
ĤΥ (`first`, `second`, `graph`, `screen`, `character`)
ƬˤĤ뤳ȤǤޤܺ٤ϡʲ: `coordinates`<position>
Ϳ줿 `left`, `right`, `top`, `bottom`, `center` θ̤ϡ
label ޥɤ֤ʸξƱ褦˴֤ΰ·
Ѥޤʤ`left` 㤬 <position> α֤ƺ
碌ǽϤޤ¾ξƱͤǤ
4 ΰ֤Ĵ (key offset)
?commands set key offset
?set key offset
?key offset
(key) ֥ץȤ̵طˡκǽŪʾ֤
(offset) ꤹ뤳ȤǤưǰֹ碌뤳ȤǤޤ
ĤΤ褦ˡ x, y ʬ character, graph, screen Τ
ɸǤͿ뤳ȤǤޤ
4 Υץ (key samples)
?commands set key samples
?set key samples
?key samples
ǥեȤǤϡվγ (key) ˤ줾б륨
ȥޤΥȥˤϡ西ȥȡǻȤ
ΤƱƱɤĤ֤°ˤ//Ȣ Υץ뤬ޤ
font textcolor °ϡ˸ġ西ȥθܤ
椷ޤtextcolor "variable" ˥åȤȡγƥȥ
ʸϡ襰դɤĤ֤Ʊˤʤޤϡ
Τ gnuplot ΥǥեȤεưǤ
նΥץʬĹ `samplen` ǻǤޤĹ
ϡĹ <sample_length>*(ʸ) ¤ȤƷޤ
εϡץʬ˽뤿ᡢΥ
֤ˤ (ʬʤƤ) ƶͿޤ
Υ١饤ֳ֤ϡߤΥեȥФ1 Զ
(single space) ˤʤäƤޤ `set key spacing <line-spacing>`
ѹǤޤ
<width_increment> ϡʸĹ˲ä긺餷ꤹ (ʸʬ
) ɽͤǤϡ˳ȤʸʸȤ
ˤͭѤǤ礦`gnuplot` ϳȤȤϡ٥ʸ
ʸñ˿ʤΤǡΤ˻Ȥޤ
4 ʣν (multiple keys)
?multiple keys
?set key multiple keys
?key multiple keys
=legend
Ffigure_multiple_keys
ƥդΥȥ٤ƼưŪ (key) ɽ
ˡɽư֤뤳ȤǤޤˤꡢ㤨
¿⡼ (multiplot) ǤγƥǤФɽ 1 ս˽
ƺ뤳ȤǤ褦ˤʤޤ
set multiplot layout 3,2 columnsfirst
set style data boxes
plot $D using 0:6 lt 1 title at 0.75, 0.20
plot $D using 0:12 lt 2 title at 0.75, 0.17
plot $D using 0:13 lt 3 title at 0.75, 0.14
plot $D using 0:14 lt 4 title at 0.75, 0.11
set label 1 at screen 0.75, screen 0.22 "Custom combined key area"
plot $D using 0:($6+$12+$13+$14) with linespoints title "total"
unset multiplot
3 ٥ (label)
?commands set label
?commands unset label
?commands show label
?set label
?unset label
?show label
?label
?nolabel
`set label` ޥɤȤȤˤäǤդθФ (label)
ɽ뤳ȤǤޤ
:
set label {<tag>} {"<label text>"} {at <position>}
{left | center | right}
{norotate | rotate {by <degrees>}}
{font "<name>{,<size>}"}
{noenhanced}
{front | back}
{textcolor <colorspec>}
{point <pointstyle> | nopoint}
{offset <offset>}
{nobox} {boxed {bs <boxstyle>}}
{hypertext}
unset label {<tag>}
show label
(<position>) x,y x,y,z Τɤ餫ǻꤷɸϤꤹ
ˤϤκɸ `first`, `second`, `polar`, `graph`, `screen`,
`character` Ĥޤܺ٤ϡʲ: `coordinates`
(<tag>) ϸФ̤뤿ͤǤꤷʤä
̤ѤΤΤǺǤ⾮ͤưŪ˳ƤޤߤθФ
ѹȤϤΥѹܤꤷ `set label` ޥ
ɤȤޤ
<label text> ʸǤޤʸѿޤʸ
ͤļǤޤʲ: `strings`, `sprintf`, `gprintf`
ǥեȤǤϡꤷ x,y,z ˸ФʸϤκü褦
ޤx,y,z ФΤɤ·뤫ѹˤѿ
<justification> ꤷޤˤϡ`left`, `right`, `center`
줫Ǥ줾ʸϤκ椬ꤷ褦
֤褦ˤʤޤϰϤγˤϤ߽Ф褦ʻ
ɸθФ¾ʸȽŤʤ礬ޤ
ȢդΥ٥ݡȤϷ⤢ޤʲ:
`set style textbox`žʸȢդϡ٤ƤνϷ
ǽʤ櫓ǤϤޤ
`rotate` ꤹȥ٥ϽĽˤʤޤ`rotate by <degrees>`
ꤹȡʸΥ١饤ꤷѤꤷޤʸ
βžݡȤƤʤϷ⤢ޤ
եȤȤΥϡϷեȤݡȤƤ
`font "<name>{,<size>}"` ŪǤޤǤʤϷ
ϡǥեȤΥեȤȤޤ
̾ϡߤνϷݡȤƤС٥ʸƤʸ
˳ĥʸ⡼ (enhanced text mode) Ѥޤ
`noenhanced` Ѥ뤳ȤǡΥ٥ĥʸ鳰
ȤǤޤϡ٥뤬㤨Х (_) ޤǤ
ʤɤͭѤǤʲ: `enhanced text`
`front` ͿȡФϥǡΥդξ˽ޤ`back`
Ϳ (ǥե)Фϥդβ˽ޤ`front`
ȤȤǡ̩ʥǡˤäƸФƤޤȤ뤳
ޤ
`textcolor <colorspec>` ϸФʸοѹޤ<colorspec>
rgb ޤϥѥåȤؤγΤ줫Ǥޤ
ʲ: `colorspec`, `palette``textcolor` ϡ`tc` ȾάǽǤ
`tc default` ϡʸǥեȤˤޤ
`tc lt <n>` ϡʸ <n> (line type)ƱΤˤޤ
`tc ls <n>` ϡʸ line style <n> ƱΤˤޤ
`tc palette z` ϡФ z ΰ֤бѥåȿˤʤޤ
`tc palette cb <val>` ϡ (colorbox) <val> οˤʤޤ
`tc palette fraction <val>` (0<=val<=1) ϡ[0:1] `palette`
Ĵ/顼ؤμбˤʤޤ
`tc rgb "#RRGGBB"`, `tc rgb "0xRRGGBB"` ϡǤդ 24-bit RGB
ꤷޤ
`tc rgb 0xRRGGBB` ƱǤ (16 ͤˤϰ)
<pointstyle> `lt`, `pt`, `ps` ȤȤͿ (ʲ
: `style`)Ϳ줿ȡͿ줿οǸФ֤
(point) 褵졢ФʸϾưޤΥץ
`mouse` ĥ줿ϷǤΥ٥֤ˡǥեȤǻѤ
ƤޤФʸ赡ǽ off (줬ǥե) ˤ
ˤϡ`nopoint` ѤƤ
ΰưϡǥեȤǤϡ<pointstyle> Ϳ `pointsize`
ñ̤ 1,1 ǡ<pointstyle> ͿƤʤ 0,0 Ǥưϡ
ɲä `offset <offset>` ǤǤޤǡ<offset> x,y
ޤ x,y,z ηǤ˺ɸϤơ `first`,
`second`, `graph`, `screen`, `character` Τ줫Ĥ뤳ȤǤ
ޤܺ٤ϡʲ: `coordinates`
⤷ (뤤Ϥʾ) ּǤ硢ɸ `timefmt`
νˤäưǰϤޤ줿ʸͿɬפޤʲ
: `set xdata`, `set timefmt`
`set label` ˴ؤͭʥץϡ襹 `labels` Ǥͭ
Ǥʲ: `labels`ξ硢`textcolor`, `rotate`, `pointsize`
°θ˥ `variable` ĤơͤǤʤ褦
ˤ뤳ȤǽǤξġΥ٥б°ͤϡ`using`
ɲˤꤷޤ
4 examples
?label examples
?set label examples
:
(1,2) ΰ֤ "y=x" Ƚ:
set label "y=x" at 1,2
Symbol եȤΥ 24 "" () դο˽:
set label "S" at graph 0.5,0.5 center font "Symbol,24"
Ф "y=x^2" αü (2,3,4) 褦ˤֹȤ 3 Ȥ
:
set label 3 "y=x^2" at 2,3,4 right
θФ·ˤ:
set label 3 center
ֹ 2 θФ:
unset label 2
ƤθФ:
unset label
ƤθФֹɽ:
show label
x ּǤ륰դ˸Фꤹ:
set timefmt "%d/%m/%y,%H:%M"
set label "Harvest" at "25/8/93",1
ǡȡƤϤ줿ѥˤƤϤؿ褷
硢`fit` θǤ `plot` ˰ʲ¹Ԥޤ:
set label sprintf("a = %3.5g",par_a) at 30,15
bfit = gprintf("b = %s*10^%S",par_b)
set label bfit at 30,20
ƤϤѥΤĤؿɽ:
f(x)=a+b*x
fit f(x) 'datafile' via a,b
set label GPFUN_f at graph .05,.95
set label sprintf("a = %g", a) at graph .05,.90
set label sprintf("b = %g", b) at graph .05,.85
Фʸ龯ư:
set label 'origin' at 0,0 point lt 1 pt 2 ps 3 offset 1,-1
pm3d Ȥä 3 Υ顼̾Τΰ֤ˡ z (
5.5) бФʸˤĤ:
set label 'text' at 0,0,5.5 tc palette z
4 ϥѡƥ (hypertext)
?hypertext
?label hypertext
?set label hypertext
Ϸˤ (wxt, qt, svg, canvas, win) վΰ֤䥭
ХΤ¾ʬ˥ϥѡƥȤŽդ뤳ȤǤ
ޤޥξ˻äƤȡʸޤȢݥåץ
פޤϥѡƥȤݡȤʤϷǤϡϲ
ɽޤϥѡƥȤŽդˤϡΥ٥ `point`
°ͭˤɬפޤ
ĥʸϡϥѡƥȥ٥ˤŬѤޤ
:
set label at 0,0 "Plot origin" hypertext point pt 1
plot 'data' using 1:2:0 with labels hypertext point pt 7 \
title 'mouse over point to see its order in data set'
# pm3d ̾Ǥդξ˥ޥ֤Ȥ Z ɸϥ
# ѡƥȤȤɽ
splot '++' using 1:2:(F($1,$2)) with pm3d, \
'++' using 1:2:(F($1,$2)):(sprintf("%.3f", F($1,$2))) \
with labels \
hypertext point lc rgb "0xff000000" notitle
wxt qt ϷǤϡʸɽ줿Ȥ˥ϥѡƥʬ
åȤΥϥѡƥȤåץܡɤ˥ԡޤ
^ <br><table class="button"><tr><td>
^ <a href="http://www.gnuplot.info/demo_svg_6.0/hypertext.html"
^ class="button">
^ hypertext demo ˤϥåƤ</a>
^ </td></tr></table>
ʳεǽ (ͤκ٤ʬѹβǽ) -
"image{<xsize>,<ysize>}:<filename>{\n<caption text>}" ηʸ
ݥåץåץܥåDzեɽ褦ˤޤ
ˤǥեȤΥ 300x200 ѹǤޤǧե
ηϽϷˤäư㤤ޤ*.png Ͼ OK Ǥե
̾θ˽ʸϡ̾ΥϥѡƥȤƱͤɽޤ
:
set label 7 "image:../figures/Fig7_inset.png\nFigure 7 caption..."
set label 7 at 10,100 hypertext point pt 7
3 (linetype)
?commands set linetype
?commands show linetype
?set linetype
?show linetype
ޥ `set linetype` ϳƼ˻ѤŪ (linetype)
뤳ȤǽˤޤΥޥɤΥץϡ
"set style line" ΤΤƱǤ饤Ȱ㤦Ȥϡ
`set linetype` ˤϱ³ŪʤȤǡ `reset` αƶ
ޤ`reset session` ǽ°ޤ
㤨С 1 2 ʲΤ褦˺Ƥߤޤ:
set linetype 1 lw 2 lc rgb "blue" pointtype 6
set linetype 2 lw 2 lc rgb "forest-green" pointtype 8
ȡκǽθܤɤǤä˴ؤ餺lt 1
ѤƤ뤹٤ƤΤΤθˤʤޤϡlt
1 ˤäƺ줿Ūʥ饤Τ褦ʤΤˤŬѤ
ޤƱͤˡ 2 ϡθˤʤޤ
λȤߤϡgnuplot ǻѤФĿŪʹߤꤹ
ˤȤޤԤˤϡ¹Իե ~/.gnuplot ˡ㤨
аʲΤ褦ʤѤΥޥɲä뤳Ȥᤷޤ:
set linetype 1 lc rgb "dark-violet" lw 2 pt 1
set linetype 2 lc rgb "sea-green" lw 2 pt 7
set linetype 3 lc rgb "cyan" lw 2 pt 6 pi -1
set linetype 4 lc rgb "dark-red" lw 2 pt 5 pi -1
set linetype 5 lc rgb "blue" lw 2 pt 8
set linetype 6 lc rgb "dark-orange" lw 2 pt 3
set linetype 7 lc rgb "black" lw 2 pt 11
set linetype 8 lc rgb "goldenrod" lw 2
set linetype cycle 8
ȡʤ gnuplot ¹Ԥ٤Ϥͤ˽
ޤϤʤǤޤʤϡ
ϥǥեȤ°³ޤ㤨 3 鳰С
Ĥ pt 3, lw 1 Ȥʤޤ
ƱͤΥץȥեǡơޥ١οԤäꡢ
西ס뤤νϷѤ˿ޥꤹ뤳
ǽǤ
=cycle
ޥ `set linetype cycle 8` ϡ礭ֹФƤϿ
˴ؤ뤳Ѥ뤳Ȥ gnuplot ޤʤ
(linetype) 9-16, 17-24 ФƤϡƱѤ
ޤ° (pointtype, pointsize, pointinterval) ϡ
ޥɤαƶϼޤ`unset linetype cycle` Ϥεǽ̵
ޤ礭ֹ°ŪϡϾ
ֹ°κѤͥ褵ޤ
3 2 Ȥб (link)
?commands set link
?set link
?link
:
set link {x2 | y2} {via <expression1> inverse <expression2>}
unset link
ޥ `set link` ϡx x2 ޤ y y2 δ֤б
ꤷޤ<expression1> ϡ 1 κɸ 2 ˼Ǥ
<expression2> 2 κɸ 1 ˼Ǥ
:
set link x2
ϡΥޥɤκǤñʷǡx2 ϰ (range)
(scale) x Ʊˤޤ`set xrange`, `set x2range`
`set auto x` ʤɤΥޥɤϡξ x ˤ x2 ˤѤ
set link x2 via x**2 inverse sqrt(x)
plot "sqrt_data" using 1:2 axes x2y1, "linear_data" using 1:2 axes x1y1
Υޥɤϡx x2 ΡȵбꤷƤޤ
бϡx2 ιߥ٥ȡޥ x2 ɸΤ˻
бϡx2 Ϥǻꤵ줿ɸ褹Τ˻Ȥޤ
бϡ x ɸˤΤͭǤ뤳ȤդƤy2
б硢<expression1> <expression2> ˤϲѿȤ y
ɬפޤ
3 lmargin
?commands set lmargin
?set lmargin
?lmargin
ޥ `set lmargin` Ϻ;ΥåȤޤܺ٤ϡʲ
: `set margin`
3 ɤ߹߸ѥ (loadpath)
?commands set loadpath
?commands show loadpath
?set loadpath
?show loadpath
?loadpath
`loadpath` ϡ`call`, `load`, `plot`, `splot` ޥɤΥǡ
ե롢ޥɥեθѥɲޤե뤬ߤ
ǥ쥯ȥ˸Ĥʤä硢`loadpath` Υǥ쥯ȥ꤬
ޤ
:
set loadpath {"pathlist1" {"pathlist2"...}}
show loadpath
ѥ̾ñΥǥ쥯ȥ̾ޤʣΥѥ̾ΥꥹȤȤϤ
ʣΥѥʤѥꥹȤ OS ͭΥѥڤꡢ㤨 Unix
ϥ (':'), MS-DOS, Windows, OS/2 Ǥϥߥ (';') Ƕڤ
ޤ`show loadpath`, `save`, `save set` ޥɤϡOS ͭΥѥ
ڤڡ (' ') ֤ޤ
Ķѿ GNUPLOT_LIB ꤵƤ硢Ƥ `loadpath`
äޤ`show loadpath` ϡ`set loadpath` GNUPLOT_LIB ͤ
̡ɽޤ`save`, `save set` ޥɤϡGNUPLOT_LIB ͤ
̵뤷ޤ
3 (locale)
?commands set locale
?set locale
?locale
`locale` `{x,y,z}{d,m}tics` դθꤷޤ
:
set locale {"<locale>"}
<locale> ˤϥȡ뤵줿ƥǻȤȤνǤդθ
ǤޤǽʥץˤĤƤϥƥΥɥȤȤ
Ƥޥ `set locale ""` ϡĶѿ LC_TIME, LC_ALL,
LANG ͤꤷ褦Ȥޤ
˴ؤ locale ѹϡʲ: `set decimalsign`
ʸɤߤΥΤΤѹϡʲ:
`set encoding`
3 п (logscale)
?commands set logscale
?commands unset logscale
?commands show logscale
?set logscale
?unset logscale
?show logscale
?set log
?logscale
?nologscale
:
set logscale <axes> {<base>}
unset logscale <axes>
show logscale
ǡ<axes> () ϡ`x`, `x2`, `y`, `y2`, `z`, `cb`, `r` Ǥդ
Ȥ߹礻ǽǤ<base> ϡпǤ (ǥեȤ
10)ꤷʤäϡ`r` ʳΤ٤ƤμоݤȤʤ
ޥ `unset logscale` ϡ٤Ƥμпޤ
пФƤĤιߤϡֳ֤ǤϤʤȤդƤ
ʲ: `set xtics`
:
x, z ξˤĤпꤹ:
set logscale xz
y ˤĤ 2 Ȥпꤹ:
set logscale y 2
pm3d plot Ѥ z ȿμпꤹ:
set logscale zcb
z п:
unset logscale z
3 ޥ (macros)
?commands set macros
?set macros
ߤΥС gnuplot ǤϡޥִϾͭǤޥɥ
@<stringvariablename> ηʬʸϡʸѿ
<stringvariablename> ˴ޤޤƥʸ֤ޤʲ
: `substitution`
3 3 ɸ (mapping)
?commands set mapping
?commands show mapping
?set mapping
?show mapping
?mapping
ǡ `splot` ˵̺ɸɸͿ줿硢`set mapping`
ޥɤ `gnuplot` ˤɤΤ褦˰ꤹΤ˻Ȥޤ
:
set mapping {cartesian | spherical | cylindrical}
ǥեȤǤϥƥɸ (̾ x,y,z ɸ) Ȥޤ
̺ɸǤϡǡ 2 Ĥ 3 Ĥ (ޤϤθĿ `using`
ȥ) ȤͿޤǽ 2 Ĥϡ`set angles` ꤵ줿ñ
Ǥ̳ (theta) ȶij (phi) (ʤ "" "") Ȥߤʤ
ޤȾ r ϡ⤷ 3 ܤΥǡФ줬Ȥ졢⤷ʤ
1 ꤵޤѿ x,y,z Ȥбϰʲ̤Ǥ:
x = r * cos(theta) * cos(phi)
y = r * sin(theta) * cos(phi)
z = r * sin(phi)
ϡ"˺ɸ" Ȥꡢष "ϳؾκɸ" (١)
뤳ȤդƤ (ʤphi z ȤʤѡȤ
ƻפäijѡˤʤޤ)
ɸǤϡǡϤϤ 2 Ĥ 3 ĤͿ졢ǽ 2 Ĥ
theta (`set angle` ǻꤵ줿ñ̤) z ȸʤޤȾ r
̺ɸξƱ͡3 ܤΥǡФ줬ʤ 1
ޤѿ x,y,z Ȥбϰʲ̤Ǥ:
x = r * cos(theta)
y = r * sin(theta)
z = z
`mapping` θ̤ϡ`splot` ޥɾ `using` Ǽ¸뤳Ȥ
ǽǤ¿Υǡե뤬 `mapping`
Ǥ礦`mapping` ȤäƤƤ⡢⤷եΥǡν
֤ŬڤǤʤä `using` ɬפˤʤäƤޤޤ
`mapping` `plot` Ǥϲ⤷ޤ
^ ʲ⻲
^ <a href="http://www.gnuplot.info/demo/world.html">
world.dem: mapping Υǥ⡣
^ </a>
3 Ϥ; (margin)
?commands set margins
?commands show margins
?set margin
?set margins
?show margins
?margins
`margin` (Ϥ;) Ȥϡΰζ饭Хΰֳ¦ޤ
δֳ֤ΤȤǤ;礭ϼưŪˤȤޤޥ
`set margin` ѹ뤳ȤǤޤ`show margin` ϸߤɽ
ޤΰζ¦ǤޤǤδֳ֤ѹ
ʲ: `set offsets`
:
set lmargin {{at screen} <margin>}
set rmargin {{at screen} <margin>}
set tmargin {{at screen} <margin>}
set bmargin {{at screen} <margin>}
set margins <left>, <right>, <bottom>, <top>
show margin
<margin> ΥǥեȤñ̤ˤϡŬڤȻפ롢ʸι⤵Ȥ
ޤͤ;Ū礭 (ޤ̵)
`gnuplot` ˤäƼưͤȤȤˤʤޤ3 Ǥ
; (lmargin) Τߤʸ礭ñ̤ȤǤޤ
`at screen` ϡ;λ꤬ΤΰФ
Ǥ뤳Ȥ̣ޤϡ¿ (multiplot) ⡼ɤǤ 2D, 3D
դγѤΤ·Τ˻Ȥޤ֤ϸߤ `set origin`
`set size` ̵ͤ뤹褦ˤʤäƤơ¿Υ
֤̤ˡȤƻȤ뤳ȤտޤƤޤ
;̾ꡢθФθФΥȥ롢
աƶγˤ (key) Υ˷
ιߤǤʤˤĤƤ (㤨
`set xtics axis` ˤä)ιȤȤθФ;η
ϴޤޤޤ;˽¾ʸΰ֤ηˤޤޤޤ
ϡȶ˶ᤤ硢θФ¾ʸ
ǽޤ
3 micro
?commands set micro
?commands show micro
?commands unset micro
?set micro
?show micro
?unset micro
?micro
ǥեȤǤϡιߥ٥˻ѤʳطϽϤΤν
"%c" ϡ֥ޥ(10^-6) ƬȤƾʸ u Ȥ
ޤޥ `set micro` ϡȤϰۤʤʸ (unicode
U+00B5) Ѥ褦 gnuplot ˻ؼޤʸɽΤ˻
ѤХϡߤ encoding ˰¸ޤʲ:
`format specifiers`, `encoding`
ߤΥǥˤǥեȤʤ硢ߤɽ
ʸץȤͿ뤳ȤǤޤϡlatex
νϷǤͭѤǡ㤨аʲΤ褦ˤǤޤ
set micro "{\textmu}"
3 minussign
?commands set minussign
?commands show minussign
?commands unset minussign
?set minussign
?show minussign
?unset minussign
?minussign
gnuplot ϤۤȤɤνդϤ C Υ饤֥롼Ǥ
sprintf() ǽޤgnuplot ˤȼν롼
`gprintf()` ⤢ꡢϼιʸ˻ȤƤޤC Υ
֥롼ϡ-7 Τ褦οɽˤϾ˥ϥեʸ (ASCII
\055) ѤޤषŪǤϡȤϰۤʤѤΥޥ
ʸ (Unicode U+2212) Ȥ 7 Τ褦ɽ¿ο͡
ϻפǤ礦 (: ʸǤ '7' Unicode Ρ֥ޥʥפ
ȤƤ뤬Ǥ JIS ѥޥʥ 245D Ѥ)ޥ
set minussign
ϡgprintf() ονϤˡϥե˥ޥʥʸ
褦ؼޤUTF-8 ǤϤ Unicode U+2212 б
ޥХʸˤʤꡢWindow ɥڡ 1252 Ǥϡ
8 ӥåʸ ALT+150 ("en dash") ˤʤޤޥ
`set minussign` ϡιߤΥ٥ȡgprintf Ū˸ƤӽФ
줿ʸ˱ƶͿޤ¾ξΥϥեޤʸ
ϲƶͿޤʲ: `gprintf`
LaTeX ϡ켫ȤǽȤߤäƤ뤿ᡢ
ΥޥɤϡLaTeX ϤνϷѤƤ̵뤵뤳Ȥ
դƤpostscript ϷѤ⡢gnuplot
postscript 롼 ascii Υϥե \055 `minus`
Ȥ̾ΰۤʤʸѴΤǡΥޥɤɬפϤޤ
(utf8 ):
set minus
A = -5
print "A = ",A # ϥեޤʸ
print gprintf("A = %g",A) # U+2212 ʸޤʸ
set label "V = -5" # ϥեޤ٥
set label sprintf("V = %g",-5) # ϥեޤ٥
set label gprintf("V = %g",-5) # U+2212 ޤ٥
3 ⡼ (monochrome)
?commands set monochrome
?set monochrome
?monochrome
:
set monochrome {linetype N <linetype properties>}
ޥ `set monochrome` ϡﷲ̤ˡޤ
ΰ㤤ǤϤʤ/ѥΰ㤤ˤΤǤΥ
ޥɤϡgnuplot ΰΥСΤϷ monochrome ץ
ȤƤΤ֤ΤǡߴΤᡢ
νϷ "mono" ץꤹȡۤ `set monochrome`
ƤӽФޤ
㤨С
set terminal pdf mono
ϡʲƱǤ
set terminal pdf
set mono
⡼ (monochrome) ϡŪ RGB ѥåȿѤ
ƤΥ顼˸ΤǤϤޤʲ⻲:
`set palette gray`
ǥեȤǤ 6 Ĥ郎Ƥޤ°ѹ
ꡢɲä뤳ȤϡեǤΥޥɤѤ뤳
ǤǤޤˤۤɤ줿ѹϡ顼ˤϱƶͿ
εդƱͤǤ顼ˤϡ`unset monochrome`
`set color` ȤƤ
3 ޥ (mouse)
?commands set mouse
?commands unset mouse
?set mouse
?unset mouse
?mousing
?mouse
?nomouse
ޥ `set mouse` ϡߤ÷ϷФƥޥǽͭ
ˤޤǥեȤǤ줬ͭˤʤäƤޤ
ޥ⡼ɤ 2 ѰդƤޤ2 ⡼ɤϡ`plot` ޥ
`splot` 2 ͱ (ʤz βžѤ 0, 90, 180, 270, 360
٤ `set view` `set view map`) ưޤΥ⡼ɤǤϡ
ޥ֤פ졢ޥܥȤäƳ礷ư
ǤޤդбΥȥ̤ʥåȥ
ʤɤå뤳ȤǡġΥդ/դڤؤ
ȤݡȤϷ⤢ޤ
`splot` ˤ 3 դФƤϡդλ (view) Ƚ̼ܤ
ѹ줾ޥܥ 1 2 (ˤɥå) ǹԤޤܥ
2 οľΥɥå shift Ʊ˹Ԥȡz ΰֲΰ
(`xyplane`) 岼ޤΥܥˤ <ctrl>
ȡɸɽޤǡɽϾäޤ礭ʥǡ
ФͭѤǤ礦ޥܥ 3 ϡz θ (azimuth) 椷
ޤ (ʲ: `set view azimuth`)
¿ (multiplot) ⡼ɤǤΥޥɸɤ߽Фϡmultiplot
ǤǸΥդФƤΤɽޤʲ: `new multiplots`
:
set mouse {doubleclick <ms>} {nodoubleclick}
{{no}zoomcoordinates}
{zoomfactors <xmultiplier>, <ymultiplier>}
{noruler | ruler {at x,y}}
{polardistance{deg|tan} | nopolardistance}
{format <string>}
{mouseformat <int> | <string> | function <f(x,y)>}
{{no}labels {"labeloptions"}}
{{no}zoomjump} {{no}verbose}
unset mouse
ץ `noruler` `ruler` ϡ구 (ruler) ǽ off, on ˤ
`ruler` ˤϺɸͿƸꤹ뤳ȤǤޤ`ruler`
on δ֡ruler θޥޤǤΥ桼ñ̤ǤεΥϢ³Ūɽ
ޤǥեȤǤϡruler Υȥ륹å 'r' ˥
Ƥޤ
ץ `polardistance` ϡޥ뤫구 (ruler) ޤǤε
Υ˺ɸǤɽ (Υӳ٤ޤϷ) 뤫ɤꤷ
ϥǥեȤΥ '5' бޤ
=labels
ܥ 2 gnuplot α³Ūʥ٥ˤϡץ
`labels` ѤޤǥեȤ `nolabels` ǡܥ 2 ñ˰
Ūʥ٥ޥ֤褷ޤ٥ϸߤ `mouseformat`
˽äƽޤ`labeloptions` ʸϡޥ `set label`
ޥɤϤޤΥǥեȤ "point pointtype 1" ǡϥ
٥֤˾ץ饹 (`+`) 褷ޤŪʥ٥ϡμ
`replot`ޤϥޥǤϸޤ³Ūʥ٥ϡ
ξ Ctrl ƥܥ 2 å뤳ȤǾäȤ
ǤޤºݤΥ٥ΰ֤ˤɤ̶ǥåʤФʤ
ͤ `pointsize` Ƿꤵޤ
ץ `verbose` ON ξ硢¹Ի𥳥ޥɤɽޤ
Υץϥɥ饤Хɥ `6` ǤĤȤ ON/OFF
åǤޤǥեȤǤ `verbose` OFF ˤʤäƤޤ
ɥ饤Хɥ 'h' ǤĤȡޥȥƤɽ
ޤϡ桼Υơʤ `bind` ޥɤˤ
`hotkeys` ɽޤ桼ΥƤϥǥեȤΥ
Ƥ̵ˤ뤳ȤդƤʲ⻲: `bind`
4 doubleclick
?set mouse doubleclick
?mouse doubleclick
֥륯åβ٤ϥߥ (ms) ñ̤Ϳޤϡܥ 1
ѤΤΤǡߤΥޥ֤åץܡ (`clipboard`) ˥ԡ
Τ˻ȤϷޤǥեȤͤ 300 ms Ǥ 0
ms ꤹȥ륯åǤΥԡԤ褦ˤʤޤ
4 format
?set mouse format
?mouse format
ޥ `set mouse format` ϡsprintf() Фʸλǡ
ޥ [x,y] ɸ襦ɥȥåץܡɤˤɤΤ褦
ɽ뤫ꤷޤǥեȤ "% #g" Ǥ
ϡ"set mouse mouseformat" ֤ΤǤ
4 mouseformat
?set mouse mouseformat
?mouseformat
:
set mouse mouseformat i
set mouse mouseformat "custom format"
set mouse mouseformat function string_valued_function(x, y)
ΥޥɤϡߤΥޥ֤𤹤Τ˻Ѥ椷ޤ
ꤹ뤳ȤǡɽνץΰĤǤޤ
ʸꤹȡץ 7 sprintf() Ф
ƻѤޤx, y б 2 Ĥμ¿Ҥɬפޤ
Ǹʸ֤ؿλϡֻʳפǤϡ
ɸ饰պɸؤεդб x, y ξȤǹθɬפ
褦ʺɸϤɤ߽ФǽˤޤˤĤƤϡmap_projection
ǥȤƤ
:
set mouse mouseformat "mouse x,y = %5.2g, %10.3f"
ʸޤդˤˤϡ`set mouse mouseformat ""` Ȥޤ
ʲνѲǽǤ:
0 ǥե (1 Ʊ)
1 κɸ 1.23, 2.45
2 պɸ (0 1 ޤ) /0.00, 1.00/
3 x = timefmt y = ɸ [(`set timefmt` ), 2.45]
4 x = y = ɸ [31. 12. 1999, 2.45]
5 x = y = ɸ [23:59, 2.45]
6 x = / y = ɸ [31. 12. 1999 23:59, 2.45]
7 `set mouse mouseformat <format-string>` ˤ
8 `set mouse mouseformat function <func>` ˤ
4 ޥ (scrolling)
?set mouse scrolling
?mouse scrolling
?mouse wheel
?scrolling
?mousewheel
ޥۥϡ2 3 ξΥդǡx y ϰϤĴ
ᤷޤĴϡǥեȤǤϸߤϰϤ 10% äǤ
ϡ`set mouse zoomfactor <x-multiplier>,<y-multiplier>` ѹǤ
ޤ
#start
#b <wheel-up> y y2 ϰϤߤϰϤ鷺˾她
#b <wheel-down> y y2 ϰϤߤϰϤ鷺˲
#b <shift+wheel-up> Ϻ (x x2 ϰϤ)
#b <shift+wheel-down> ϱ (x x2 ϰϤ)
#b <control+wheel-up> ϸߤΥޥ濴˥।
#b <control+wheel-down> ϸߤΥޥ濴˥ॢ
#b <shift+control+wheel-up> x, x2 Τߤ।
#b <shift+control+wheel-down> x, x2 Τߤॢ
#end
4 zoom
?mouse zoom
?zoom
ߤΥޥ濴Υ।/ॢȤΨϡޥۥ
椷ޤ (ʲ: `scrolling`)
2 դΰˤϡޥΥɥådzϰϤ
ԤƺޥܥȤǹԤޤեɥ
ǥۥåȥ 'u' פ뤳ȤǸΥդǤޤۥå
'p' 'n' ϡˤɤޤ
ץ `zoomcoordinates` ϡκݤˡȤüˤκɸ
ɤꤷǥեȤǤ ON ˤʤäƤޤ
ץ `zoomjump` ON ξ硢ܥ 3 ˤϰϤ
ϤȡޥݥϼưŪ˾줿֤˰ưޤ
ϡ (ޤ϶Ǥ) ϰϤƤޤȤ
ΤǤ礦ǥեȤǤ `zoomjump` OFF Ǥ
3 mttics
?commands set mttics
?commands unset mttics
?commands show mttics
?set mttics
?unset mttics
?show mttics
?mttics
?nomttics
˺ɸդμϤξߤΰ `set mttics` 椵ޤ
: `set mxtics`
3 ¿⡼ (multiplot)
?commands set multiplot
?commands unset multiplot
?set multiplot
?unset multiplot
?multiplot
?nomultiplot
?layout
ޥ `set multiplot` `gnuplot` ¿⡼ɤˤޤ
ϡʣΥդƱڡƱɥ٤ƱΤ
٤ɽޤ
:
set multiplot
{ title <page title> {font <fontspec>} {enhanced|noenhanced} }
{ layout <rows>,<cols>
{rowsfirst|columnsfirst} {downwards|upwards}
{scale <xscale>{,<yscale>}} {offset <xoff>{,<yoff>}}
{margins <left>,<right>,<bottom>,<top>}
{spacing <xspacing>{,<yspacing>}}
}
set multiplot {next|previous}
unset multiplot
Ϸ (terminal) ˤäƤϡޥ `unset multiplot` Ϳ
ޤDzɽʤȤޤξ礳Υޥɤˤ
ڡΤ褬Ԥʤ졢gnuplot ɸñ⡼ɤˤʤޤ
ʳνϷǤϡ `plot` ޥɤ줾ɽޤ
=inset
ޥ `clear` ϡ˻ȤĹΰäΤ˻Ȥޤŵ
Ūˤϡ礭դ˾ʥդ褦ʾɬפǤ
ѤθФ٥ȥϡˤơߤΥȸ˽
äƽޤ (餬 `screen` ɽϤƤʤ)
ʳƤ `set` Τ褹٤ƤŬѤޤ⤷
1 ٤ˤߤΤꤿʤ顢줬㤨
(timestamp) Ȥ顢`set multiplot` `unset multiplot` ǰϤޤ
֥å `plot` (ޤ `splot`, `replot`) ̿ΰĤ
`set time` `unset time` ǤϤǤ
multiplot Υȥϡġ西ȥ뤬äȤƤ⡢Ȥ
ΤΤǡڡξˤΤΥХΤˤ錄륹ڡ
ݤޤ
layout ꤵƤʤ硢뤤Ϥɤַϡ
ޥ `set origin` `set size` ֤ꤹɬפ
ޤܺ٤ϡʲ: `set origin`, `set size`
:
set multiplot
set size 0.4,0.4
set origin 0.1,0.1
plot sin(x)
set size 0.2,0.2
set origin 0.5,0.5
plot cos(x)
unset multiplot
ϡcos(x) Υդsin(x) ξѤ߽Ťͤɽޤ
`set size` `set origin` ΤΰȤϳ
Ѥޤʲ⻲: `set term size`趭·ʤ
С`set margin` ޥɤǡγ;Ʊ·
ȤޤλѤ˴ؤƤϡʲ: `set margin`;
ʸñ̤Ūʿñ̤Ѥ뤳ȤդƤ
äƻĤäڡ륰դɽǥХɽ˰¸
ޤ㤨Сץȥǥץ쥤ɽ¿ʬäΤˤʤǤ
礦
ץ `layout` ˤꡢˤ줾ͿƤ `set size`
`set origin` ޥɤʤˡñʣդǤޤ
ϼưŪ˹Ԥʤ졢ĤǤ⤽ѹǤޤ
`layout` Ǥɽ <rows> Ԥ <cols> γʻҤʬ䤵졢ƳʻҤϡ
θ³б̾Υץˤäƹ (rowsfirst)뤤
(columnsfirst) ƹԤޤ襰դѤ߾夲ϲ
(`downwards`) ˡޤϾ (`upwards`) ˿Ӥ褦ˤǤޤ
եȤ `rowsfirst` `downwards` Ǥ
ޥ `set multiplot next` `set multiplot previous` ϡ쥤
ȥץѤƤΤߤ˴طޤ`next` ϡʻμ
ΰ֤åפĤޤ`prev` ϡľ褷֤ľ
γʻҰ֤ޤ
`scale` ǿ̤`offset` ǰ֤ʿưԤʤȤǤ
ޤscale offset y ͤά줿ϡx ͤ˻
ޤ`unset multiplot` ˤ꼫ưֵǽϥդˤʤꡢ
`set size` `set origin` ͤ `set multiplot layout` ξ֤
ޤ
:
set size 1,1
set origin 0,0
set multiplot layout 3,2 columnsfirst scale 1.1,0.9
[ ˤ 6 ĤޤǤ襳ޥ ]
unset multiplot
Ǥ 6 Ĥ褬 2 ˾夫鲼ء鱦ؤƹ
ޤϿʿ 1.1/2ľ 0.9/3 Ȥʤޤ
¾ˤ⡢Υ쥤Τ٤ƤΥդ˰ͤʥޡץ
`layout margins` `spacing` ꤹ뤳ȤǤޤϰ
Ȥɬפޤ`margins` ϡʻ֤ʣΤγ¦Ф
ޡꤷޤ
`spacing` ϡܤʬմ֤η֤Ϳޤ`character`
`screen` ñ̤ǻꤹ뤳ȤǤޤñͤꤹȡ x,
y ξ˻Ѥޤ2 Ĥΰۤʤͤꤹ뤳ȤǤޤ
Ĥͤñ̤ʤСľΥޡΤΤѤޤ
:
set multiplot layout 2,2 margins 0.1, 0.9, 0.1, 0.9 spacing 0.0
ξ硢ˤ륰դκζϡɸ 0.1 ֤졢
ˤ륰դαζϥɸ 0.9 ξ֤롢Ȥ
ޤƥդη֤ 0 ˻ꤷƤΤǡ¦ζϽŤʤ
:
set multiplot layout 2,2 margins char 5,1,1,2 spacing screen 0, char 2
ϡΥդζϡХκü 5 ʸξˡ
ΥդαζϡХü 1 ʸξˤ褦ʥ
ȤޤΥޡ 1 ʸʬι⤵Υޡ 2
ʸʬι⤵ˤʤޤմ֤οʿη֤Ϥޤ
ˤ 2 ʸʬι⤵֤ޤ
:
set multiplot layout 2,2 columnsfirst margins 0.1,0.9,0.1,0.9 spacing 0.1
set ylabel 'ylabel'
plot sin(x)
set xlabel 'xlabel'
plot cos(x)
unset ylabel
unset xlabel
plot sin(2*x)
set xlabel 'xlabel'
plot cos(2*x)
unset multiplot
ʲ: `remultiplot`, `new multiplots`ޤ
ʲ⻲
^ <a href="http://www.gnuplot.info/demo/multiplt.html">
multiplot Υǥ (multiplt.dem)
^ </a>
3 mx2tics
?commands set mx2tics
?commands unset mx2tics
?commands show mx2tics
?set mx2tics
?unset mx2tics
?show mx2tics
?mx2tics
?nomx2tics
x2 () ξߤΰ `set mx2tics` 椵ޤʲ:
`set mxtics`
3 (mxtics)
?commands set mxtics
?commands unset mxtics
?commands show mxtics
?set mxtics
?unset mxtics
?show mxtics
?mxtics
?nomxtics
x ξߤΰ `set mxtics` 椵ޤ`unset mxtics`
ˤäƤɽʤ뤳ȤޤƱͤ楳ޥɤƼ
ѰդƤޤ
:
set mxtics <freq>
set mxtics default
set mxtics time <N> <units>
unset mxtics
show mxtics
ν `mytics`, `mztics`, `mx2tics`, `my2tics`, `mrtics`,
`mttics`, `mcbtics` ФƤƱǤ
<freq> ϡ֤Ρˤäʬ䤵֤οǤꡢ
οǤϤޤ̾ФǥեȤͤϡ2 (
1 ) 5 ( 4 ) ǡδֳ֤ˤäƷޤ
`default` ꤹȾοϥǥեȤͤޤ
`set mxtics time <N> <units>` ϡ꤬⡼ɤξˤΤŬ
ޤʲ: `set mxtics time`
пǤ硢ʬ֤οϥǥեȤǤͭդʿ˥åȤ
ޤ (10 ĤĹˤ)<freq> ͿƤФ餬ͥ褵
ޤпǤ̾ξ (㤨 1 10 ޤǤ 2, 3,
..., 8, 9 ι) ϡ9 Ĥʬ֤ޤ<freq>
10 Ȥ뤳ȤǤʤޤ
Ǥդΰ֤ꤹˤϡ("<label>" <pos> <level>, ...)
`set {x|x2|y|y2|z}tics` ǻѤƤ<label>
("") ǡ<level> 1 ˤޤ
ޥ `set m{x|x2|y|y2|z}tics` ϡ꤬ͤδֳ֤ξˤΤ
Ưޤ⤷Ƥ꤬ `set {x|x2|y|y2|z}tics` ˤäƼư
֤줿ϡξΥޥɤ̵뤵ޤưŪ
֤ȼưξ֤ϡ`set {x|x2|y|y2|z}tics`
`set {x|x2|y|y2|z}tics add` ȤȤȤǶ¸Ǥޤ
:
set xtics 0, 5, 10
set xtics add (7.5)
set mxtics 5
ξ硢 0,5,7.5,10 1,2,3,4,6,7,8,9 ξ
set logscale y
set ytics format ""
set ytics 1e-6, 10, 1
set ytics add ("1" 1, ".1" 0.1, ".01" 0.01, "10^-3" 0.001, \
"10^-4" 0.0001)
set mytics 10
ξ硢ϻꤵ줿ǡпŪ
ǥեȤǤϾɽϡǤϥդǡпǤϥˤʤ
ƤޤϡФ `axis|border` `{no}mirror`
λѾޤ˴ؤˤĤƤϡʲ:
`set xtics`
4 mxtics time
?set mxtics time
?mxtics time
:
set mxtics time <N> {seconds|minutes|hours|days|weeks|months|years}
ϡgnuplot С 6 Ƴ줿ޥɥץǤ
ϡιߤ֤Фʬ֤ǤϤʤñ
̤ΤֹξΤ֤ޤ
꤬⡼ (`set xdata time` `set xtics time`) ξϡ
ʤΤǥեȤǤ
`set mxtics` `set mxtics <freq>` ǡ6 ΥСεư
ޤˤϾƤޤ㤨С72 ǯֳ֤Ф
ưʬ䵡ǽ 12 ǯֳ֤ˡ 5 ǯֳ֤ˤƤޤ
Ƥޤ
`set mxtics time 2 years` ȤСΤ 1 ǯ֤ǯϤΤ
˾ߤ֤ޤ`set mxtics time 1 month` ϡƷ
ʤǤ1 1 2 1 3 1 ... γƷ 1
ߤ֤ޤ
3 my2tics
?commands set my2tics
?commands unset my2tics
?commands show my2tics
?set my2tics
?unset my2tics
?show my2tics
?my2tics
?nomy2tics
y2 () ξߤΰ `set my2tics` 椵ޤʲ:
`set mxtics`
3 mytics
?commands set mytics
?commands unset mytics
?commands show mytics
?set mytics
?unset mytics
?show mytics
?mytics
?nomytics
y ξߤΰ `set mytics` 椵ޤʲ:
`set mxtics`
3 mztics
?commands set mztics
?commands unset mztics
?commands show mztics
?set mztics
?unset mztics
?show mztics
?mztics
?nomztics
z ξߤΰ `set mztics` 椵ޤʲ:
`set mxtics`
3 nonlinear
?commands set nonlinear
?set nonlinear
?nonlinear
:
set nonlinear <axis> via f(axis) inverse g(axis)
unset nonlinear <axis>
Υޥɤϥޥ `set link` ˻Ƥޤ2 ĤΥ줿
ΰΤߤɽ㤤ޤ뼴ΤޤޤǤɽ
뼴˱褦ɸϡg(x) ŬѤƱƤ뼴κɸƤ졢
f(x) ɽ뼴κɸƤбޤѴȵ
ξꤹɬפޤ
줬ɤΤ褦˵ǽ뤫ˤϡx2 пξͤ
ߤƤ
set x2ange [1:1000]
set nonlinear x2 via log10(x) inverse 10**x
ϡ`set log x2` Ʊ̤ߤޤξ籣Ƥ뼴ϡ
[log10(xmin):log10(xmax)] 뤳Ȥ [0:3] ϰϤˤʤޤ
Ѵؿ f(), g() ϡŬڤʥߡѿȤäɬ
ޤ
axis: x x2 dummy variable x
axis: y y2 dummy variable y
axis: z cb dummy variable z
axis: r dummy variable r
?set nonlinear examples
?nonlinear examples
:
set xrange [-3:3]
set nonlinear x via norm(x) inverse invnorm(x)
ϳΨ ("ץӥå") x ʬ۴ؿ
Phi(x) Υդ y ФľȤʤޤ
=logit
:
logit(p) = log(p/(1-p))
logistic(a) = 1. / (1. + exp(-a))
set xrange [.001 : .999]
set nonlinear y via logit(y) inverse logistic(y)
plot logit(x)
ϥåȥ y x Ф logit(x)
Υդľˤʤޤ
=broken axis
:
f(x) = (x <= 100) ? x : (x < 500) ? NaN : x-390
g(x) = (x <= 100) ? x : x+390
set xrange [0:1000] noextend
set nonlinear x via f(x) inverse g(x)
set xtics add (100,500)
plot sample [x=1:100] x, [x=500:1000] x
"Ǽ" ޤx ɸϺ 0 100 500
1000 ¤ӡδ֤ 10 ξʷ֤Ǥޤ100 < x < 500 δ
Υǡ褵줺ϴ̤ưޤ
3 ֥ (object)
?objects
?commands set object
?commands show object
?set object
?object depthorder
?show object
ޥ `set object` ϡθΤ٤ƤΥդ˸ñΥ֥
Ȥޤ֥ȤϤĤǤǤޤ֥Ȥ
ϡߤ `rectangle` (Ĺ)`circle` ()`ellipse` (ʱ)
ݡȤƤޤĹϡޥ `set style rectangle` ˤä
ꤵ줿° (ɤ٤) ǥեȤȤƼ
ѤޤġΥȤϡޤϸ夫Υޥɤ̡
°Ϳ뤳ȤǽǤ
2 դΥ֥Ȥϡɸպɸ (`graph`)˺ɸ
ɸ (`screen`) ΤȤ߹碌ǤǤޤ
3 դΥ֥ȻǤϡպɸϻȤޤ3 Ĺ
ʱߤϡɸ¤Ƥޤ
:
set object <index>
<object-type> <object-properties>
{front|back|behind|depthorder}
{clip|noclip}
{fc|fillcolor <colorspec>} {fs <fillstyle>}
{default} {lw|linewidth <width>} {dt|dashtype <dashtype>}
unset object <index>
<object-type> ϡ`rectangle`, `ellipse`, `circle`, `polygon` Τ
ǤġΥ֥Ȥηϡηͭ⤤ĤäƤ
ޤ
ץ `front`, `back`, `behind` ϡռȤ뤤
ϸΤɤ椷ޤʲ: `layers`
`front` ꤹȡ֥ȤϤ٤ƤǤ () 褵
ޤ`front` Ȼꤵ줿٥ϸ () ˤʤޤ`back`
ꤹȡ٤Ƥǡ٤ƤΥ٥θ֤ޤ
`behind` ϡ `back` Ĺޤह٤ƤΤΤθ֤
äơ
set object rectangle from screen 0,0 to screen 1,1 behind
ϡդڡΤطʤ˿ĤΤѤǤޤ
ǥեȤǤϡ֥ȤϡʤȤ 1 Ĥĺɸ
ͿƤʤ¤ꡢնǥåԥޤ`noclip`
ꤹȡնǤΥåԥ̵ˤʤޤ
Ф륯åԥϹԤޤ
֥Ȥɤ٤ο <colorspec> ǻꤷޤ`fillcolor`
`fc` ȾάǤޤɤ٤ <fillstyle> ǻꤷޤܺ
ϡʲ: `colorspec`, `fillstyle` `default` ꤹ
ȡ°褬ºݤ˹ԤȤΥǥեȤ
ޤʲ: `set style rectangle`
4 Ĺ (rectangle)
?rectangle
?commands set object rectangle
?commands show object rectangle
?set object rectangle
?show object rectangle
:
set object <index> rectangle
{from <position> {to|rto} <position> |
center <position> size <w>,<h> |
at <position> size <w>,<h>}
Ĺΰ֤ϡгѤ˸礦 2 Ĥĺ (ȱ) ΰ֡
濴ΰ֤Ȳ (<w>) Ƚ (<h>) ǻǤޤξ
ΰ֤ϡκɸ (`first`, `second`)ΰкɸ
(`graph`)ɸ (`screen`) Τ줫ѤǤޤ
(ʲ: `coordinates`)ץ `at` `center` Ʊ̣Ǥ
:
# ɸǰϤޤ줿ΰΤطʤ忧
set object 1 rect from graph 0, graph 0 to graph 1, graph 1 back
set object 1 rect fc rgb "cyan" fillstyle solid 1.0
# Ѥ 0,0, Ѥ 2,3 ֤ͳѤ֤
set object 2 rect from 0,0 to 2,3 fc lt 1
# Ĥζ (ɤ٤ʤ) Ĺ֤
set object 3 rect from 0,0 to 2,3 fs empty border rgb "blue"
# ĺϰưʤޤޡɤ٤ȿǥեȤѹ
set object 2 rect default
ɸĹγѤꤹȡϸߤΥΰü
뤳ȤǽǤ¾ξĹϥ˼ޤ褦˥
åԥޤ
4 ʱ (ellipse)
?ellipse
?commands set object ellipse
?commands show object ellipse
?set object ellipse
?show object ellipse
:
set object <index> ellipse {at|center} <position> size <w>,<h>
{angle <orientation>} {units xy|xx|yy}
{<other-object-properties>}
ʱߤΰ֤ϡ濴ꤷθȹ⤵ (缴) ꤷ
`at` `center` Ʊ̣Ǥ濴ΰ֤λˤϡ
κɸ (`first`, `second`)ΰкɸ (`graph`)
ɸ (`screen`) Τ줫ѤǤޤ (ʲ: `coordinates`)
缴ĹϡκɸͿʤФޤʱߤθ
(orientation) ϡʿʱߤμ缴Ȥδ֤γ٤ǻꤷޤ٤Ϳ
ʤСǥեȤʱߤθ˻Ȥޤ (ʲ:
`set style ellipse`) `units` ϡʱߤμν̼ܤ˻
Ѥޤ`units xy` ϡ缴 x ñ̤ǡ y ñ̤Ƿ
ޤ`units xx` ξȤ x ñ̤ǽ̼ܤ`units yy` ξ
Ȥ y ñ̤ˤʤޤ
ǥեȤ `xy` Ǥ`set style ellipse units` ǤĤǤ
Ǥޤ
: x y ν̼ܤʤ ( `units xy` ξ)
žμ缴Ϥʤޤ
`set object ellipse size <2r>,<2r>` `set object circle <r>` Ȥϡ
̤ˤƱȤˤϤʤʤȤդƤcircle Ⱦ¤Ͼ
x ñ̤Ƿפ졢ä x y ν̼ܤäꡢΥ
ڥ椬 1 ǤʤƤ⡢˱ߤޤ`units` `xy`
ƤС'set object ellipse' Ǥϡǽ <2r> x ñ̤ǡ
<2r> y ñ̤Ƿפޤ x y ν̼ܤƱ
ǡΥڥ椬 1 ǤΤ߱ߤ뤳Ȥ̣
ޤ`units` `xx` `yy` ˥åȤСޥ
`set object` ǻꤷľ¤Ʊñ̤ǷΤǡʱߤ
ڥꥵƤ⤽Υڥݻޤ
4 (circle)
?circle
?commands set object circle
?commands show object circle
?set object circle
?show object circle
:
set object <index> circle {at|center} <position> size <radius>
{arc [<begin>:<end>]} {no{wedge}}
{<other-object-properties>}
ߤΰ֤ϡ濴ꤷθȾ¤ꤷޤ `at`
`center` Ʊ̣Ǥ2 դǤϡ֤Ⱦ¤Ǥդκɸ
ǻǤޤʲ: `coordinates`3 դαߤˤϥպ
ɸϻȤޤΤɤξǤ⡢Ⱦ¤ϼաοʿ
ν̼ܤФƷפ졢ʿȿľν̼ܤˤ줬äƤ⡢
ߤˤʤ褦ľޤߤդκɸ (Ĥ
ʿȿľΥ뤬㤦ˤϤ줬ʱߤȤɽ褦
ˤ) ϡ `set object ellipse` ȤäƤ
ǥեȤǤϡʱߤ褵ޤץ `arc` ˳ϳѤ
λѤ٤ñ̤Ȥƻꤹȱ߸̤褷ޤ߸̤ϡȿײ
ޤ
ʲ⻲: `set style circle`, `set object ellipse`
4 ¿ѷ (polygon)
?polygon
?commands set object polygon
?commands show object polygon
?set object polygon
?show object polygon
:
set object <index> polygon
from <position> to <position> ... {to <position>}
ޤ
from <position> rto <position> ... {rto <position>}
¿ѷΰ֤ϡĺΰ֤Ϳ뤳ȤǻǤޤˤϡ
ǤդκɸϤȤޤŪʺɸ (rto) ꤹϡκɸ
ϤĺƱɸϤǤʤФޤʲ: `coordinates`
:
set object 1 polygon from 0,0 to 1,1 to 2,0
set object 1 fc rgb "cyan" fillstyle solid 1.0 border lt -1
5 depthorder
?polygon depthorder
?set object depthorder
ץ `set object N depthorder` ϡ3 ¿ѷ֥ȤΤ
ŬѤޤ֥Ȥ front/back/behind Υ쥤ǤϤʤ
Ȥ줿 pm3d շΥꥹȤ졢`set pm3d depthorder` ο
ν褷ޤpm3d ̤ǻȤ硢ξ̤οդ object fillcolor
linestyle ǻꤹ뤳ȤǤޤξ硢¿ѷκǽ 3
Ĥĺνɽפꤷޤ
3 ¿ѷǤϤʤ֥Ȥˤεǽꤹȡ¿ʬ
褵ޤ
3 հ֤Ĵ (offsets)
?commands set offsets
?commands unset offsets
?commands show offsets
?set offsets
?unset offsets
?show offsets
?offsets
?nooffsets
ư̼ܤϡx y ϰϤ褵ǡκɸ˹碌ޤ
եåȤϡϰϤȤߤˤǡϰ
ζδ֤˷֤褦ˤޤȡư̼ܵǽϡ줬
`set autoscale noextend` `set xrange noextend` ˤäޤƤ
ʤϡμãäޤǤˤ줾ϰϤĥ
ʲ: `noextend`
եåȤϡx1, y1 ν̼ܤˤΤ߱ƶͿޤ
:
set offsets <left>, <right>, <top>, <bottom>
unset offsets
show offsets
ƥեåȤޤϿȤΥǥեȤͤ 0 Ǥ
ǥեȤǤϡΥեåȤ x1 Ʊñ̤ǻꤷ岼Υ
åȤ y1 Ʊñ̤ǻꤷޤ "graph" Ѥ뤳
ȤեФȤƥեåȤꤹ뤳ȤǤޤ
(nonlinear axes) ФƤϡ"graph" ˤ륪եåȤΤ߲ǽ
Ǥ
ΥեåȤͤϡϰϤꤵ줿ؿФޤ㤨
ΥեåȤ y κǾͤ꾮ͤˤޤΥեå
ͤϡư̼ܤȥåԥФưƶޤ
:
set autoscale noextend
set offsets graph 0.05, 0, 2, 2
plot sin(x)
sin(x) Υդ y ϰϤ [-3:3] ˤʤޤϡؿ y
ϰϤ [-1:1] ˼ư̼ܤޤľΥեåȤüˤ줾
2 ɲä뤿Ǥx ϰϤ [-11:10] ˤʤޤϥǥ
Ȥ [-10:10] ǡϰϤ 0.05 γʬ뤿Ǥ
3 հ֤λ (origin)
?commands set origin
?commands show origin
?set origin
?show origin
?origin
ޥ `set origin` ϥǶθ (ʤ
դȤ;) Τ˻ѤޤκɸϤϥɸ
(`screen`) ͿޤκɸϤ˴ؤˤĤƤϡʲ:
`coordinates`
:
set origin <x-origin>,<y-origin>
3 (output)
?commands set output
?commands show output
?set output
?show output
?output
?output file
:
set output {"<filename>"}
unset output
show output
÷ϷǤϡǥեȤǤդ `stdout`
ޥ `set output` ϡνϤꤷեǥХ˥
쥯ȤޤΥޥɤdzեϡ set/unset
output ޥɡޤϼνϷѹޤ gnuplot λ
dzޤޤˤʤäƤޤ
÷ϷǤϡ`set output` ̵뤷ޤ
ե̾ϰǰϤޤʤФʤޤե̾ά硢
Υޥɤ `unset output` Ʊˤʤꡢľ `set output`
dzǤդνϥեĤϤ `stdout` ޤ
`set terminal` `set output` ξꤹ硢`set terminal`
˻ꤹǤϡ terminal ǤϡOS ɬפ
ե饰åȤ뤳Ȥ뤫Ǥ㤨СХʥե
̡ open ޥɤɬפȤ褦 OS ʤɤ˳ޤ
ѥפݡȤĶǤϡѥϤͭѤǤ㤨аʲ̤
:
set output "|lpr -Plaser filename"
set term png; set output "|display png:-"
MS-DOS Ǥϡ`set output "PRN"` ȤɸΥץ˽Ϥޤ
3 overflow
?overflow
?commands set overflow
?commands unset overflow
?set overflow
?unset overflow
?show overflow
:
set overflow {float | NaN | undefined}
unset overflow
gnuplot ΤΥСϡ64 ӥå黻ݡȤޤϡ
2^53 2^63 (ޤˤ 10^16 10^19) ɾIEEE
754 ư黻Ѥɾ٤ι⤤ͤݻ뤳Ȥ̣
ޤ IEEE ưɽϡ٤ϵˤˡޤ
ˤ [-10^307 : 10^307] ϰϤСޤ黻ϡη
[-2^63 : 2^63] ϰϳˤʤϥСեޤΥ
ե˲뤫ϥޥ `set overflow` ˤ
ǤޤΥץϡʲȤƤ
`set overflow` ϡ`set overflow float` Ʊǡ̤Ȥ֤
˼¿ͤȤ֤ޤ줬ǥեȤǤ
ޥ `unset overflow` ϡ黻ΥСե̵뤹褦
ޤ顼ϽФޤ32 ӥå黻ǤʤĶǡ5.4
ΥС gnuplot εư˶ŤϡѤ
Ǥ礦
ޥ `reset` ϡСեξ֤˱ƶͿޤ
ΥС gnuplot ϡ32 ӥåȱ黻¤졢Сե
̵뤷ƤޤȤ߹߱黻ΰϡͿƤ
黻ԤȤϸ¤ʤȤդƤˤϡؿ
黻 N**M 䡢¤α黻 (ʲ: `summation`) ʤɤޤޤޤ
α黻ϡߤͿ֤ͤŪ
Сեαƶ䤹뤳Ȥ `set overflow` ξ֤˻
褦ˤƤޤ
4 float
?set overflow float
?overflow float
黻ϰ (64 ӥåǤ [-2^63 : 2^63]) Сե
硢η̤ưͤȤ֤ޤϡ顼
ȤƤϰޤ
:
gnuplot> set overflow float
gnuplot> A = 2**62 - 1; print A, A+A, A+A+A
4611686018427387903 9223372036854775806 1.38350580552822e+19
4 NaN
?set overflow NaN
?overflow NaN
?overflow nan
黻ϰ (64 ӥåǤ [-2^63 : 2^63]) Сե
硢η̤ NaN () ֤ޤϡ顼ȤƤϰ
ޤ
:
gnuplot> set overflow NaN
gnuplot> print 10**18, 10**19
1000000000000000000 NaN
4 undefined
?set overflow undefined
?overflow undefined
黻ϰ (64 ӥåǤ [-2^63 : 2^63]) Сե
硢η̤̤ͤȤʤޤϡ顼Ȥư
:
gnuplot> set overflow undefined
gnuplot> A = 10**19
^
undefined value
4 affected operations
?set overflow affected_operations
?overflow affected_operations
`set overflow` ξ֤ϡʲ黻
+ - * / **
ȡȤ߹ߤ±黻 `sum` ˱ƶޤ
α黻Ϥ٤ơ٤ʤСɾǥСե
ʤ¤ꡢͤη̤֤ޤ
`set overflow` ϡʲ黻ӥåȱ黻ˤϱƶޤ
<< >> | ^ &
¤ɾβΤɤǥСեϡ
`set overflow float` ȤȡǽŪ¤ϰˤޤ
ǤäƤ⡢¿֤ͤ褦ˤʤޤ
3 ѥå (palette)
?commands set palette
?set palette
=palette
ѥåȤϡνǡ̾ϰİʾʳŪʥǡη
Ť졢`pm3d` ̤䲹ʬۿ (heatmap)¾Ǥ
դΤ˻Ȥޤplot z ɸɲäΥǡγĴͤ
ߤΥѥåȤο˼ưŪ˼ޤ
ߤΥѥåȤϡǥեȤǤ襹 `pm3d` Ѥ륰դ
٤̤Υ顼ܥå (`colorbox`) Ȥɽޤ顼ܥå
ϡޥ̵ˤǤޤʲ: `set colorbox`
ʲ⻲: `show palette`, `test palette`
:
set palette
set palette {
{ gray | color }
{ gamma <gamma> }
{ rgbformulae <r>,<g>,<b>
| defined { ( <gray1> <color1> {, <grayN> <colorN>}... ) }
| file '<filename>' {datafile-modifiers}
| colormap <colormap-name>
| functions <R>,<G>,<B>
}
{ cubehelix {start <val>} {cycles <val>} {saturation <val>} }
{ viridis }
{ model { RGB | CMY | HSV {start <radians>} } }
{ positive | negative }
{ nops_allcF | ps_allcF }
{ maxcolors <maxcolors> }
}
ѥåȤϡĤˡǤޤ
Ffigure_palette1
- ֡СĤǤФ0 1 γĴѿδؿȤ
Ϳ뤳ȡ
`set palette rgbformulae` ˤꡢ餫Ƥ 36 Ĥθ
֤ȤǤޤ`set palette functions` ˤꡢʤȤδ
뤳ȤǤޤ
#TeX \\
- z ϰΤʬŪ 1 ġޤʣγ餫ʥǡ
ʤ褦ꤹ뤿 `set palette defined` Ȥȡ
#TeX \\
- ¸ѥåȤߤΥѥåȤɤ߹ (load) ȡ
`set palette file` ϡ¸ѥåȤե뤫ɤ߹ߤޤ
`set palette colormap` ϡ¸顼ޥåפ RGB ʬŸ
ޤ
#TeX \\
- ɬפʤ饫ޥѤɲåѥդ̾դѥåȤꡣ
Ƥ̾դѥåȤϡ`cubehelix` (ѥ²ǥ
ޥǽ) `viridis` Ǥ
ץΤʤ `set palette` ϡǥեͤᤷޤ
`set palette negative` ϡѥåȤžޤ㤨С
`set palette viridis negative` ϡĤ鲫ǤϤʤĤؤ
ǡޤ
`set palette gray` ϡĴΥѥåȤڤؤޤ
`set palette color` ϺǤǶΥ顼ѥåȤᤷޤ
`pm3d` 顼̤Ǥϡշ 4 ĤγѤ z ɸʿͤ
[min_z, max_z] 鳥Ĵͤϰ ( [0:1]) ؤμѴ
ȤˤꡢλշγĴͤޤѥåȤϡγ
Ĵͤ RGB ؤμǤ
ѥåȿŪʿǤڤǤޤ (ʲ: `colorspec`)
ϡ֥Ȥ٥˥ѥåȿƤȤǤ
ѥåȤϡ3 ο RGB, CMY, HSV ΤǤǤޤ
: `set palette model`
ο֤Ǥ⡢οʬϤ٤ [0,1] ϰϤ¤Ƥޤ
4 rgbformulae
?commands set palette rgbformulae
?set palette rgbformulae
?palette rgbformulae
?rgbformulae
=colors
set palette rgbformulae <function 1>, <function 2>, <function 3>
̾ȤϴطʤΥץƤο֤ŬѤޤ
ʤϡƿʬФơ餫ϿƤ 36 Ĥγƴ
ΤΰĤꤷʤФޤͭʳƴؿΰϡ
`show palette rgbformulae` Ǹ뤳ȤǤޤǥեȤϡ
`set palette rgbformulae 7,5,15` ǤRGB ο֤Ǥϡ 7 ֤
ؿ֤ʬμ˻Ѥ5 ֤δؿʬμ15 ֤δؿ
ʬμ˻ѤޤؿֹȤͤѤȡϳ
Ƥաʤ f(gray) Ǥʤf(1-gray) μˤʬˤޤ
Ffigure_palette2
RGB ο֤ǤϡĤɤƸޤ:
7,5,15 ... ǥե (---)
3,11,6 ... --
23,28,3 ... (--)
21,22,23 ... ٿ (---)
30,31,32 ... ----
33,13,10 ... (---)
34,35,36 ... AFM ٿ (---)
HSV ֤ǤΥե륫顼ѥå:
3,2,2 ... ---忧---
4 defined
?commands set palette defined
?set palette defined
?palette defined
=colors
RGB ؤб `palette defined` ȤȤǼưǤ
: ǡ RGB ͤͿ뤿Ѥޤ
ǡϡ[0,1] γͤ [0,1]x[0,1]x[0,1] RGB ֤ؤ
ʬŪʼǤ֤˻Ȥ볥ͤ RGB ͤȤ
ꤹɬפޤ:
:
set palette defined { ( <gray1> <color1> {, <grayN> <colorN>}... ) }
N 2 ǡ<grayN> [0,1] ˳Ƥ볥ͤǤб
RGB <colorN> ϡ3 ˡǻǤޤ:
<color> := { <r> <g> <b> | '<color-name>' | '#rrggbb' }
֡СĤбǶڤ줿 3 Ĥ (줾 [0,1] )
Ǥ줿̾ޤϰǤ줿 X λΤ
줫ǤǡǤϡ 3 ηͳȤ߹
碌뤳ȤǤޤ֤Ȥ RGB ǤʤΤ줿翧
̾ "red" ϾäΤˤʤǤ礦ѤǤ뿧̾
`show colornames` Ǥΰ뤳ȤǤޤ
<gray> ͤϼ¿ξ¤٤ɬפޤͤϼưŪ
[0,1] Ѵޤ
åĤΥǡʤ `set palette defined` Ȥ
硢RGB ֤ˤ餫ꤵ줿ե륹ڥȥ륰ǡ
Ѥޤǡɽˤ `show palette gradient`
ѤƤ
:
Υѥå (ΩʤŪ) ˤ:
set palette model RGB
set palette defined ( 0 "black", 1 "white" )
--֤Υѥå (Ƥ) ˤ:
set palette defined ( 0 "blue", 1 "yellow", 2 "red" )
set palette defined ( 0 0 0 1, 1 1 1 0, 2 1 0 0 )
set palette defined ( 0 "#0000ff", 1 "#ffff00", 2 "#ff0000" )
HSV ֤ǤΥե륫顼ڥȥ:
set palette model HSV
set palette defined ( 0 0 1 1, 1 1 1 1 )
set palette defined ( 0 0 1 0, 1 0 1 1, 6 0.8333 1 1, 7 0.8333 0 1)
ְʳΤ뿧Ǵʤ HSV ե륫顼ڥȥ
set palette model HSV start 0.15
set palette defined ( 0 0 1 1, 1 1 1 1 )
ֳ֤ʾοΥѥåȤˤ:
set palette model RGB maxcolors 4
set palette defined ( 0 "yellow", 1 "red" )
'̿' (餫ǤϤʤ gray = 1/3, 2/3 ķӤ):
set palette model RGB
set palette defined (0 "dark-green", 1 "green", \
1 "yellow", 2 "dark-yellow", \
2 "red", 3 "dark-red" )
4 functions
?commands set palette functions
?set palette functions
?palette functions
set palette functions <f1(gray)>, <f2(gray)>, <f3(gray)>
Υץϡ`set palette rgbformulae` ˻Ƥޤƿʬ
ФơѤߤδؿֹꤹ˼ºݤδؿͿ뤳Ȥ
ޤƴؿΥߡѿɬפʤ顢 "gray" ȤʤФ
ؿϡ[0,1] ϰϤ gray ͤ[0,1] ͤ˼ʤФ
ޤ
:
ե륫顼ѥåȤˤ:
set palette model HSV functions gray, 1, 1
ؤɤѥå:
set palette model RGB functions 1.1*gray**0.25, gray**0.75, 0
Υѥå:
gamma = 2.2
map(gray) = gray**(1./gamma)
set palette model RGB functions map(gray), map(gray), map(gray)
4 gray
?commands set palette gray
?set palette gray
?set palette grey
?palette gray
`set palette gray` ϡ0.0 = 1.0 = ؤγĴ (쥤
) ѥåȤڤؤޤĴѥåȤ顢ľΥ顼ѥå
ˤޤ᤹ˤϡ`set palette color` ȤΤñǤ
4 cubehelix
?commands set palette cubehelix
?set palette cubehelix
?cubehelix
ץ "cubehelix" Ϥѥå²ޤϡ
Ĵͤ 0 1 ạ̈δи٤ñĴäΥ
åȤο (hue) ɸĤäѲޤ
D A Green (2011) http://arxiv.org/abs/1108.5083
`start` ϡĤ˱ä饸ñ̤Ƿꤷޤ
`cycles` ϡѥåȤϰϤϤäƿĤ뤫ꤷޤ
`saturation` () 礭ȡꤢ䤫ʿˤʤޤ1 礭
٤ϡġ RGB ʬåԥ뤳Ȥˤʤꡢ٤ñĴǤ
ʤʤäƤޤޤ`set palette gamma` ѥåȤ˱ƶͿޤ
ǥեͤϰʲ̤Ǥ
set palette cubehelix start 0.5 cycles -1.5 saturation 1
set palette gamma 1.5
4 viridis
?commands set palette viridis
?set palette viridis
?viridis
set palette viridis
ѥå "viridis" ϡФ˾㳲Τ桼Ĥ鲫ؤΥ
ǡǤviridis ϡSte'fan van der Walt Nathaniel Smith
곫ȯޤϡŪ뤵 () ζŪʥ
ǡȤʤޤgnuplot Ѥ륫顼ޥåǤϡʲ˴Ť
Ƥޤ
"Viridis - Colorblind-Friendly Color Maps for R", Garnier et al (2021)
https://CRAN.R-project.org/package=viridis
D viridis 1
4 colormap
?commands set palette colormap
?palette colormap
`set palette colormap <name>` ϡ colormap Ȥ¸
ߤΥǡɤ߹ߤޤΥ顼ޥåפΥեͥ
(Ʃ) ϡ줬äȤƤ⡢ͤѥå˥ԡ
ݤ˼ޤ
ʲ: `colormap`
4 file
?commands set palette file
?set palette file
?palette file
`set palette file` ϴŪ `set palette defined (<gradient>)` Ʊ
ǡ <gradient> ǡե롢ޤϥǡ֥åɤ߹
ߤޤͤϡñ RGB 3 Ȥ 24 ӥå (`using` 1
2 Ĥξ) ޤ 3 Ĥ̡ R, G, B ʬμ¿ (`using`
3 Ĥ 4 Ĥξ) Τ줫ͿޤǽŪ
ʳͤͿʤϡֹȤƻȤޤϡ
˱äֳ֤ʥѥåȤޤ
ե̾ΥǡեȤɤΤǡƤΥǡե뽤
ҤȤޤHSV ֤Ƥˤϡ`R` ϼºݤˤ `H`
ؤȤդƤ
ǡɽˤ `show palette gradient` ѤƤ
:
RGB ΥѥåȤ [0,255] ϰϤɤ߹:
set palette file 'some-palette' using ($1/255):($2/255):($3/255)
ֳ֤ (---) ѥå:
set palette model RGB file "-" using 1:2:3
0 0 1
0 1 0
1 1 0
1 0 0
e
Ūʳͻ RGB ͻƱȤ:
set palette model RGB file "-" using 1:2
1 0x0000ff
2 0x00ff00
3 0xffff00
4 0xff0000
e
ХʥѥåȥեƱͤ˥ݡȤƤޤʲ:
`binary general`R,G,B double Υǡ 64 Ĥ 3 Ȥե
palette.bin ˽Ϥɤ߹:
set palette file "palette.bin" binary record=64 using 1:2:3
4 (gamma correction)
?commands set palette gamma-correction
?set palette gamma-correction
?palette gamma-correction
?gamma-correction
`set palette gamma <gamma>` ϳĴ (`set palette gray`)
`cubehelix` Υ顼ѥåȷФƼưŪʥԤޤ
gamma = 1 ϡθ٥ǡޤʲ:
`test palette`
ĴФ <gamma> ΥǥեȤ 1.5 ǡ̾ŬڤͤǤ
ϡcubehelix 顼ѥåȷˤŬѤޤ¾ο
ˤŬѤޤŪʿؿ˥Τ
ޤ
:
set palette model RGB
set palette functions gray**0.64, gray**0.67, gray**0.70
֤줿ǡȤäƥԤˤϡŬʿ֤
ͤꤷޤ
set palette defined ( 0 0 0 0, 1 1 1 1 )
㤨аʲꤷƤ:
set palette defined ( 0 0 0 0, 0.5 .73 .73 .73, 1 1 1 1 )
ޤϡ֤ "" ֤˽ʬɤŬ礹ޤǤɤ
֤õƤ
4 翧 (maxcolors)
?commands set palette maxcolors
?set palette maxcolors
?palette maxcolors
`set palette maxcolors <N>` ϥѥåȤϢ³ʥѥåȤֳ֤ʶ
饵ץ N ĤΥŪʿ¤ޤΥŪ N Ĥο
ֳ֤ˤϡñϢ³ѥåȤ
`set palette defined` ȤäƤ
λŪϡΥŪʿ줾줬ͤϰϤɽΤǡ
ˤäƲʬۿޤ뤳ȤǤ
2 ܤλŪϡꤵ줿 (㤨 gif sixel Ǥ 256 )
ݡȤʤϷǤνǤgnuplot ΥǥեȤ
ΤΤĤޤǤѤΤǡѥåȤѤǤ뿧Ϥ
¤ޤäơʣΥѥåȤѤ multiplot Ǥϡǽ
ѥåȤѲǽʿ֤ȤڤäƤޤäƼԤޤϡ
ΥѥåȤǻѤǤ뿧¤뤳ȤǡǤޤ
4 ֥ǥ (color model)
?commands set palette model
?set palette model
?palette model
?color model
?HSV
?RGB
?CMY
set palette model { RGB | CMY | HSV {start <radians>} }
֤ϡ`model` `RGB`, `HSV`, `CMY` Ȥ뤳ȤѹǤޤ
RGB ϡɸŪ (Red) (Green) (Blue) ˡCMY Ͽ忧 (Cyan)
(Magenta) (Yellow) ˡHSV (Hue) (Saturation)
(Value) ˴Ť֤ǤHSV ֤ǤϡH 0 1 Ѳ
Τ˱ƿΤꤷä H=0 H=1 Ʊ
ȤˤʤޤǥեȤǤϡβžγϤȽλ֤֤Ǥץ
ѥ `start` Ϥ餹Τǡä
`set palette model HSV start 0.3` θǤϡH=0 H=1 ϤФ
бޤ
顼ǥ˴ؤ뤵ʤˤĤƤϡʲȤƤ:
^ <a href="http://en.wikipedia.org/wiki/Color_space">
http://en.wikipedia.org/wiki/Color_space
^ </a>
(: ܸǤ "http://ja.wikipedia.org/wiki/" ޤ)
ѥåȥץ˴ؤޥ˥奢ϡRGB ֤ˤĤƽƤ
㤨Ф `R` ϡֺǽοʬפ̣äƼºݤ˻
Ƥ뿧֤ˤäƤ `H``C` Ǥ뤳ȤդƤ
4 postscript
?commands set palette postscript
?set palette postscript
ΥƤϡ`set term postscript color` νϤΤߤ˴
ϢƤޤѥåȤ `set palette rgbforumulae` Ƥ硢
gnuplot ᤷŪʬؿ postscript Ǥμpm3d
ľ˥إåȤƽޤ/g /cF ȤƤ
ϡpalette Ѥ 3 ĤθΤߤФФǤ褯ơ
줬ǥեȤΥץ `nops_allcF` Ǥץ `ps_allcF`
ϡ 36 ĤθƤФޤˤꡢ
ΥǶ˰㤦ѥåȤȤ postscript եԽ
뤳Ȥǽˤʤޤ
postscript ե pm3d ̤Ф硢θ gnuplot °
awk ץ `pm3dCompress.awk` ¹ԤȤΥե륵
Ǥ뤫⤷ޤǡͳѷγʻҾˤʤäƤϡ
awk ץ `pm3dConvertToImage.awk` ȤȤǤ礭ʰΨ
ǽޤ
⥹ץȤ gnuplot ȤȤۤƤޤ
ˡ:
awk -f pm3dCompress.awk thefile.ps >smallerfile.ps
awk -f pm3dConvertToImage.awk thefile.ps >smallerfile.ps
3 ѿ⡼ (parametric)
?commands set parametric
?commands unset parametric
?commands show parametric
?set parametric
?unset parametric
?show parametric
?parametric
?noparametric
`set parametric` ޥɤ `plot` `splot` ΰ̣̾δؿ
褫ѿɽ (parametric) ؿѹޤ`unset parametric`
Ȥи⡼ɤޤ
:
set parametric
unset parametric
show parametric
2 դˤƤϡѿɽؿϤҤȤĤѿФ 2
ĤδؿޤȤƤ plot sin(t),cos(t) Ȥ뤳Ȥˤ
Ʊߤޤ (ڥ椬ꤵƤСʲ:
`set size`)`gnuplot` ϡξδؿѿˤ `plot` Τ
ͿƤʤХ顼åФޤ
3 դˤƤ̤ x = f(u,v), y = g(u,v), z = h(u,v)
ޤä 3 ĤδؿȤǻꤹɬפޤȤƤϡ
`cos(u)*cos(v),cos(u)*sin(v),sin(u)` Ȥ뤳ȤˤäƵ̤ޤ
`gnuplot` ϡ3 δؿѿˤ `splot` ΤͿ
ƤʤХ顼åФޤ
ˤäɽǤؿϡñ f(x) δؿ뤳Ȥ
ʤޤʤʤС2 (3 ) δؿ x, y (, z) ͤΩ˷
뵭ҤǤ뤫Ǥºݡt,f(t) ΥդϡܤδؿΤ褦
ʹؿѤ x ͤ f(x) ˤä륰
դǤƱͤˡ3 Ǥ u,v,f(u,v) ϡf(x,y)
Ǥ
ѿɽؿϡx δؿy δؿ (z δؿ)ν˻ꤷ
϶̤ѿӤѰ뤳ȤαդƲ
ˡ`set parametric` λϡѿѰѤ뤳ȤŤ
ޤ̾ f(x) f(x,y) xrangeyrange (zrange)
ΤФơѿ⡼ɤǤϤ˲äơtrange, urange, vrange
ѤޤѰ `set trange`, `set urange`, `set vrange`
ˤäľܻꤹ뤳Ȥ⡢`plot` `splot` ǻꤹ뤳ȤǤޤ
ǤϡѿΥǥեȤѰ [-5:5] ȤʤäƤޤ
ŪˤϤΥǥեͤäͭդʤΤѹͽǤ
3 ʿ輴 (paxis)
?paxis
?commands set paxis
?set paxis
?show paxis
:
set paxis <axisno> {range <range-options> | tics <tic-options>}
set paxis <axisno> label <label-options> { offset <radial-offset> }
show paxis <axisno> {range | tics}
ޥ `set paxis` ϡʿԺɸ (parallel axis) ȥ㥰
(spiderplot) p1, p2, ... ΰĤ˺Ѥ뤳Ȱʳϡ`set xrange`
`set xtics` ƱǤʲ: `parallelaxes`, `set xrange`,
`set xtics`range tics ޥɤؤ̾ΥץϡʿԺɸ
襹ˤϰ̣ΤʤΤ⤢ޤ٤ƤĤޤ
`set paxis <axisno> label <label-options>` ϡspiderplot Ѥǡ¾
Ǥ̵뤵ޤʿԺɸμϡplot ޥɤ `title` ץ
ǥ٥դǤޤ xtic ٥Τǡ`set xtics`
ɬפȤʤ뤳ȤդƤ
°ϡ`set style parallelaxis` 椷ޤ
3 pixmap
?pixmap
?set pixmap
?unset pixmaps
?show pixmaps
?commands set pixmap
:
set pixmap <index> {"filename" | colormap <name>}
at <position>
{width <w> | height <h> | size <w>,<h>}
{front|back|behind} {center}
show pixmaps
unset pixmaps
unset pixmap <index>
ޥ `set pixmap` ϡθ³ plot ɽ륪֥Ȥ
륳ޥ `set object` ȻƤޤΥԥޥåפ
R/G/B/alpha ͤĹ png, jpeg, gif եΤ줫
߹ޤޤgnuplot Ͼΰ֤ȥԥޥåפͭϰϤϡǤ
κɸ (ʲ: `coordinates`) ǻǤޤ`at <position>`
Ϳɸϡ `center` ꤵƤʤ¤ꡢԥޥå
κѤ̣ޤ
`width <x-extent>` Ѥ褹ԥޥåפ x ϰϤ ꤷ
硢βΥڥ椬ݻ졢ΥžǤϥ
ԥޥåפθѹޤ`height <y-extent>` Ѥ
y ϰϤꤷƱͤǤ`size <x-extent> <y-extent>`
Ѥ x y ϰϤξꤷ硢Υڥѹޤ
ꤷʤХԥñ̤ǤθΥѤޤ (äƤ
μºݤΥϡϷ˰¸ޤ)
ԥޥåפϡդζǥåԥޤ֥Ȥ쥤
ΰŪʵưФ㳰Ȥơ`behind` 쥤˳Ƥԥ
ޥåפϡmultiplot ǤϺǽ plot ǤΤ褷ޤϡĤ
ѤΥԥޥåפmultiplot Τ٤ƤΥѥͥǶͭ뤳Ȥǽ
ޤ
:
# ٤ƤΥդطʤȤƥǡ
# ХΤ褦 x, y ξꥵ
set pixmap 1 "gradient.png"
set pixmap 1 at screen 0, 0 size screen 1, 1 behind
# դγƥڡα˥
set pixmap 2 "logo.jpg"
set pixmap 2 at screen 0.95, 0 width screen 0.05 behind
# 3 ɸ˾
# 褵Ƥ̤ĥդƤ褦˰ư뤬
# ľΩ³
set pixmap 3 "image.png" at my_x, my_y, f(my_x,my_y) width screen .05
splot f(x,y)
4 顼ޥåפ pixmap (pixmap from colormap)
?pixmap colormap
?set pixmap colormap
?gradient
:
set pixmap <index> colormap <name>
Ffigure_gradient
pixmaps ¾ˡϡ̾դѥåȤǵҤǡ¸
뤳ȤǤϡĹΰФ륰ǡɤꤹ
ñˡǤϡ̾դѥåȤФ̤Υ顼ܥ
䡢˥Τطʡ뤤ϥХΤɤΤ˻Ȥ
ȤǤޤ
set palette defined (0 "beige", 1 "light-cyan")
set colormap new Gradient
set pixmap 1 colormap Gradient behind
set pixmap 1 at screen 0,0 size screen 1,1
plot <something>
3 pm3d
?commands set pm3d
?commands show pm3d
?set pm3d
?show pm3d
?pm3d
pm3d `splot` ΰĤΥǡѥåȤ˳դ줿 3
4 ǡ顼/οϿޤ̤Ȥ褷ޤϡ
ҾΥǡʻҾΥǡʤǤޤpm3d Υ
륪ץϡ¾ 3 ǤۤΤ˻Ȥñ¿ѷ
ˤƶͿޤ
(ץǤդνͿ뤳ȤǤޤ):
set pm3d {
{ at <position> }
{ interpolate <steps/points in scan, between scans> }
{ scansautomatic | scansforward | scansbackward
| depthorder {base} }
{ flush { begin | center | end } }
{ ftriangles | noftriangles }
{ clip | clip1in | clip4in }
{ {no}clipcb }
{ corners2color
{ mean|geomean|harmean|rms|median|min|max|c1|c2|c3|c4 }
}
{ {no}lighting
{primary <fraction>} {specular <fraction>}
{spec2 <fraction>}
}
{ {no}border {retrace} {<linestyle-options>}}
{ implicit | explicit }
{ map }
}
show pm3d
unset pm3d
pm3d ζ̤ϡsplot ޥɤͿϢ³褹뤳Ȥդ
Ƥ줿դϡΥդDZǽޤ
뤿ˡscan ץ `depthorder` Ѥ뤳Ȥ
ޤ
pm3d ̤ϡɽȤŷ (`top`) (`bottom`) ˼ͱƤǤޤ
ʲ: `pm3d position`
ʲΥޥɤϡۤʤä⤵ 3 Ĥοդζ̤ޤ:
set border 4095
set pm3d at s
splot 10*x with pm3d at b, x*x-y*y, x*x+y*y with pm3d at t
ʲ⻲: `set palette`, `set cbrange`, `set colorbox`ƥǥ
`demo/pm3d.dem` ⻲ͤˤʤǤ礦
4 with pm3d (Ū pm3d; pm3d explicit)
?pm3d explicit
?with pm3d
?splot with pm3d
?plotting styles pm3d
?splot with pm3d zclip
?pm3d zclip
?zclip
splot DATA using (x):(y):(z){:(color)} with pm3d
{fs|fillstyle <fillstyle>} {fc|fillcolor <colorspec>}
{zclip [zmin:zmax]}
٤Ƥ pm3d ̤°ϡ`set pm3d` ȤäǤޤǥ
ȤǤϡΤշγʻҤȤ褷ƳʻҤ z ɸ˳
Ƥѥåȿǿդޤ4 ܤͿȡѥå
γƤ z ͤǤʤͤѤޤʲ:
`pm3d fillcolor`, `pm3d color_assignment`
`set pm3d implicit` ͭʾ֤ `with pm3d` ʳ襹
ѤΤǤϤʤplot ޥɤŪ `with pm3d` Ѥ硢
襪ץɲä뤳ȤǽǤˤꡢƱվǡ
̡̤οդλȤߤȤȤǽˤʤޤ
ʳ: ΥС gnuplot ϡץ `zclip` ƳƤ
ơ z ͤζǶ̤餫ʶ̤褦˥åԥ
ޤʲϡ2 3 ̤ĺʬ˾äƤ
˥ɽޤ
set style line 101 lc "gray"
set style line 102 lc "blue"
set pm3d depthorder
do for [i=0:N] {
splot f(x,y) with pm3d fillcolor ls 101 zclip [* : zmax-(i*delta)]
pause 0.2 # ˥ե졼ֳ֤ 1/5
}
4 Ū pm3d (pm3d implicit)
?pm3d implicit
splot ޥɤŪ `with pm3d` ꤷ硢ޤϥǡ
襹 (`style`) Ū pm3d ˥åȤƤ硢
ϡpm3d ⡼ɤ `set pm3d implicit` ȤʤäƤϡpm3d Υ
顼̤褷ޤ 2 Ĥξϡplot ޥɤǻꤷ
ܤ pm3d ̤ɲä褷ޤ㤨С
splot 'fred.dat' with lines, 'lola.dat' with lines
ϡƥǡޤˤܤ pm3d ̤ξ褷ޤ
ץ `explicit` (Ū) ON (ޤ `implicit` OFF) ξ
ϡ° `with pm3d` ꤷդΤߤ pm3d ̤Ȥ褵
㤨
splot 'fred.dat' with lines, 'lola.dat' with pm3d
ϡ'freq.dat' ޤ (Τߤ)'lola.dat' pm3d ̤褷
ޤ
gnuplot εưϤΥ⡼ɤ `explicit` (Ū) ˤʤäƤޤ
ŪƸߴΤˡޥ `set pm3d;` (ʤץ
ʤ) `set pm3d at X ...` (ʤ `at` ǽΥץξ
) ϥ⡼ɤ `implicit` (Ū) ѹޤޥ `set pm3d;`
ϡ¾ΥץΥǥեȤξ֤ꤷޤ
ǥեȤΥǡ/ؿ襹 `pm3d` ˤϡ㤨
set style data pm3d
Ȥޤξ硢ץ `implicit` `explicit` ϸϤ
4 pm3d Υ르ꥺ (algorithm)
?pm3d algorithm
ޤϿ/̤ɤΤ褦ΤˤĤƵҤޤϥǡ
ϡؿɾ뤫ޤ `splot data file` ޤ
̤ϡ (Ω) η֤ǹޤpm3d 르ꥺǤϡ
ǽǸФ줿٤礦 2 ȡǸФ줿¾ 2
֤ΰ褬 4 z (ޤɲä줿 'color' Ѥ͡
ʲ: `using`) ˽äƳ (ޤ 顼) ɤޤǥե
ȤǤ 4 ĤγѤͤʿͤȤޤϥץ
`corners2color` ѹǤޤʤζ̤ˤϡ٤礦
2 ƤϤʤơο㤤ƤϤ
ޤǤɤΤοƱȤǤ¾ˤϲ
ɬפǤϤޤ (㤨ХǡϳʻҾǤɬפʤ)¾ˤ⤳
pm3d 르ꥺϡϤ줿 (¬줿뤤Ϸ줿) ΰ
γˤϲʤȤĹ꤬ޤ
̤οŤϡʲΤ褦ϥǡ˴ؤƹԤޤ:
1. ؿޤ 1 Ĥ 3 ĤΥǡʤǡ splot: ˽Ҥ
ͳѷ 4 ĤγѤ z ɸʿ (ޤ `corners2color`) 顢
ϰ [0:1] Ϳ `zrange` ޤ `cbrange` ϰ
[min_color_z,max_color_z] ؤбˤꡢ/顼ͤޤ
ͤϡľܳοϿѤγͤȤƻȤȤǤޤ
줿ͤ顼б뤳ȤǤޤϡʲ
: `set palette`
2. 2 Ĥ 4 ĤΥǡʤǡ splot: /顼ͤϡz
ͤ˺ǸκɸȤäޤΤǡ z ɸΩ
ʤΤˤʤޤ 4 ǡ˻ȤȤǤޤ
¾:
1. ʪؼԤδ֤Ǥϡgnuplot ʸ䥽˸ 'iso_curve' (
Ω) Ȥդ⡢Ǹڤ ' (scan)' Ȥդ
Ƥޤ1 ٤¾εϿˤ꿧Ͽޤɾ롢Ȥ
ΤϤ̣Ǥ
2. 'gray' 'color' (scale) ϡ餫Ѳ륫顼ѥåȤ
ΡϢ³ѿǤμͻҤ襰դ٤Ĺ
ɽޤʸǤϤ "顼ܥå (colorbox)" ȸƤӡ
ѿ顼ܥåѿȸƤӤޤʲ: `set colorbox`,
`set cbrange`
4 ǥ (lighting)
?lighting
?pm3d lighting
?pm3d nolighting
?set pm3d lighting
?spotlight
?pm3d spotlight
?set pm3d spotlight
:
set pm3d lighting {primary <frac>} {specular <frac>} {spec2 <frac>}
set pm3d spotlight {rgb <color>} {rot_x <angle>} {rot_z <angle>}
{Phong <value>} {default}
ǥեȤǤϡpm3d ογƤϡ̤ˤϰ¸ޤ
ξ֤ `set pm3d nolighting` бޤ
ޥ `set pm3d lighting` ϡξ
50% θˤñʸǥޤϤ뤵Ф뤽θ
ζ٤ `set pm3d lighting primary <fraction>` ĴǤޤȿ
(specular) ޤޤٹ礤ϡΨ (fraction) ꤬Ǥޤ:
set pm3d lighting primary 0.50 specular 0.0 # ϥ饤Ȥʤ
set pm3d lighting primary 0.50 specular 0.6 # ϥ饤
٥ɤ (solid color) pm3d ̤ϡȿΥϥ饤ȤʤȤȤ
ʿ˸뷹ޤ
Υϥ饤Ȥ϶̤¦ˤƶͿʤΤǡ¾
2 ܤΥݥåȥ饤ȤξɲäȤ礬ޤ 2
ܤΥݥåȥ饤Ȥζϡ"spec2 <fraction>" (Ψ) ꤷޤ
2 ܤΥݥåȥ饤Ȥϡspec2 ξˤΤ߸ǥ˴ޤޤޤ
ȿͥǥϡ"set pm3d spotlight" 椷ޤΥ
ݥåȥ饤ȤˡȰּϡ÷Υǥ `spotlight.dem`
Ƥޤ
hidden_compare.dem ⻲ȤƤ
^ <a href="http://www.gnuplot.info/demo/hidden_compare.html">
(ñɤ̤ hidden3d pm3d ν)
^ </a>
:
set pm3d lighting primary 0.8 spec 0.4 spec2 0.4
set pm3d spot rgb "blue"
D spotlight 1
4 pm3d ΰ (position)
?pm3d position
?set pm3d position
pm3d οդ̤ϡζ̤ z ΰ֡ޤ̤ŷʿ
˼ͱƤȤǤޤϡץ `at` ˡ`b`, `t`, `s`
6 ĤޤǤȹ礻ʸĤƻꤹ뤳ȤǤޤ㤨
`at b` ̤Τߤ褷ޤ`at st` Ϻǽ˶̤Ƥ줫
ŷ̤ޤ`at bstbst` ... ˤΩʤǤ礦
ɤ줿ͳѷϡ鼡ؤ褵ƹԤޤϡͳ
ͳѷʤäꡢŤʤäꤷޤǽ
ǡǽǸڤؤ륹åץ
`scansforward` `scansbackward` ƤߤƤǥեȤ
`scansautomatic` ǡ gnuplot Ȥν¬ޤ
`depthorder` ϻͳѷνεΥǥȤ뤳ȤǴ
˺ƹޤˤ꤫ʤʣʶ̤ǤŪʤΤˤ뤳
Ǥޤܺ٤ϡʲ: `pm3d depthorder`
4 ν (scanorder)
?pm3d scanorder
?pm3d depthorder
?pm3d flush
?pm3d ftriangles
?set pm3d scanorder
?set pm3d depthorder
?set pm3d flush
?set pm3d ftriangles
?depthorder
=flush
?scansforward
?scansautomatic
?scansbackward
=ftriangles
set pm3d {scansautomatic | scansforward | scansbackward | depthorder}
ǥեȤǤϡpm3d ñɤ̤ͳѷϡ餬̤
ʻ˱äƽв֤ɤ٤ޤν֤ϡץ
`scansautomatic`|`scansforward`|`scansbackward` Ǥޤ
(scan) ץϡ̤ˤϱ̽ȤξΩޤ
2 Ϣ³οƱǤʤä硢ͳѷμϤ
ξκǽ餫 (`flush begin`) ˤ뤫Ǹ夫 (`flush end`)
ˤ뤫椫 (`flush center`) ˤ뤫ꤷʤФޤ
`flush (center|end)` `scansautomatic` ȤξΩä
`flush center` ޤ `flush end` ꤷ `scansautomatic` ꤵ
줿硢̵ `scansforward` ѹޤ
2 Ϣ³οƱǤʤä硢ġ
ˡκǸ˿ѷɤץ `ftriangles`
ϻؼޤϳ餫ʿϿޤζΤ˻Ȥޤ
gnuplot ϡ̤ñɤˤƤϡα̽ϹԤޤ
Ƥϱᤤؽ˻ͳѷǤɤ٤ȤǽʬʤǤ
ˤʤޤΥ⡼ɤϡʲΥץȤȤǤޤ:
set pm3d depthorder
ŪʥץǤ `set hidden3d` ϡpm3d ̤ˤϱƶʤ
ȤդƤ
ץ `depthorder` ϡ`splot with boxes` ǺäĹĹ
ŬѤȡɤʤ̤ޤξ硢
`base` ɲä뤳Ȥǡz=0 ʿ̤ȢζʬǿΥȤԤ
ᾯޤˤʤޤηΥդϡǥ (lighting)
äй˲Ǥޤ
:
set pm3d depthorder base
set pm3d lighting
set boxdepth 0.4
splot $DATA using 1:2:3 with boxes
4 åԥ (clipping)
?pm3d clipping
?set pm3d clipping
?clipcb
?clip1in
?clip4in
?pm3d clipcb
?noclipcb
?pm3d noclipcb
:
set pm3d {clip | clip1in | clip4in}
set pm3d {no}clipcb
pm3d ̤¾ 3 ֥ȤշϡǥեȤǤϸ
ߤ zrange ˴ؤƳ餫˥åԥޤϡgnuplot 5.0
ȤϰۤʤưǤ2 ͱ (`set view map`) ǤϡΥ⡼ɤ
xrange yrange ФƤ⥯åԥޤ
Ȥ̤ˡ4 Ĥγ x, y, z ϰǤշ
(`set pm3d clip4in`)ޤϾʤȤ 1 ĤγѤ x, y, z ϰǤ
շ (`set pm3d clip1in`)褹뤳Ȥˤꡢåԥ
뤳ȤǤޤץ `clip`, `clip1in`, `clip4in` ߤ¾
ŪǤ
ֺɸ x, y, z ١ΥåԥȤ̤ˡշ褹뤫ɤ
ǽŪʥѥåȥ顼ͤǷꤹ뤳ȤǤޤ
`clipcb`: (ǥե) cbmin ̤Υѥåȥ顼ͤ cbmin Ȥơ
cbmax 礭ѥåȥ顼ͤ cbmax Ȥưޤ
`noclipcb`: cbrange Υѥåȥ顼ͤλշϲ褷ޤ
4 γ
?pm3d color_assignment
ǥեȤǤϡpm3d οϡζ̤γʻҤγ 4 շ˸̤˳
ƤޤΤ˰ͤʿƤ褦¾κ̿λȤߤˤĤ
Ƥϡʲ: `pm3d fillcolor`
ƻշˤϰĤγ/顼 (ǡǤϤʤ) Ƥ
ͤϡ`corners2color <option>` ˽äƻշ 4 ĤγѤ z
ɸޤơͤߤΥѥåȤ鿧Τ
Ѥޤʲ: `set palette`
Ĥ `splot` ޥǥѥåȤѹ뤳ȤϤǤޤ
4 ܤ˥ǡͿ硢ġλͳѷκ̿ϾƱͤ˹Ԥޤ
ͤ z ͤȤ̤Ȥߤʤޤ̤κ̿ץˤꡢ4
Υǡ RGB Ϳ뤳ȤǤޤʲ: `rgbcolor variable`
ξ硢襳ޥɤϰʲΤ褦ˤɬפޤ:
splot ... using 1:2:3:4 with pm3d lc rgb variable
z ͤϰϤȶ̤οͤϰϤϡ`set zrange`, `set cbrange`,
`set log z`, `set log cb` ˤäΩĴ뤳ȤդƤ
4 corners2color
?pm3d corners2color
?set pm3d corners2color
?corners2color
=mean
=geomean
=harmean
=median
=min
=max
=rms
pm3d ̤γƻͳѷοϡ 4 Ĥĺοͤ˴ŤƳƤ
ޤ<option> 'mean' (ǥե)'geomean', 'harmean', 'rms',
'median' ǡ̤Υ顼ʿ경˴ĤμͿ'min','max'
줾Ǿͤ͡ޤϱҤʡ뤤ϵʥԡ
ͤĤ褦ʥԥ륤俧ϿޤȤˤɬפޤ
Τ褦ʾˤϡषץ 'c1', 'c2', 'c3', 'c4' Ȥäơ
ͳѷογˤĤγѤ z ɸȤ褦ˤФǤ礦
ɤγѤ 'c1' бΤΤ뤿ˤϲ¸Ƥߤɬפ
Ǥ礦θ˰¸Ƥޤ
pm3d 르ꥺϡ顼̤ϥǡϰϤγˤʤ
ǡץ 'c<j>' ϡʻҤ 2 ĤΤؤ˱äԥ뤬ɤλ
ѷοˤͿʤȤ̤⤿餷ޤ㤨Сpm3d 르
ꥺ 4x4 ΥǡγʻҤŬѤ륹ץ `demo/pm3d.dem` (
Ƥ) Ǥϡ(4-1)x(4-1)=9 ʤĹޤ
4 border
?set pm3d hidden3d
?pm3d hidden3d
?set pm3d border
?pm3d border
set pm3d border {retrace} {line-properties}
set pm3d noborder
ΥץϡƻͳѷζͳѷƤ褦褷
ޤɲä° () ǤդǡǥեȤǤϡ 1
μǶޤ
`set pm3d border retrace` ϡշɤΤƱǶɤ餻ޤ
ϡ̤Ȥ `noborder` ƱȤˤʤޤϥ⡼ɤˤ
Ƥϡܤɤ٤շδ֤Υꥢˤʪ˶줷
⤷ޤ (retrace) 뤳Ȥǡϥե礭
ʤäƤޤޤʪȤǤޤ
4 fillcolor
?pm3d fillcolor
splot FOO with pm3d fillcolor <colorspec>
襹 `with pm3d` ϡsplot ޥɾ fillcolor ɲåץ
Ĥޤλϡpm3d ΤŬѤޤʲ:
`colorspec`Ƥ fillcolor Ǥñ쿧ñɤˤʤޤ
̤ɽǤ̤뤿θǥ뤬¸ߤʤϸܤ
᤹ΤǤ礦ʲ: `pm3d lighting`
2,3 ̤Ҳ𤷤ޤ`with pm3d fillcolor palette` ϡǥե
pm3d Υѥåȥ١ۿƱ̤ޤΤǡΩ
ץǤϤޤ
`with pm3d fillcolor linestyle N` ¿̣ޤϡ
gnuplot `hidden3d` ⡼ɤȤäۿλȤߤƱ͡pm3d
̤ξ¦Ȳ¦˰ۤʤ뿧ƤѼǤ N ¦ζ̤ˡ
N+1 ¦ζ̤˻Ѥޤ־¦פȡֲ¦פϡ (scan)
˰¸ޤΤǡ`pm3d scansbackward` `pm3d scansforward` Ǥ
ۿդˤʤ뤳ȤդƤۿץϡ
`pm3d depthorder` ȤǤϺŬ˵ǽޤϻǰʤ
ޤΤǡ N N+1 뿧ؤ
Ȥʤ⤷ޤ
4 interpolate
?set pm3d interpolate
?pm3d interpolate
ץ `interpolate m,n` ϡ٤ܤ뤿˳ʻ֤
֤ޤǡФƤϡϿζ̤餫ˤζ
ޤؿФƤϡ֤ϤۤȤɰ̣Ϥ
顢ؿξ `samples` `isosamples` Ȥäɸ
äΤǤ礦
m, n ФƤϳƻͳѷޤϻѷϡ줾 m
n ֤ޤ m, n Ǥ֤٤ϡʤȤ |m|, |n|
褵褦ޤ̤ʳʻҴؿȸʤȤǤ
: `interpolate 0,0` ϡưŪ˺Ŭֶޤ
: corners2color Ǵʿ (geomean) Τ褦ɾꤵ
ƤȤƤ⡢ߤο֤Ͼ֤ǹԤޤ
4 侩ʥץ
?set pm3d deprecated_options
?pm3d deprecated_options
?set pm3d map
?pm3d map
?map
侩ʥץ `set pm3d map` ϡʲƱǤ
`set pm3d at b; set view map; set style data pm3d; set style func pm3d;`
侩ʥץ `set pm3d hidden3d N` ϡʲƱǤ
`set pm3d border ls N`
3 pointinterval Ȣ (pointintervalbox)
?commands set pointintervalbox
?set pointintervalbox
?pointintervalbox
° `pointinterval`, `pointnumber` ϡ襹 `linespoints`
ǤΤȤޤpointinterval pointnumber ͤ顢㤨 -N
ȡεˡεθȢ (ºݤˤϱ) ʬ
طʿɤĤ֤ȤǾäޤޥ `set pointintervalbox`
ξäΰ礭 (Ⱦ) 椷ޤꤹͤϥǥեȤȾ
(= pointsize) ФΨǤ`unset pointintervalbox` ϡ
طʤκޤ
3 (pointsize)
?commands set pointsize
?commands show pointsize
?set pointsize
?show pointsize
?pointsize
ޥ `set pointsize` ǻȤ礭ѹޤ
:
set pointsize <multiplier>
show pointsize
ǥեȤ 1.0 ܤǤǡϤǤϡ礭ݥȥ
䤹Ǥ礦
ĤФݥȥ `plot` ޥɤξǤѹǤޤ
ܺ٤ϡʲ: `plot with`
ݥȥϡɬƤνϷǥݡȤƤ櫓
ǤϤʤȤդƤ
3 ˺ɸ⡼ (polar)
?commands set polar
?commands unset polar
?commands show polar
?set polar
?unset polar
?show polar
?polar
?nopolar
ޥ `set polar` ϥդˡ xy ľɸϤ˺ɸϤ
ѹޤ
:
set polar
set polar grid <grid options>
unset polar
show polar
˺ɸ⡼ɤǤϡѿ (t) ϳ٦Ȥ̣ޤt ΥǥեȤ
Ϥ [0:2*pi] Ǥñ̤Ȥ٤Ƥ [0:360] Ȥʤ
(ʲ: `set angles`)
ޥ `unset polar` ˡǥեȤ xy ľɸϤᤷ
`set polar` ޥɤ 2 ˤΤ߸ϤޤƱͤ 3
ǽΥޥɤˤĤƤϡʲ: `set mapping`
˺ɸ⡼ɤǤ t οΰ̣ r=f(t) Ȥʤꡢt ϲžѤȤʤޤ
trange ϴؿ () 椷rrange, xrange, yrange Ϥ줾
쥰դ x,y ϰϤ椹뤳ȤˤʤޤϰϤ
rrange ϼưŪꤵ뤫ޤŪǤޤܺ٤˴ؤ
Ƥϡʲ: `set rrange`, `set xrange`
:
set polar
plot t*sin(t)
set trange [-2*pi:2*pi]
set rrange [0:3]
plot t*sin(t)
ǽ `plot` ϥǥեȤγ٤ϰϤ 0 2*pi Ȥޤư
ȥդΥϼưŪ˿̤ޤ2 ܤ `plot` ϳ٤
ĥդΥ 3 ¤ޤ x,y
Τ줾 [-3:3] ¤뤳Ȥˤʤޤ
ǥեȤǤ϶˺ɸդϳ 0 (=0) ǡäȿײ
Ȥʤ褦˸ŤƤޤ 0 θξ
ŪѹǽǤʲ: `set theta`
`set size square` Ȥ `gnuplot` ϥڥ (IJ) 1
ΤDZߤ (ʱߤǤʤ) ߤ˸褦ˤʤޤƱߤμϤ
ιߤϡ`set ttics` ǻǤޤ
ʲ⻲
^ <a href="http://www.gnuplot.info/demo/polar.html">
˺ɸΥǥ (polar.dem)
^ </a>
^ <a href="http://www.gnuplot.info/demo/poldat.html">
˺ɸǡ (poldat.dem)
^ </a>
4 ˺ɸʻ (polar grid)
?commands set polar grid
?set polar grid
?polar grid
:
set polar grid {<theta_segments>, <radial_segments>}
{ qnorm {<power>} | gauss | cauchy | exp | box | hann }
{ kdensity } { scale <scale> }
{theta [min:max]} {r [min:max]}
˺ɸʻҤϡ襹 `with surface` Ȥ߹碌ƶ˺ɸ
礫鲹ʬۿ (heat map) Τ˻Ȥޤ̤ϡߤ
ԤʻҤʤꡢˤȤ r ΥŪϰϤǷʬDZߤ
ʬ䤷ޤ
ʬˤϡġλ [x,y,z] Ͻ礫ե륿ŬѤˤ
ƳͤƤޤǥեȤΥե륿 `qnorm 1` ǡ
ϳΡʻʬ濴餽ޤǤεΥεտǽŤߤŤ줿 z
ͤʿѤ뤳Ȥ̣ޤ
¾Υե륿 gauss, cauchy, exp, box, hann ˴ؤƤϡۤξ
ǾܤƤޤʲ: `dgrid3d`
`kdensity`: Υɤϡgnuplot ˡŤߤĤʿѤˡ
٤ƤδͿνŤդ¤Ѥ뤳Ȥؼޤ
`scale`: Υ (ǥեȤ 1.0) ϡŤ߷ͤȤ
ˡ٤ƤεΥФƥŬѤޤ
ޥ: ٤ƤʻͤΤ˻Ѥޤ
ʻҤĥ줿̤ϡ˦Ȥϰ [0:360] Ӽư̼ܡޤ
¹Ԥ줿ޥ `set rrange` ưϰϤϤޤ
̤μºݤ˥դ˸ʬϡȤ r β¡¤ˤäڤ
ӷ¤ǤޤȤϰϤñ̤Ϳɬפޤ
Ffigure_polar_grid
㤨СʲΥޥɤϡˤƼư̼ܤ줿٤Ƥ
դޤ٤ƤδͿʿѤǤϤʤ¤Ǥ
(`kdensity`)̤ȤƤγʻ̤ΤʬΤߤɽޤ
set rrange [0:*]
set polar grid qnorm kdensity theta [0:190]
plot DATA with surface, DATA with points
3 print ޥɤν (print)
?commands set print
?commands show print
?set print
?show print
ޥ `set print` `print` ޥɤνϤ쥯Ȥޤ
:
set print
set print "-"
set print "<filename>" [append]
set print "|<shell_command>"
set print $datablock [append]
ѥʤ `set print` ϡϤ <STDERR> ޤ"-"
Ȥ <filename> <STDOUT> ̣ޤ`append` ե饰ϥե
ɲ (append) ⡼ɤdzȤ̣ޤѥפݡȤץ
åȥۡǤϡ<filename> "|" ǻϤޤäƤ顢<shell_command>
ؤΥѥפޤ
ޥ `print` оݤ̾դǡ֥åǤޤǡ
֥å̾ '$' ǻϤޤޤʲ: `inline data`
ǡ֥åʸϤ硢ʸäƤȡ
ʣΥǡ֥åԤ褦Ÿޤ
3 PostScript եѥ (psdir)
?commands set psdir
?commands show psdir
?set psdir
?show psdir
?psdir
ޥ `set psdir <directory>` ϡpostscript Ϸ prologue.ps
ʸѤΥեõΤ˻Ѥ븡ѥ椷ޤ
λȤߤϡ̤˥˥ޥ prolog ե뷲ڤؤ
Τ˻Ȥޤν֤ϰʲΤ褦ˤʤäƤޤ
1) `set psdir` ꤷϤΥǥ쥯ȥ
2) Ķѿ GNUPLOT_PS_DIR ǻꤷǥ쥯ȥ
3) Ȥ߹ޤ줿إåޤϥǥեȤΥƥǥ쥯ȥ
4) `set loadpath` ǻꤷǥ쥯ȥ
3 ˺ɸư¼ (raxis)
?commands set raxis
?raxis
?set raxis
?unset raxis
ޥ `set raxis` `unset raxis` ϡư¼ʻ x ʬ
Υ褹뤫ɤڤؤޤߤ rrange κǾͤ 0 Ǥ
(Ƽư̼ܤǤʤ) 硢դȼãʤȤ
ݤ˺ɸդ濴ޤϡդζƱ
褵ޤʲ: `polar`, `rrange`, `rtics`, `rlabel`,
`set grid`
3 rgbmax
?commands set rgbmax
?set rgbmax
?rgbmax
?unset rgbmax
=rgbimage
:
set rgbmax {1.0 | 255}
unset rgbmax
rgbimage դ RGB (֡С) ʬϡǥեȤǤ [0:255]
ϰϤͤǤȤߤʤޤ`set rgbmax 1.0` Ȥȡgnuplot
`rgbimage` `rgbalpha` ǤΥդοʬ˻Ȥǡͤ
[0:1] ϰϤμ¿ͤǤȤߤʤޤ`unset rgbmax` ϡǥ
Ȥͤϰ [0:255] ᤷޤ
3 rlabel
?commands set rlabel
?rlabel
?set rlabel
?unset rlabel
Υޥɤϡr ξ˥٥֤ޤΥ٥ϡդ
ɸ⡼ (polar) Ǥ뤫ݤ˴ؤ餺ɽޤɲäλꥭ
ɤˤĤƤϰʲ: `set xlabel`
3 rmargin
?commands set rmargin
?set rmargin
?rmargin
ޥ `set rmargin` ϱ;ΥåȤޤ
ܺ٤ϡʲ: `set margin`
3 rrange
?commands set rrange
?commands show rrange
?set rrange
?show rrange
?rrange
ޥ `set rrange` ϶˺ɸ⡼ɤΥդưϰϤꤷ
xrange yrange ξꤷƤޤޤξԤϡ
[-(rmax-rmin) : +(rmax-rmin)] ˤʤޤθ xrange
yrange ѹƤ (㤨г礹뤿) rrange ѹʤ
Τǡǡ rrange ˴ؤƥåԥ줿ޤޤȤʤޤ¾
Ȥϰ㤤r μư̼ܤǤϾ rmin = 0 Ȥʤޤ`reverse` Ǥ
ư̼ܥե饰̵뤵ޤ
: rmin ͤꤹȡͽ̷̤ǽޤ
3 rtics
?commands set rtics
?commands show rtics
?set rtics
?show rtics
?rtics
ޥ `set rtics` ϡư¼˱ä֤ޤȤ
θФϸα¦ޤ `mirror` ϡ
κ¦ˤޤ¾Υɤ˴ؤäˤĤƤϰʲ:
`polar`, `set xtics`, `set mxtics`
3 ץ (samples)
?commands set samples
?commands show samples
?set samples
?show samples
?samples
ؿΥդϡͿ줿Ŀ x ͤǤδؿͤΥץȡ
f(x0)..f(x1)..f(x2).. ʬ褹뤳ȤǹƤ
ؿޤϥǡ֤˴ؤǥեȤΥץϡ
`set samples` ѹǤޤ`plot` `splot` ޥɤθġ
ǤΥץϰ (sampling range) ѹˤϡʲ:
`plot sampling`
:
set samples <samples_1> {,<samples_2>}
show samples
ǥեȤǤϥץ 100 ꤵƤޤͤ䤹
Τ褬ޤ٤ʤޤΥѥϥǡե
ˤϲαƶͿޤ/ΥץȤƤ
Ϥθ¤ǤϤޤʲ: `plot smooth`, `set cntrparam`,
`set dgrid3d`
2 Υ褬ԤʤȤ <samples_1> ͤΤߤطޤ
ʤǶ褬ԤʤȤϡsamples ͤϸΩɾ
륵ץλˤʤޤ v-Ω <samples_1> ĤΥ
u-Ω <samples_2> ĤΥץޤ<samples_1>
Τꤹȡ<samples_2> ͤ <samples_1> Ʊͤꤵޤ
ʲ⻲: `set isosamples`
3 ΰ襵 (size)
?commands set size
?commands show size
?set size
?show size
?size
?aspect ratio
?set size square
?set size ratio
?ratio
?square
:
set size {{no}square | ratio <r> | noratio} {<xscale>,<yscale>}
show size
<xscale> <yscale> ΤγΨǡΤȤϥդȥ
٥;ʬޤߤޤ
Ū: gnuplot ΰǤǤϡ`set size` ͤϤ
ΰ (Х) Υ椹ΤˤȤäƤϷ⤢ޤ
ߤϡ`'set size'` `'set term ... size'` 2 ĤϡϤä
㤦°ꤷޤ
`set term <terminal_type> size <x ñ>, <y ñ>` ϡϥե
ޤ "Х" Υ椷ޤѥͭ
ñ̤ˤĤƤϡġνϷΥإפȤƤǥե
ȤǤϡդϤΥХΤ褵ޤ
`set size <xscale>, <yscale>` ϡ輫ΤХΥФ
Ū˿̤ޤ1.0 꾮ͤꤹȡդϥ
ΰʬΤߤޤϡ`multiplot` ⡼ɤǾդ礭
դꡢդĤ¤٤ꤹΤ˻Ȥ
1.0 礭ͤϥݡȤƤ餺顼ǽ
ޤ
`ratio` ϡꤷ <xscale>, <yscale> ϰǡդΥ
(IJ) <r> ˤޤ (<r> x ĹФ y
Ĺ)
<r> ͤˤȤΰ̣ϰäޤ<r>=-1 ΤȤx y
ñ (Ĥޤ 1) ĹƱ졢ʤĹ (isotropic)
ˤʤ褦ꤷޤʲ⻲: `set isotropic`
ϡ3 ѤΥޥ `set view equal xy` 2 ǤƱʪǤ
<r>=-2 ΤȤy ñĹ x ñĹ 2
ꤵޤ<r> ͤ˴ؤưʲƱͤǤʲ⻲:
`set isotropic`
`gnuplot` ꤵ줿ڥΥդȽ뤫
Ϸ˰¸ޤդΰϽϤλꤵ줿ʬˤȼ
ޤꡢڥ椬 <r> Ǥ褦ʺĹȤʤޤ (
Ŭ;Ĥޤ)
=square
`set size square` `set size ratio 1` Ʊ̣Ǥ
`noratio` `nosquare` Ϥ⥰դνϷ (terminal) Ǥ
ǥեȤΥڥᤷޤ<xscale> <yscale> ϤΥǥ
Ȥ (1.0) ˤᤷޤ
`ratio` `square` 3 Ǥϰ̣ޤ`set view map`
Ѥ 3 2 ͱƤˤϱƶͿޤ ʲ⻲:
`set view equal`ϡ3 x y ŪƱ
ޤ
:
դߤΥХ褦礭ꤷޤ:
set size 1,1
դ̾Ⱦʬ礭ˤޤ:
set size square 0.5,0.5
դι⤵ 2 ܤˤޤ:
set size ratio 2
3 㥰 (spiderplot)
?set spiderplot
ޥ `set spiderplot` ϡɸβ˺ɸڤؤƥǡ
ϡư¼˱ä֤˳Ƥޤpaxis 1 ̾ľǡ2
N ޤǤμϡײֳ֤֤ޤΥޥɤϡ
ȯԤʤФʤޤϡդ˰ʲƱͤθ̤
äޤ
set style data spiderplot
unset border
unset tics
set key noautotitle
set size ratio 1.0
ˤξ֤ˤϡ`reset` ѤƤ
3 襹 (style)
?set style
?show style
?unset style
ǥեȤ襹ϡ`set style data` `set style function`
ǤޤؿǡΥǥեȤ襹ġѹ
ˡˤĤƤϡʲ: `plot with`ΰΤϡʲ
: `plotting styles`, `plot with`
:
set style function <style>
set style data <style>
show style function
show style data
ǤǤΥǥեȥǤޤ
:
set style arrow <n> <arrowstyle>
set style boxplot <boxplot style options>
set style circle radius <size> {clip|noclip}
set style ellipse size <size> units {xy|xx|yy} {clip|noclip}
set style fill <fillstyle>
set style histogram <histogram style options>
set style line <n> <linestyle>
set style rectangle <object options> <linestyle> <fillstyle>
set style textbox {<n>} {opaque|transparent} {{no}border} {fillcolor}
set style watchpoint labels <label options>
4 (set style arrow)
?commands set style arrow
?commands unset style arrow
?commands show style arrow
?set style arrow
?unset style arrow
?show style arrow
?arrowstyle
(arrow) Υν `set style arrow` Ȥä뤳
Ǥޤƥϡ켫ȤʤɤΤ
ǻȤȤˤƱ֤ƻꤷʤƤ⡢
ֹ <index> ǻȤǤޤ
:
set style arrow <index> default
set style arrow <index> {nohead | head | backhead | heads}
{size <length>,<angle>{,<backangle>} {fixed}}
{filled | empty | nofilled | noborder}
{front | back}
{ {linestyle | ls <line_style>}
| {linetype | lt <line_type>}
{linewidth | lw <line_width}
{linecolor | lc <colorspec>}
{dashtype | dt <dashtype>} }
unset style arrow
show style arrow
<index> ǡΥ (arrowstyle) ꤷޤ
`default` ꤹȡƤ arrow ѥϤΥǥե
Ȥͤˤʤޤ
<index> arrowstyle ¸ߤ硢¾Ƥ¸줿ޤޡͿ
줿ѥΤߤѹޤ<index> ¸ߤʤСꤵ
ʤäͤϥǥեȤͤˤʤޤ
ޥ `plot` ޤ `splot` ƤӽФ arrow ˤϡǡ
Ѥ (`lc variable` `lc rgb variable`) 뤳ȤǤ
Ϥб `using` ˤǡɲɬפȤʤޤ
ξ硢`set arrow` Ǻ̤ arrow ФƤϡΥ
¿ʬͭפʤΤǤϤޤ
`nohead` ꤹ뤳ȤǡΤʤ𡢤ʤʬȤǤ
ޤξʬ̤ˡͿޤǥեȤǤ 1
Ĥ褬ĤƤޤ`heads` λʬξü褬ޤ
礭 `size <length>,<angle>` ޤ
`size <length>,<angle>,<backangle>` ѹǤޤ`<length>`
γƻޤĹǡ`<angle>` λޤʤ (ñ̤) Ǥ
`<length>` ñ̤ x ƱǤ `<length>` `first`,
`second`, `graph`, `screen`, `character` Ĥ뤳ȤѹǤޤ
ܺ٤ϡʲ: `coordinates`
ǥեȤǤϡȤƤûϾޤϡ`size`
ޥɤθ `fixed` ȤȤ̵ˤǤޤ
`<backangle>` ϡθʬȤڤ (`<angle>` Ʊ
ñ̤) ˤʤޤ뤬 `nofilled` ξϤ̵뤷
ޤ
`filled` ꤹȡβ () ɤĤ
ޤ`noborder` ꤹȡɤĤ֤ޤ
ޤξ硢ü٥ȥνԥåξ֤졢
ΤȤƾʤޤϡζ
ϱΤǡ `noborder` Ȥ٤ǤɤĤ֤ϡ
ƤνϷݡȤƤȤϸ¤ޤ
ϥ桼饤ΥꥹȤ֤ȤǤޤ
(ʲ: `set style line`)ѰդƤ `<line_type>` (ǥ
ȤΥ饤ΥꥹȤֹ) `<linewidth>` (ǥե
ܿ) ȤäƤ뤳ȤǤޤ
桼ѤΥ饤뤬줿硢° (
) ϡñ¾ `set style arrow` ޥɤŬֹ `lt`, `lw`
ʤɤꤷƤ⡢ѹϤǤʤȤդƲ
`front` ꤹȡϥդΥǡξޤ`back`
ꤵ줿 (ǥե) ϥդΥǡβޤ`front`
ȤС̩ǡ𤬸ʤʤ뤳ȤɤȤǤޤ
:
褬ʤܤˤ:
set style arrow 1 nohead lw 2
set arrow arrowstyle 1
¾ˤĤƤϡʲ: `set arrow`
4 boxplot (boxplot)
?commands set style boxplot
?commands unset style boxplot
?commands show style boxplot
?set style boxplot
?unset style boxplot
?show style boxplot
ޥ `set style boxplot` ˤꡢ襹 `boxplot`
Υ쥤ȤѹǤޤ
:
set style boxplot {range <r> | fraction <f>}
{{no}outliers} {pointtype <p>}
{candlesticks | financebars}
{medianlinewidth <width>}
{separation <x>}
{labels off | auto | x | x2}
{sorted | unsorted}
boxplot Ȣϡ˥ǡʬ̤軰ʬ̤ͤϰϤˤ
äƤޤȢĹȢҤθ³ϡ2 ĤΰۤʤˡǤ
ޤǥեȤǤϡȢҤϡȢΤ줾ü顢ʬϰϤ
1.5 (ʤȢθ̩ʿľι⤵) ϰϤˤޤDZĹ
ޤȢҤ줾ϡǡΤ° y ͤǽλ
褦ˡ˸äڤΤƤޤʬϰϤ 1.5
ͤʤ⤢ޤ顢ȢҤϤܾ̾ϰϤû
⤢ޤΥǥեȤϰʲбޤ
set style boxplot range 1.5
⤦ĤˡȤơȢҤγ (fraction) ꤹ
뤳ȤǤޤξ硢ϰϤϥͤ顢ǡλ
ʬϤޤǡоΤ˱ĹޤΤȤ⡢ġȢҤϥ
üޤǤ¤ޤǡ 95% Ϥˤ
ʲΤ褦ˤޤ
set style boxplot fraction 0.95
ȢҤϰϤγˤǤդϡoutliers (Ωɸ) ȸʤ
ޤǥեȤǤϤҤȤĤҤȤı (pointtype 7) ޤ
ץ `nooutliers` Ϥ̵ˤޤ
褵ʤ outliers ϡautoscaling ˤϱƶͿޤ
ǥեȤǤ boxplot candlesticks Ȼ褷ޤ
financebars Ȼ褹뤿Υץ⤢ޤ
ȢζƱȤäơޤΥ
СʲΤ褦ˤǤޤ
set style boxplot medianlinewidth 2.0
ɬפʤС 0 ˥åȤƤ
boxplot using ꤬ 4 ܤľ硢ͤϤѿΥ
Ūʥ٥ͤǤȸʤޤξ硢ΰѿΥ٥ο
Ʊʣ boxplot ޤ boxplot ٤礦
ƱΤεΥϥǥեȤǤ 1.0 (x ñ̤) Ǥδֳ֤ϥץ
`separation` ѹǤޤ
ץ `labels` ϡ boxplot (줾ǡΤʬ
б) ΤɤˡɤΤ褦˥٥Ĥ뤫ꤷޤǥե
ȤǤϰҤͤʿ (x x2 Τ줫 plot ǻȤƤ)
٥˽Ϥޤϥץ `labels auto` бޤ
ץ `labels x`, `labels x2` ˤäơŪ x x2 ˤ
줾Ϥ뤳ȤǤޤ`labels off` ǥդˤ뤳ȤǤ
ޤ
ǥեȤǤϡѿΰۤʤ٥б boxplot Ϥ
ǡեˤΥ٥뤬֤褷ޤεưϥ
`unsorted` бޤץ `sorted` Ѥȡ
ޤ٥˥Ȥν boxplot 褷ޤ
ץ `separation`, `labels`, `sorted`, `unsorted` ϡplot 4
ܤλͿΤ߸Ϥޤ
ʲ: `boxplot`, `candlesticks`, `financebars`
4 ǡ襹 (set style data)
?commands set style data
?commands show style data
?set style data
?show style data
?data style
ޥ `set style data` ϥǡФǥեȤ襹
ѹޤ
:
set style data <plotting-style>
show style data
ܤˤĤƤϡʲ: `plotting styles``show style data`
ߤΥǥեȤΥǡ襹ɽޤ
4 ɤ٤ (set style fill)
?commands set style fill
?commands show style fill
?set style fill
?show style fill
?fillstyle
ޥ `set style fill` ϡboxes, histograms, candlesticks,
filledcurves ǤˤǤΥǥեȤΥ˻
ޤΥǥեȤϡġɤ٤ (fillstyle)
ꤹ뤳ȤǾǤޤ
`set obj` Ĺ (rectangle) ɤ٤ˤϡ̤Υ
եȤ뤳ȤդƤ ʲ: `set style rectangle`
:
set style fill {empty
| {transparent} solid {<density>}
| {transparent} pattern {<n>}}
{border {lt} {lc <colorspec>} | noborder}
ǥեȤɤĤ֤ (fillstyle) `empty` Ǥ
ץ `solid` ϡϷݡȤƤ硢οǤñ
ɤԤޤѥ <density> ɤĤ֤ζɽƤ
<density> 0.0 ʤȢ϶<density> 1.0 ʤȢϤϸߤ
ȴƱɤޤϷˤäƤϡζϢ³Ū
ѲΤ⤢ޤ¾ΤΤϡʬŪɤĤ֤δ
ĤΥ٥Ƥ˲ޤѥ <density> Ϳ
ʤäϥǥեȤ 1 ˤʤޤ
ץ `pattern` ϡϥɥ饤ФˤäͿѥǤ
Ĥ֤ԤޤѤǤɤĤ֤ѥμȿϽϥɥ饤
Ф˰¸ޤɤĤ֤ boxes ʣΥǡ褹
礽ΥѥϡʣζˤμƱͭ͡
ѥѥ <n> ϤƼŪѤޤ
ץ `empty` ϡȢɤĤ֤ޤ줬ǥեȤǤ
?fillcolor
?fc
ɤ٤ (`fillcolor <colorspec>`) ϡɤ٤ (fill style)
ʬΥƤޤʤfillstyle Ǥ䥪֥Ȥ
οäޤͭ뤳ȤǤޤfillstyle Ĥ
fillcolor Ǥޤfillcolor `fc` ξάȤޤ
ꤷʤϡɤ٤ϸߤ (linetype) ޤ
:
plot FOO with boxes fillstyle solid 1.0 fillcolor "cyan"
5 set style fill border
?commands set style fill border
?set style fill border
?fillstyle border
=border
`border` ϡɤ٤֥Ȥߤȿμǰ
褦ˤޤοϡlinetype linecolor ɲûꤹ
Ǥޤ`noborder` ϡʤ褦ˤޤ
:
# ɤ٤϶ȾʬƱ
set style fill solid 0.5 border
# ɤ٤ȾʬƩᡢϼι ( -1)
set style fill transparent solid 0.5 border -1
# ߤοǤΥѥɤ٤ 5 ο
plot ... with boxes fillstyle pattern 2 border lt 5
# 忧 (cyan) Ǥΰɤ٤
plot ... with boxes fillcolor "cyan" fs solid border linecolor "blue"
: fill border () °ϡǥեȥ⡼ɤ closed
(Ķ) `with filledcurves` ΥդˤƶͿޤ
5 Ʃ (set style fill transparent)
?commands set style fill transparent
?set style fill transparent
?fillstyle transparent
?transparent
ĤνϷϡñɤΰ `transparent` (Ʃ) °
ȤƤޤtransparent solid ΰɤĤ֤Ǥϡ`density`
(̩) ѥϥեͤȤƻѤޤĤޤꡢ̩ 0 ϴ
Ʃ̩ 1 ϴƩ̣ޤtransparent pattern
Ĥ֤ǤϡѥطʤƩƩΤ줫Ǥ
ƩɤĤ֤ΰޤ॰դäꤹΤˤϡ̤¤
ꤦ뤳ȤդƤ㤨Сpng ϷǤϡ"truecolor"
ץꤵƤˤΤƩɤ٤ѤǤޤ
PDF եˤƩΰ褬ҤƤƤ⡢PDF ɽեȤ
äƤϤɽǤʤȤ⤢ꤨޤºݤ PostScript
ǤϤʤΤˡGhostscript/gv ǤϥѥɤĤ֤ΰ
ɽǤޤ
4 ؿ襹 (set style function)
?commands set style function
?commands show style function
?set style function
?show style function
ޥ `set style function` ϴؿФǥեȤ襹
(lines, points, filledcurves ʤ) ѹޤʲ:
`plotting styles`
:
set style function <plotting-style>
show style function
4 ҥȥॹ (set style histogram)
?commands set style histogram
ʲ: `histograms`
4 (set style increment)
?commands set style increment
?set style increment
ǥեȤǤϡƱվμϡǹԤޤ
`set style increment userstyles` Ϥѹ˥桼
ֹ˱äƹԤ褦ˤƤޤ
侩: gnuplot ѤϰϤͭѤʤΤ˺ˤϡ
`set linetype` ѤƤʲ: `set linetype`
4 (set style line)
?commands set style line
?commands unset style line
?commands show style line
?set style line
?unset style line
?show style line
?linestyle
?linewidth
=linewidth
=interval
=linespoints
=pointinterval
=pointnumber
֤ˤϤΤΥǥեȤν礬ꡢϥޥ
`test` Ǹ뤳ȤǤޤ`set style line`
礭ġθƤӽФǡξꤹˡñ
ʤֹǻȤǤ褦ˤ餫ΤǤ
:
set style line <index> default
set style line <index> {{linetype | lt} <line_type> | <colorspec>}
{{linecolor | lc} <colorspec>}
{{linewidth | lw} <line_width>}
{{pointtype | pt} <point_type>}
{{pointsize | ps} <point_size>}
{{pointinterval | pi} <interval>}
{{pointnumber | pn} <max_symbols>}
{{dashtype | dt} <dashtype>}
{palette}
unset style line
show style line
`default` ϡƤΥ饤ѥƱ index
(linetype) ꤷޤ
<index> linestyle ¸ߤ硢¾Ƥ¸줿ޤޡͿ
줿ѥΤߤѹޤ<index> ¸ߤʤСꤵ
ʤäͤϥǥեȤͤˤʤޤ
Τ褦ˤĤ饤ϡǥեȤη (, )
̤ʤΤ֤뤳ȤϤʤΤǡ饤롢ǥեȤη
ɤȤޤ饤ϰŪʤΤǡޥ `reset`
¹ԤФĤǤ⤽ϾäޤKΤϡ
ʲ: `set linetype`
ϡ index ͤǥեȤȤޤ index ͤФ
ºݤεηϡϷˤäưۤʤޤ
礭ϡߤνϷΥǥեȤ礭Ф
Ǥ (Ǥ <point_size> ϡޥ `set pointsize` Ϳ
ˤϱƶʤȤդƤ)
`pointinterval` ϡ `linespoints` ǥδ
֤椷ޤǥեȤ 0 Ǥ (٤Ƥ褵)㤨С
`set style line N pi 3` ϡ郎 N礭ϸߤνϷ
ΥǥեȤǡ`with linespoints` ǤǤ 3 褵
褦ʥ饤ޤδֳ֤ͤˤȡϴ
֤ͤξƱǤεβˤʤʤ褦ˤ
(ϷˤäƤ)
`pointnumber` °ϡ`pointinterval` ȻƤޤN Ĥ
ˤˡΤθĿ N Ĥ˸ꤹȤ㤤ޤ
Ƥν֤ `linewidth` `pointsize` ݡȤƤ櫓Ǥ
ޤ⤷ݡȤƤʤϤΥץ̵뤵
ޤ
Ϸ˰¸ʤ `linecolor <colorspec>` `linetype <colorspec>`
(ά `lc`, `lt`) Τ줫ȤäƳƤ뤳ȤǤޤ
硢 RGB 3 ȤͿ뤫gnuplot λĥѥåȤο̾
ΥѥåȤФ뾮ꡢޤ cbrange ؤθߤΥѥåȤб
Ф͡Τ줫Ϳޤʲ: `colors`, `colorspec`,
`set palette`, `colornames`, `cbrange`
`set style line <n> linetype <lt>` ϡϷ˰¸/Υ
ȿξåȤޤ`set style line <n> linecolor <colorspec>`
`set style line <n> linetype <colorspec>` ϡߤ/Υѥ
ѹ˿ꤷޤ
3 ⡼(`splot` ޥ) Ǥϡ"linetype palette z" ξάȤ
̤˥ `palette` ȤȤƤޤοͤϡ
splot z ɸ (⤵) б뤤϶̤˱äƳ餫
ޤ
:
ʲǤϡֹ 1, 2, 3 ФǥեȤ줾֡СĤȤ
ǥեȤη줾ѷǤȤޤΤȤ
ʲΥޥ
set style line 1 lt 2 lw 2 pt 3 ps 0.5
ϡ饤ȤơФǥǥեȤ 2 ܤ
ѷȾʬޤޤʲΥޥ
set style function lines
plot f(x) lt 3, g(x) ls 1
ϡf(x) ϥǥեȤǡg(x) ϥ桼Ф褷
Ʊͤˡޥ
set style function linespoints
plot p(x) lt 1 pt 3, q(x) ls 1
ϡp(x) ֤ǷФ줿ǥեȤλѷǡq(x) ФǷФ
ѷ褷ޤ
splot sin(sqrt(x*x+y*y))/sqrt(x*x+y*y) w l pal
ϡ`palette` ˽äƳ餫ʿȤäƶ̤褷ޤϤ
ݡȤϷǤȤưʤȤդƤ
ʲ⻲: `set palette`, `set pm3d`
set style line 10 linetype 1 linecolor rgb "cyan"
ϡRGB 顼ݡȤ뤹٤ƤνϷǡ饤 10 ˼
ο忧Ƥޤ
4 ߥ (set style circle)
?commands set style circle
?commands unset style circle
?commands show style circle
?set style circle
?unset style circle
?show style circle
:
set style circle {radius {graph|screen} <R>}
{{no}wedge}
{clip|noclip}
Υޥɤϡ襹 "with circles" ǻȤǥեȤȾ
ꤷޤϡǡ 2 Υǡ (x,y) Ϳʤä
硢뤤ϴؿΤȤŬѤޤǥեȤϡʲΤ褦
ʤäƤޤ: "set style circle radius graph 0.02"`nowedge` ϡ
α߸ʬ濴˸ 2 ܤȾ¤ʤ褦ˤޤǥե
Ȥ `wedge` ǤΥѥϴʱߤФƤϲ⤷ޤ
`clip` ϱߤ趭ǥåԥޤ`noclip` Ϥ̵ˤ
ޤǥեȤ `clip` Ǥ
4 Ĺ (set style rectangle)
?commands set style rectangle
?commands unset style rectangle
?commands show style rectangle
?set style rectangle
?unset style rectangle
?show style rectangle
ޥ `set object` 줿Ĺˤ̡ΥǤ
̤ΥʤСΥ֥Ȥϥޥ
`set style rectangle` ˤǥեȤѤޤ
:
set style rectangle {front|back} {lw|linewidth <lw>}
{fillcolor <colorspec>} {fs <fillstyle>}
ʲ: `colorspec`, `fillstyle``fillcolor` `fc` ȾάǤޤ
:
set style rectangle back fc rgb "white" fs solid 1.0 border lt -1
set style rectangle fc linsestyle 3 fs pattern 2 noborder
ǥեȤϡطʿǤñɤ (solid fill) ǡϹˤʤ
Ƥޤ
4 ʱߥ (set style ellipse)
?commands set style ellipse
?commands show style ellipse
?set style ellipse
?unset style ellipse
?show style ellipse
:
set style ellipse {units xx|xy|yy}
{size {graph|screen} <a>, {{graph|screen} <b>}}
{angle <angle>}
{clip|noclip}
Υޥɤϡʱߤľ¤Ʊñ̤Ƿ뤫ɤ椷ޤ
ǥեȤ `xy` ǡʱߤμ缴 ( 1 ) ľ¤ x (ޤ x2)
Ʊñ̤Ƿ ( 2 ) ľ¤ y (ޤ y2) ñ̤
ޤΥ⡼ɤǤϡʱߤξϡ輴Υڥ˰
¸ޤ`xx` `yy` ꤹС٤ƤʱߤξƱñ̤Ƿ
ޤϡ褵ʱߤξϡžƤޤޤ
ʿľΰν̼ܤѹˤʤʤ뤳Ȥ
̣ޤ
ϡobject Ȥ줿ʱߡޥ `plot` ˤä褵
ʱߤξ˱ƶͿŪǤ`units` ͤϡ衢
֥Ǥޤ
ʱߤΥǥեȤΥ⡢ `size` Ǥޤǥե
ȤΥϡ2 ΤߤΥǡޤϴؿ plot ̿ŬѤޤ
2 Ĥͤϡʱߤ (2 Ĥμ缴2 Ĥ˸礦) 缴ľ¤
ľ¤ȤƻѤޤ
ǥեȤϡ"set style ellipse size graph 0.05,0.03" Ǥ
ǸˤʤޤǥեȤθ `angle` Ǥ
ϡʱߤμ缴ȥդ x ȤʤѤǡñ̤٤Ϳ
ɬפޤ
`clip` ʱߤ趭ǥåԥޤ`noclip` Ϥ̵
ޤǥեȤ `clip` Ǥ
ʱߤ object ˴ؤƤϰʲ⻲: `set object ellipse`2
襹˴ؤƤϰʲ: `ellipses`
4 ʿԺɸ (set style parallelaxis)
?commands set style parallelaxis
?set style parallelaxis
?show style parallelaxis
:
set style parallelaxis {front|back} {line-properties}
ϡ`with parallelaxes` դοľݤȥ쥤䡼
ꤷޤʲ: `with parallelaxes`, `set paxis`
4 㥰ե (set style spiderplot)
?commands set style spiderplot
?set style spiderplot
:
set style spiderplot
{fillstyle <fillstyle-properties>}
{<line-properties> | <point-properties>}
Υޥɤϡ㥰 (spider plot) ΥǥեȤθܤ
椷ޤɤ٤ʬ°ϡplot ޥɤκǽǤѹ
ǤޤŪʥդθܤϡ`set grid spiderplot` ʤɤ¾
αƶޤʲ⻲: `set paxis``spiderplot`
:
# ǥեȤΥ㥰դɤ٤ʤ¿ѷ
set style spiderplot fillstyle empty border lw 3
# ʲϳƼ˱ (pt 6) ɲä
plot for [i=1:6] DATA pointtype 6 pointsize 3
4 ʸܥå (set style textbox)
?commands set style textbox
?commands show style textbox
?set style textbox
?unset style textbox
?show style textbox
?textbox
?boxed
:
set style textbox {<boxstyle-index>}
{opaque|transparent} {fillcolor <color>}
{{no}border {linecolor <colorspec>}}{linewidth <lw>}
{margins <xmargin>,<ymargin>}
Υޥɤϡ° `boxed` ˤ label ɽ椷ޤȢդʸ
ݡȤʤϷϤΥ̵뤷ޤ
: ĤνϷ (svg, latex) ǤμԴǤ
ޤۤȤɤνϷϡžʸȢդǤޤ
ֹդ textbox 3 Ǥޤboxstyle ֹ <bs>
ꤷʤȡǥեȥ (ֹʤ) ѹޤ
:
# ǥեȤΥϡζΤ
set style textbox transparent border lc "black"
# 2 (bs 2) 뤤طʤǶʤ
set style textbox 2 opaque fc "light-cyan" noborder
set label 1 "I'm in a box" boxed
set label 2 "I'm blue" boxed bs 2
4 åݥȥ (set style watchpoint)
?commands set style watchpoint
?commands show style watchpoint
?set style watchpoint
:
set style watchpoint nolabels
set style watchpoint labels {label-options}
åݥȤо "mouse" ˤĤƤϾ˥վ˥٥Ϥ
ޤ¾Υåݥоݤˤϡ뤬 `label` `nolabel`
ɤꤵƤ뤫ˤäƥ٥ɽޤɽȤޤ
åݥȥ٥θܤϡ¾ gnuplot label Υ٥°ˤ
褦ǽȤäƥޥǤޤ㤨Хեȡʸ䡢
ºݤ x,y ɸޡǤޤʲ:
`set label`
ߤϡ٥ʸϡߤΥդФ뼴θФ˻Ѥ
Ѥơʸ " x-ɸ : y-ɸ" ưޤ
:
set style watchpoint labels point pt 4 ps 2
set style watchpoint labels font ":Italic,6" textcolor "blue"
set style watchpoint labels boxed offset 1, 0.5
3 (surface)
?commands set surface
?commands unset surface
?commands show surface
?set surface
?unset surface
?show surface
?surface
?nosurface
ޥ `set surface` 3 (`splot`) ˤΤߴطޤ
:
set surface {implicit|explicit}
unset surface
show surface
`unset surface` ˤ `splot` ϡؿǡեФ
ʤʤޤϼˡ̤
ΤߤͭѤǤξǤ `set contour`
ޤ̾ޤ¾ΤΤ̾Τޤޤǡ
Ĥδؿǡեζ̤Τߤդˤˤϡ`splot` ޥɾ
ǥ `nosurface` ꤷƤʻҤɽ
`unset surface; set contour base` ȤȤǤ礦
ʲ⻲: `set contour`
3 ǡȤ (ʻ) ǧȡgnuplot ϥǥեȤ
ϳʻҶ̤ᤷƤΤȤơۤ `with lines` 襹
Ѥޤʲ: `grid_data`ޥ `set surface explicit`
εǽϥեΥǡʬΥ줿֥åǵҤ
ΩΤߤ褷ޤξǤ⡢splot Ū `with surface`
ȤгʻҶ̤褵ޤ
3 ơ֥ǡ (table)
?commands set table
?set table
?table
`table` ⡼ɤͭʾ硢`plot` `splot` ޥɤϡߤνϷ
Фºݤ
X Y {Z} <flag>
ͤʣʤɽΥƥȽϤԤʤޤե饰ʸ <frag>
ϡͭϰˤ "i"ϰϳξ "o"̤
(undefined) ξ "u" Ǥǡνϡιߤν (ʲ
: `set format`) ˤäƷޤꡢϰĤζǶڤޤ
ϡѤΤ¸ȤǤ
ˡϡ֤줿ǡ¸ΤˤȤȤǤޤ (ʲ:
`set samples`, `set dgrid3d`)
:
set table {"outfile" | $datablock} {append}
{separator {whitespace|tab|comma|"<char>"}}
plot <whatever>
unset table
θɽνϤϡե "outfile" ꤷƤФ˽
ФޤǤʤɸϤߤ `set output` ꤹ
Τ˽Ϥޤ`outfile` ¸ߤϡ`append` ɤ
ꤹɲýϡꤷʤФνϤޤ¾ˡɽ
Ϥ̾դǡ֥å˥쥯Ȥ뤳ȤǤޤǡ
å̾ '$' ǻϤޤޤʲ⻲: `inline data`ߤνϷ
ɸŪ᤹ˤϡ`unset table` Ū˹Ԥʤɬפޤ
`separator` ʸϡCSV ե (ڤ) νϤ˻Ȥޤ
⡼ɤϡ襹 `with table` ˤΤ߱ƶͿޤʲ:
`plot with table`
4 plot with table
?plot with table
?with table
ʲϡ̤襹 `with table` ˤΤŬѤޤ
ɽǡѴϥǡФ襹˰¸ (ʿ
αĹ2 ϰϤΥå) 뤿ᡢ뤤ɽǡ
ѴǤο䤹ˤϡ̾襹 "table"
ɤȤäƤξ硢ϰ/ϰϳ/̤̣
饰 `i`, `o`, `u` ޤɲϡϤˤϤĤޤνϡ
ǽ `set table <where>` ǻꤹɬפޤ:
set table $DATABLOCK1
plot <file> using 1:2:3:4:($5+$6):(func($7)):8:9:10 with table
ξ硢ºݤ襹뤬ʤ֤ʤΤǡˤμб
ʤȤˤʤꡢä xrange, yrange ̵뤵ޤ
ʸФ `using` ɾϡʸɽǡޤ
ͥǡϾ %g νǽФޤ¾νȤϡ
Τ褦˽줿ʸ褦 sprintf gprintf
Ƥ
plot <file> using ("File 1"):1:2:3 with table
plot <file> using (sprintf("%4.2f",$1)) : (sprintf("%4.2f",$3)) with table
=csv
CSV եˤϡʲΤ褦ˤޤ
set table "tab.csv" separator comma
plot <foo> using 1:2:3:4 with table
[ʳεǽ] ɽǡΤ˥ǡʬΤߤˤ
ϥե륿 (`if <expression>`) ޥɤκǸ˻ꤹ뤳Ȥ
ޤϥե륿ϡϤϤʤǡ⻲ȤǤ뤳Ȥ
դƤεǽξܺ٤ϡgnuplot ξǤѹǽ
ޤ
plot <file> using 1:2:($4+$5) with table if (strcol(3) eq "Red")
plot <file> using 1:2:($4+$5) with table if (10. < $1 && $1 < 100.)
plot <file> using 1:2:($4+$5) with table if (filter($6,$7) != 0)
3 Ϸ (terminal)
?commands set terminal
?commands show terminal
?set terminal
?set term
?show terminal
?show term
?set terminal push
?set term push
?terminal push
?term push
?push
?set terminal pop
?set term pop
?terminal pop
?term pop
?pop
`gnuplot` Ͽ¿ΥեåݡȤƤޤޥ
`set terminal` Ȥä `gnuplot` νϤоݤȤʤμ
ե롢ޤϽ֤˥쥯Ȥˤ
`set output` ȤäƤ
:
set terminal {<terminal-type> | push | pop}
show terminal
<terminal-type> ά `gnuplot` ѲǽʽϷΰ
ɽޤ<terminal-type> λˤû̷Ȥޤ
`set terminal` `set output` ξȤ硢`set terminal` ǽ
ˤǤϡOS ˤäƤϡ줬ɬפȤե饰
åȤϷ뤫Ǥ
ĤνϷϤɲåץޤ
`<term>` Фľ `set term <term> <options>` ǻѤ줿
ץϵ졢θ `set term <term>` ꥻåȤ뤳
ȤϤޤ㤨аͭѤǤĤΰۤʤϷ
ؤ硢Υץ֤ɬפϤޤ
ޥ `set term push` ϡߤνϷȤ `set term pop`
ˤäޤǵƤޤ `save term`, `load term`
ۤƱǤե륷ƥؤΥϹԤ鷺ä㤨Ф
ϡ˥ץåȥۡ˰¸ʤǽϷŪ˻Ȥ
ޤgnuplot εư塢ǥեȡޤ `startup` ե˽
ϷưŪ˵ (push) ޤäơŪ˽Ϸ
뤳ȤʤǤդΥץåȥۡǥǥեȤνϷ
`set term pop` ˤä롢ȤưԤץȤ
鷺˽Ȥޤ
ܺ٤ϡʲ: `complete list of terminals`
3 ϷؤΥץ (termoption)
?commands set termoption
?set termoption
?termoption
ޥ `set termoption` ϡѤƤϷο
`set terminal` ޥɤȯԤʤѹ뤳Ȥǽˤޤ
ޥɰĤФưĤΥץΤߤѹǤޤƤˡ
ѹǤ륪ץϤ¿ϤޤѲǽʥץ
ϰʲΤΤΤߤǤ
set termoption {no}enhanced
set termoption font "<fontname>{,<fontsize>}"
set termoption fontscale <scale>
set termoption {linewidth <lw>}{lw <lw>} {dashlength <dl>}{dl <dl>}
set termoption {pointscale <scale>} {ps <scale>}
3 ˺ɸ (theta)
?commands set theta
?set theta
?unset theta
?theta
˺ɸդϡǥեȤǤϳѤ 0 ( = 0) դα¦
ؤ褦Ť졢Ѥäȿײ˹Ԥ졢 = 90
褦ˤʤäƤޤ`set theta` ˤꡢ˺ɸγѤκɸ˴ؤ 0
θѹǤޤ
set theta {right|top|left|bottom}
set theta {clockwise|cw|counterclockwise|ccw}
`unset theta` ϡǥեȤξ "set theta right ccw" ޤ
3 (tics)
?commands set tics
?commands unset tics
?commands show tics
?set tics scale
?set tics
?unset tics
?show tics
?tics
ޥ `set tics` ϡƤμιߤȥ٥٤椷
`unset tics` Ǿä`set tics` ꤬Ĥޤ (ǥե
)ġμϡȤ̤Υޥ `set xtics`, `set ztics`
ʤɤȤäǤޤ
:
set tics {axis | border} {{no}mirror}
{in | out} {front | back}
{{no}rotate {by <ang>}} {offset <offset> | nooffset}
{left | right | center | autojustify}
{format "formatstring"} {font "name{,<size>}"} {{no}enhanced}
{ textcolor <colorspec> }
set tics scale {default | <major> {,<minor>}}
unset tics
show tics
ץϡġμ (x, y, z, x2, y2, cb) ˤŬѤǤޤ:
set xtics rotate by -90
unset cbtics
ιߤ°ϡ٤ƥդζ (ʲ: `set border`) Ʊ
ΤȤäޤ
tics `back` ޤ `front` ϡ2D (splot Բ) ˤΤ
٤Ƥμ 1 ŬѤޤϡǤŤʤä
Ǥ̤˽Ф֤椷ޤ
`axis` `border` `gnuplot` (ιȤȤθФ)
줾켴ˤĤΤˤĤΤؼޤˤ
Ƥᤤ硢`axis` ѤȶɽƤ (ʲ:
`set border`) θФʸγ˽ФƤޤǤ礦
缫ưŪʥ쥤ȥ르ꥺˤ;褯ʤΤȤ
äƤޤޤ
`mirror` `gnuplot` ȿ¦ζƱ֤ˡФΤʤ
Ϥ褦ؼޤ`nomirror` ϡʤƤ̤Τ
Ԥʤޤ
`in` `out` ιߤ¦¦ڤѤޤ
`set tics scale` ϡιߤ礭椷ޤǽ <major>
ͤˤϡưŪ졢ޤ桼Ǥ (٥ 0)
ꤷ2 ܤ <minor> ͤˤϡưŪ졢ޤ桼
Ǥ뾮 (٥ 1) ꤷޤ<major> ΥǥեȤ 1.0
ǡ<minor> ΥǥեȤ <major>/2 ǤͤɲäС
2, 3, ... 礭ˤʤޤ`set tics scale default` ǥ
եȤ礭ޤ
`rotate` ϡʸ 90 ٲžƽϤ褦Ȥޤϡʸ
βžݡȤƤϥɥ饤 (terminal) Ǥϼ¹Ԥޤ
`norotate` Ϥ뤷ޤ`rotate by <ang>` ϳ <ang>
žԤʤޤϤĤνϷ (terminal) ǥݡȤ
Ƥޤ
x y ΥǥեȤ `border mirror norotate` ǡx2, y2
`border nomirror norotate` ǥեȤǤz ΥǥեȤ
`nomirror` Ǥ
<offset> x,y ޤ x,y,z ηǤ˺ɸϤơ
`first`, `second`, `graph`, `screen`, `character` Τ줫
Ĥ뤳ȤǤޤ<offset> ϡθФʸΥǥե
ΰ֤Τ餷֤ǡΥǥեȤñ̷Ϥ `character` Ǥ
ܺ٤ϡʲ: `coordinates``nooffset` offset OFF ˤޤ
ǥեȤǤϸФ٥ϡ̤褦ˡȲžѤ˰¸
֤˼ưŪ·ޤˤʤСŪ `left`,
`right`, `center` Υɤˤ·ѹǤޤ
`autojustify` ǥǥեȤεưޤ
ץʤ `set tics` ϡ 1 Ф (mirror) ¦
ιߤǥեȤεưޤ¾ƤΥץ
ϡľͤݻޤ
(٥ΤĤ) ¾˴ؤƤϡʲ: `set xtics`
˴ؤƤϡʲ: `set mxtics`Υޥɤϡ
ƼΩޤ
3 ticslevel
?commands set ticslevel
?commands show ticslevel
?set ticslevel
?show ticslevel
?ticslevel
ߤϿ侩Ƥޤʲ: `set xyplane`
3 ticscale
?commands set ticscale
?commands show ticscale
?set ticscale
?show ticscale
?ticscale
ޥ `set ticscale` ϸߤϿ侩Ƥޤ
`set tics scale` ȤäƤ
3 ॹ (timestamp)
?commands set timestamp
?commands unset timestamp
?commands show timestamp
?set timestamp
?unset timestamp
?show timestamp
?timestamp
?notimestamp
ޥ `set timestamp` ϸߤλդդ;ɽޤ
:
set timestamp {"<format>"} {top|bottom} {{no}rotate}
{offset <xoff>{,<yoff>}} {font "<fontspec>"}
{textcolor <colorspec>}
unset timestamp
show timestamp
ʸ (format) ϡդȻν˻Ѥޤǥե
Ȥ asctime() Ѥ "%a %b %d %H:%M:%S %Y" Ǥ (̾
ʬá4 )`top` `bottom` Ȥäơդ֤
塢Τ;ˤ뤫Ǥޤ (ǥեȤϺ)
`rotate` ϡդľ˽Фޤ <xoff><yoff> Ϥ
(offset) ̣ˤäƤŬڤʰַԤޤ<font>
դեȤꤷޤ
:
set timestamp "%d/%m/%y %H:%M" offset 80,-2 font "Helvetica"
դνʸ˴ؤܤˤĤƤϡʲ: `set timefmt`
3 ǡϽ (timefmt)
?commands set timefmt
?commands show timefmt
?set timefmt
?show timefmt
?timefmt
ΥޥɤϡǡϤǻѤǥեȤνꤷޤ
ʲ: `set xdata time`, `timecolumn`
:
set timefmt "<format string>"
show timefmt
`timefmt` `timecolumn` ξͭʽϰʲ̤Ǥ:
@start table - ޤ÷ƥȷ
%d , 1--31
%m , 1--12
%y ǯ, 0--99
%Y ǯ, 4-digit
%j 1 ǯβ, 1--365
%H , 0--24
%M ʬ, 0--60
%s Unix epoch (1970-01-01, 00:00 UTC) ÿ
%S (ϤǤ 0--60 ϤǤϼ¿)
%b ̾ (Ѹ) 3 ʸά
%B ̾ (Ѹ)
%p 2 ʸ am AM pm PM Τ줫
#\begin{tabular}{|cl|} \hline
#\multicolumn{2}{|c|}{ǡ}\\
#\hline \hline
# & \\ \hline
#\verb@%d@ & , 1--31 \\
#\verb@%m@ & , 1--12 \\
#\verb@%y@ & ǯ, 0--99 \\
#\verb@%Y@ & ǯ, 4 \\
#\verb@%j@ & 1 ǯβ, 1--365 \\
#\verb@%H@ & , 0--24 \\
#\verb@%M@ & ʬ, 0--60 \\
#\verb@%s@ & Unix epoch (1970-01-01, 00:00 UTC) ÿ\\
#\verb@%S@ & (ϤǤ 0--60 ϤǤϼ¿)\\
#\verb@%b@ & ̾ (Ѹ) 3 ʸά \\
#\verb@%B@ & ̾ (Ѹ) \\
#\verb@%p@ & 2 ʸ am AM pm PM Τ줫 \\
%c l .
%@
%_
%%d@, 1--31
%%m@, 1--12
%%y@ǯ, 0--99
%%Y@ǯ, 4
%%j@1 ǯβ, 1--365
%%H@, 0--24
%%M@ʬ, 0--60
%%s@Unix epoch (1970-01-01, 00:00 UTC) ÿ
%%S@ (ϤǤ 0--60 ϤǤϼ¿)
%%b@̾ (Ѹ) 3 ʸά
%%B@̾ (Ѹ)
%%p@2 ʸ am AM pm PM Τ줫
@end table
^<table align="center" border="1" rules="groups" frame="hsides" cellpadding="3">
^<colgroup>
^ <col align="center">
^ <col align="left">
^</colgroup>
^<thead>
^<tr> <th></th> <th></th></tr>
^</thead>
^<tbody>
^<tr> <td><tt>%d</tt></td> <td>, 1–31</td></tr>
^<tr> <td><tt>%m</tt></td> <td>, 1–12</td></tr>
^<tr> <td><tt>%y</tt></td> <td>ǯ, 0–99</td></tr>
^<tr> <td><tt>%Y</tt></td> <td>ǯ, 4-digit</td></tr>
^<tr> <td><tt>%j</tt></td> <td>1 ǯβ, 1–365</td></tr>
^<tr> <td><tt>%H</tt></td> <td>, 0–24</td></tr>
^<tr> <td><tt>%M</tt></td> <td>ʬ, 0–60</td></tr>
^<tr> <td><tt>%s</tt></td> <td>Unix epoch (1970-01-01 00:00 UTC) ÿ</td></tr>
^<tr> <td><tt>%S</tt></td> <td> (ϤǤ 0–60 ϤǤϼ¿)</td></tr>
^<tr> <td><tt>%b</tt></td> <td>̾ (Ѹ) 3 ʸά</td></tr>
^<tr> <td><tt>%B</tt></td> <td>̾ (Ѹ)</td></tr>
^<tr> <td><tt>%p</tt></td> <td>2 ʸ am AM pm PM Τ줫</td></tr>
^</tbody>
^</table>
ǤդʸʸǻѤǤޤ§˽äƤɬפޤ
\t () ǧޤХåå + 8 ʿ (\nnn) Ϥ줬
ʸѴޤǤʬΥʸʤ硢%d, %m, %y,
%H, %M, %S Ϥ줾 2 οɤ߹ߤޤ%S Ǥɤ߹ߤǾ
ΥեɤˤĤƤϡξĤοû
Ȳᤷޤ%Y 4 塢%j 3 οɤ߹ߤޤ%b 3 ʸ
%B ɬפʬʸᤷޤ
(ڡ) ΰϤ㤤ޤʸ 1 Ĥζϡ
0 ġ뤤 1 İʾζʸɽޤʤ
"%H %M" "1220" "12 20" "12 20" Ʊ褦ɤߤޤ
ǡʸνޤꤽ줾ϡ`using n:n` ΰİĤ
ȥȤޤä `11:11 25/12/76 21.0` 3 Υǡǧ
ޤ뤿ˡǡޤޤ `gnuplot` ϡ
ʤ `using` ꤬ʤΤǤȲꤷޤ
եǡ̾ޤǤ硢ʸǤӽ
Фޤ"%a", "%A", "%b", "%B" Ǥɽ뤳ȤϤ
ޤ`gnuplot` Ͽͤޤ顢ڤ
ǡνϤ¾Υץξܺ٤˴ؤƤϡʲ: `set format`
2 %y ɤ硢69-99 2000 ǯ̤00-68 2000 ǯʸ
ȸʤޤ: ϡUNIX98 λͤ˹碌ΤǤδ
Ϥǰ㤤Τǡ2 ܼͤŪˤޤǤ
%p "am" "AM" ֤硢12 0 Ȳᤷޤ
%p "pm" "PM" ֤硢12 ̤λˤ 12 ɲäޤ
¾ξˤĤƤϡʲ⻲: `set xdata`, `time/date`,
`time_specifiers`
:
set timefmt "%d/%m/%Y\t%H:%M"
ϡ`gnuplot` դȻ֤֤ʬΥƤ뤳Ȥޤ (
ʤΥǡ衼Ƥ֤äΤɤʣΥ
ѴƤޤ ? ʸϥե˼ºݤˤʪȰ
פƤʤФʤޤ)
ʲ⻲
^ <a href="http://www.gnuplot.info/demo/timedat.html">
ǡ (time data) ǥ⡣
^ </a>
3 եȥ (title)
?commands set title
?commands show title
?set title
?show title
?title
ޥ `set title` ϡξο˽西ȥ
ޤ`set title` `set label` üʤΡȤߤʤޤ
:
set title {"<title-text>"} {offset <offset>} {font "<font>{,<size>}"}
{{textcolor | tc} {<colorspec> | default}} {{no}enhanced}
show title
<offset> x,y ޤ x,y,z ηǻꤷϡȥͿ
줿ͤưޤ˺ɸϤơ `first`,
`second`, `graph`, `screen`, `character` Τ줫Ĥ뤳ȤǤ
ޤܺ٤ϡʲ: `coordinates`ǥեȤǤ `character` ɸ
ϤȤޤ㤨С"`set title offset 0,-1`" ϥȥ y
ΰ֤Τѹ礶äѤ˸ä 1 ʸʬι⤵ȥ˲
ޤ1 ʸ礭ϡեȤȽϷξ˰¸ޤ
<font> ϥȥ뤬եȤꤹΤ˻Ȥޤ<size>
ñ̤ϡɤνϷ (terminal) ȤäƤ뤫ˤäѤޤ
`textcolor <colorspec>` ϡʸοѹޤ<colorspec> ϡ
rgb ޤϥѥåȤؤγΤ줫Ǥޤʲ:
`colorspec`, `palette`
`noenhanced` ϡĥʸ (enhanced text) ⡼ɤͭˤʤäƤ
Ǥ⡢ȥĥʸʤ褦ˤޤ
`set title` ѥʤǻȤȥȥõޤ
ХååʸκѡڤʸϤñŰ
㤤ˤĤƤϡʲ: `syntax`
3 tmargin
?commands set tmargin
?set tmargin
?tmargin
ޥ `set tmargin` Ͼ;ΥåȤޤܺ٤ϡʲ
: `set margin`
3 trange
?commands set trange
?commands show trange
?set trange
?show trange
?trange
: set trange [tmin:tmax]
ѿ t ϰϤϡʲ 3 ĤξͭǤ
#start
#b ѿ⡼ɤǤϡ줬ޥ `plot` ξؿɸϰ
## ¤ޤʲ: `set parametric`, `set samples`
#b ˺ɸ⡼ɤǤϡ줬ޥ `plot` гѿȤεƲ
## ǽϰϤ¡ޤޤϰϳΦȤĥǡϡ
## 줬趭¦äƤȤƤ⡢դϽޤ
## ʲ: `polar`
#b `plot` ޤ `splot` ޥɤǤϡե "+" ˤ 1
## ɸܲ˻Ѥޤ
## ʲ: `sampling 1D`, `special-filenames`
#end
3 ttics
?commands set ttics
?commands show ttics
?set ttics
?show ttics
?ttics
ޥ `set ttics` ϡ˺ɸդμϤߤĤޤ
ϡ`set border polar` Ȥ϶ˤʤޤǤʤ
˺ɸʻҤΡr ˱äƺǤⱦüιߤξ˽Ǥ⳰¦α
ˤʤޤʲ: `set grid`, `set rtics`Ѥΰ֤ϡ٤ñ
̤ǥ٥դޤߤγѤϰϤ (trange) ˴طʤƱ
Τ˹ߥ٥Ĥ뤳ȤǤޤߥ٥뤬ɬפϰϤ
ϡ˼Τ褦ˤƤߤ˴ؤɲ°ꤹ뤳
Ǥޤʲ: `xtics`
set ttics -180, 30, 180
set ttics add ("Theta = 0" 0)
set ttics font ":Italic" rotate
D ttics 3
3 urange
?commands set urange
?commands show urange
?set urange
?show urange
?urange
: set urange [umin:umax]
ѿ u v ϰϤϡʲ 2 ĤξͭǤ
1) ѿ⡼ɤ `splot`ʲ: `set parametric`,
`set isosamples`
2) `plot` ޤ `splot` ޥɤǤϡե "++" ˤ 2
ɸܲǡ˻Ѥޤʲ: `sampling 2D`
3 version
?show version
?show version long
ޥ `show version` ϸߵưƤ gnuplot ΥСǽ
ԤȡFAQ info-gnuplot ꥹȡХݡ
Υ륢ɥ쥹ɽޤŪ˥ץबƤФƤȤ
ˤξɽޤ
:
show version {long}
show version `long` Ǥϡ `gnuplot` ѥ뤵줿Ȥ˻Ȥ
줿ڥ졼ƥƥࡢꡢѥ륪ץʤɤɽ
3 vgrid
?commands set vgrid
?set vgrid
?unset vgrid
?show vgrid
?vgrid
:
set vgrid $gridname {size N}
unset vgrid $gridname
show vgrid
ꤷ̾դʻ $gridname ¸ߤƤСϤͭ
ˤ³ `vfill` `voxel` ǻȤ褦ˤޤ
˻ꤷ硢¸ߤǡ 0 N x N x N ʻҤ֤
ޤ̾γʻҤޤʤϡN x N x N ʻ (ǥեȤ
N=100) ΰ˳ơȤ 0 ˤͭˤޤʻ
̾ϡ'$' ϤʤФʤȤդƤ
`show vgrid` ϡѤߤΥܥʻҤ٤Ƥΰɽޤ
:
$vgrid1: (active)
size 100 X 100 X 100
vxrange [-4:4] vyrange[-4:4] vzrange[-4:4]
non-zero voxel values: min 0.061237 max 94.5604
number of zero voxels: 992070 (99.21%)
`unset vgrid $gridname` ϡΥܥʻҤ˴ط뤹٤ƤΥǡ
꤫鳫ޤΥǡΰϡ`reset session` ǤⳫ
ޤ
ؿ `voxel(x,y,z)` ϡκɸ˰ֶᤤͭʳʻ֤ͤޤ
ʲ⻲: `splot voxel-grids`
3 (view)
?commands set view
?commands show view
?set view
?set view map
?show view
?view
ޥ `set view` `splot` λγ٤ꤷޤϡ
3 ɸɤΤ褦 2 β (screen) Ƥ뤫
椷ޤϡ褵줿ǡβžȽ̼ܤͿƤޤ
ͱƤݡȤƤޤ3 ͱơ 2 ŪϿ
ؤ 2 ľͱƤݡȤƤޤ
:
set view <rot_x>{,{<rot_z>}{,{<scale>}{,<scale_z>}}}
set view map {scale <scale>}
set view projection {xy|xz|yz}
set view {no}equal {xy|xyz}
set view azimuth <angle>
show view
<rot_x> <rot_z> ϡ̤Ƥ벾Ū 3 ɸϤ
ž (ñ̤) ǡǽ (ʤžԤʤ)
οʿ x, οľ y, ̼Ȥ˿ľʼ z Ȥʤ
Ƥޤǽ x μ <rot_x> žޤˡ
z μ <rot_z> žޤ
ޥ `set view map` ϡդϿޤΤ褦ɽΤ˻Ȥޤ
(`contour`) Υդ䡢pm3d ⡼ɤˤ 2 ʬ
(heatmap) ʤɤ `with image` षͭѤǤԤǤϡϥǡ
Υե륿Ѥ `zrange` ꡢӿϰϤν̼ܤ˴ؤ
`cbrange` Ŭڤ˹ԤȤդƤ
<rot_x> [0:180] ϰϤ¤ƤơǥեȤǤ 60 ٤Ǥ
<rot_z> [0:360] ϰϤ¤ƤơǥեȤǤ 30 ٤Ǥ
<scale> `splot` ΤοΨ椷<scale_z> z ο̤Τߤ
ԤʤޤΨΥǥեȤϤɤ 1.0 Ǥ
:
set view 60, 30, 1, 1
set view ,,0.5
ǽ 4 ĤƤǥեȤͤˤƤޤ2 ĤϽ̾Ψ
Τߤ 0.5 ѹƤޤ
4 azimuth
?set view azimuth
?view azimuth
?azimuth
set view azimuth <angle-in-degrees>
azimuth ϡ3 (splot) z θ˱ƶޤǥ
Ȥ azimuth = 0 ǡդ z ϥοʿФƿ
ľʿ̤˴ޤޤ롢ʤz 2 ͱƤαľ
ʤޤ0 Ǥʤ azimuth ϻ볦˴ؤƲžz μͱƤϱ
ľǤϤʤʤޤazimuth = 90 Ǥ z ϱľǤϤʤʿ
ˤʤޤ
÷ɽκݡۥåȥ `z` azimuth 0 ˥ꥻåȤޤ
4 equal_axes
?set view equal_axes
?set view equal xyz
?set view equal
?view equal_axes
?view equal xyz
?equal_axes
?equal xyz
ޥ `set view equal xy` x y ñ̤ĹŪ
ʤ褦˽̼ܤ碌դڡٹ礦褦ˤν̼ܤ
ޤޥ `set view equal xyz` ϡ z x y ˹
褦ˤޤz ϰϤ趭ϰϤ˹礦ݾڤϤޤ
ʲ⻲: `set isotropic`ǥեȤǤϡ3 ĤμΩͭ
褦˿̤ޤ
ʲ⻲: `set xyplane`
4 projection
?set view projection
?view projection
?projection
:
set view projection {xy|xz|yz}
3 դλѤžʿ xy, xz, yz Τ줫դʿ
˾褦ˤޤȥ٥֤Ϥ˽äĴ졢
˿ľ 3 ȥ٥̵ˤʤޤΥդϡ'plot'
ƱϰϤΤȤۤܰפ륵˥Ѵޤ
`set view projection xy` ϡ`set view map` ƱǤ
֥Ȥ٥롢𡢤¾Ǥꤹ x, y κɸξ
"graph" ɸξ硢ϼͱ̤Ǥ "x/y" ǤϤʤ"ʿ/ľ"
ȤƲᤷޤ
set key top right at graph 0.95, graph 0.95 # ǤդμͱƤư
3 vrange
?commands set vrange
?commands show vrange
?set vrange
?show vrange
?vrange
: set vrange [vmin:vmax]
ѿ u v ϰϤϡʲ 2 ĤξͭǤ
1) ѿ⡼ɤ `splot`ʲ: `set parametric`,
`set isosamples`
2) `plot` ޤ `splot` ޥɤǤϡե "++" ˤ 2
ɸܲǡ˻Ѥޤʲ: `sampling 2D`
3 vxrange
?commands set vxrange
?set vxrange
?vxrange
: set vxrange [vxmin:vxmax]
ϡͭʥܥʻҤ x ɸϰϤꤷޤܥ
ʻҤ¾ 2 ĤѤˡƱͤΥޥ `set vyrange`,
`set vzrange` ޤǽ `vclear`, `vfill`, `voxel(x,y,z) = `
ΥޥɤŪϰϤꤵƤʤä硢vmin vmax
ϸߤ `xrange` ϰϤԡޤ
3 vyrange
?commands set vyrange
?set vyrange
?vyrange
ʲ: `set vxrange`
3 vzrange
?commands set vzrange
?set vzrange
?vzrange
ʲ: `set vxrange`
3 walls
?commands set walls
?commands show walls
?set walls
?show walls
?unset walls
?walls
:
set walls
set wall {x0|y0|z0|x1|y1} {<fillstyle>} {fc <fillcolor>}
Ffigure_walls
`splot` 3 ̤ϡx, y, z ϰϤȤ̵ط줿
ñΩΤ֤ޤƤΩΤζɤϡպɸ
x == 0 x == 1 ʿ̤Ȥʤޤޥ `set walls` ϡ
ɤ x0, y0, z0 ñɤζ̤Ȥ褷ޤǥեȤǤϤ
ɤϡȾƩ (fillstyle transparent solid 0.5) ȤޤΥ
ɤǤɤɤ褹뤫Ƹ̤ο̤ɤ٤
(fillstyle) ޥǤޤɤͭˤϡ
`set xyplane 0` ꤹȤǤ礦
:
set wall x0; set wall y1; set wall z0 fillstyle solid 1.0 fillcolor "gray"
splot f(x,y) with pm3d fc "goldenrod"
3 watchpoints
?commands show watchpoints
?show watchpoints
ޥ plot γˡİʾΥåݥȤǤ
ޥ `show watchpoints` ǡ٤ƤΥåݥоݤľ
plot ޥɤǥҥåȤ뤳ȤǤޤ
:
plot DATA using 1:2 smooth cnormal watch y=0.25 watch y=0.5 \
watch y=0.75
show watchpoints
Plot title: "DATA using 1:2 smooth cnormal"
Watch 1 target y = 0.25 (1 hits)
hit 1 x 50.6 y 0.25
Watch 2 target y = 0.5 (1 hits)
hit 1 x 63.6 y 0.5
Watch 3 target y = 0.75 (1 hits)
hit 1 x 68.3 y 0.75
ǽΥåݥ (y=0.25) ٤Ƥκɸ WATCH_1
¸ޤy=0.5 WATCH_2 ¸ʲƱͤǤ
ƥҥåϡx ɸ¿ʬy ɸʬȤʣǿȤ¸
äƥåݥ 2 κǽΥҥåϡx = real(WATCH_2[1]),
y = imag(WATCH_2[1]) ȤʤޤǤϡҥå x ɸΤߤ
ǡy ɸϾоݤȤʤ y ͤ˰פޤå
оݤؿ f(x,y) z ͤǤ硢x, y ɸϤɤˤ
狼ޤ
3 x2data
?commands set x2data
?commands show x2data
?set x2data
?show x2data
?x2data
ޥ `set x2data` x2 () Υǡ ()
ޤܺ٤ϡʲ: `set xdata`
3 x2dtics
?commands set x2dtics
?commands unset x2dtics
?commands show x2dtics
?set x2dtics
?unset x2dtics
?show x2dtics
?x2dtics
?nox2dtics
ޥ `set x2dtics` x2 () ѹޤܺ٤ϡ
ʲ: `set xdtics`
3 x2label
?commands set x2label
?commands show x2label
?set x2label
?show x2label
?x2label
ޥ `set x2label` x2 () θФꤷޤܺ٤ϡʲ
: `set xlabel`
3 x2mtics
?commands set x2mtics
?commands unset x2mtics
?commands show x2mtics
?set x2mtics
?unset x2mtics
?show x2mtics
?x2mtics
?nox2mtics
ޥ `set x2mtics` ϡx2 () 1 ǯγƷꤷޤܺ٤ϡ
ʲ: `set xmtics`
3 x2range
?commands set x2range
?commands show x2range
?set x2range
?show x2range
?x2range
ޥ `set x2range` x2 () ɽʿϰϤꤷޤ
ޥɥץΤ٤ƤˤĤƤϡʲ: `set xrange`
⻲: `set link`
3 x2tics
?commands set x2tics
?commands unset x2tics
?commands show x2tics
?set x2tics
?unset x2tics
?show x2tics
?x2tics
?nox2tics
ޥ `set x2tics` x2 () ΡФդ
Ԥʤޤܺ٤ϡʲ: `set xtics`
3 x2zeroaxis
?commands set x2zeroaxis
?commands unset x2zeroaxis
?commands show x2zeroaxis
?set x2zeroaxis
?unset x2zeroaxis
?show x2zeroaxis
?x2zeroaxis
?nox2zeroaxis
ޥ `set x2zeroaxis` ϡ̤ x2 () (y2 = 0)
ܺ٤ϡʲ: `set zeroaxis`
3 Υǡ (xdata)
?commands set xdata
?commands show xdata
?set xdata
?show xdata
?xdata
Υޥɤ x Υǡβ椷ޤ¾μ줾ˤ
ƱͤΥޥɤǽޤ
:
set xdata {time}
show xdata
`ydata`, `zdata`, `x2data`, `y2data`, `cbdata` ˤƱƤϤ
ޤ
`time` ץϥǡñ̤ǡǤ뤳Ȥޤ
gnuplot С 6 ϻߥä¸ޤ
`time` ʤ `set xdata` ϡǡβˡ̾η
ᤷޤ
4 ǡ (time)
?commands set xdata time
?set xdata time
`set xdata time` ϡx ɸߥ٤ǡǤ뤳Ȥ̣
ޤ`set ydata time` ȤƱͤΥޥɤ⤢ޤ
ǡϤȽϤβˤϡ̡νޤե뤫
ϥǡϡΤѤ `timefmt` Ȥޤ plot
timecolumn() ؿȤäɤ߹ߤޤϵϡ
(range) ꤹȤ˻֤ͤѤݤˤŬѤޤʲ
: `set timefmt`, `timecolumn`
:
set xdata time
set timefmt "%d-%b-%Y"
set xrange ["01-Jan-2013" : "31-Dec-2014"]
plot DATA using 1:2
ޤ
plot DATA using (timecolumn(1,"%d-%b-%Y")):2
ϡʤ˱äΥ٥䡢ޥǤκɸϤˤĤ
ƤϡǥեȤǤϡäǤ狼ɽʸؤѴ
ϡؿ 'strftime' (unix ǤĴ٤ˤ "man strftime" ȥפ
Ƥ) Ȥޤ`gnuplot` ϤŬ˰̣Τɽ
褦Ȥޤ`set format x` `set xtics format` Τ줫Ȥ
ƥޥ뤳ȤǤޤ
̤ʻֽҤ˴ؤƤϡʲ: `time_specifiers`¾ξ
ˤĤƤϡʲ⻲: `time/date`
3 (xdtics)
?commands set xdtics
?commands unset xdtics
?commands show xdtics
?set xdtics
?unset xdtics
?show xdtics
?xdtics
?noxdtics
ޥ `set xdtics` x ιߤѴޤ (0=Sun,
6=Sat)6 ۤ 7 ˤ;꤬Ȥޤ`unset xdtics`
θФǥեȤηᤷޤ¾μˤƱȤԤʤƱ
ͤΥޥɤѰդƤޤ
:
set xdtics
unset xdtics
show xdtics
`ydtics`, `zdtics`, `x2dtics`, `y2dtics`, `cbdtics` ˤƱ
Ϥޤޤ
ʲ⻲: `set format`
3 ٥ (xlabel)
?commands set xlabel
?commands show xlabel
?set xlabel
?show xlabel
?xlabel
ޥ `set xlabel` x θФꤷޤ¾μˤ⸫Ф
ꤹƱͤΥޥɤޤ
:
set xlabel {"<label>"} {offset <offset>} {font "<font>{,<size>}"}
{textcolor <colorspec>} {{no}enhanced}
{rotate by <degrees> | rotate parallel | norotate}
show xlabel
Ʊ `x2label`, `ylabel`, `y2label`, `zlabel`, `cblabel` ˤŬ
Ѥޤ
<offset> x,y ޤ x,y,z ηǻꤷϡФͿ
줿ͤưޤ˺ɸϤơ `first`,
`second`, `graph`, `screen`, `character` Τ줫Ĥ뤳ȤǤ
ޤܺ٤ϡʲ: `coordinates`ǥեȤǤ `character` ɸ
ϤȤޤ㤨С"`set xlabel offset -1,0`" ϸФ x
֤Τѹ礶äѤ˸ä 1 ʸʬФˤ餷
1 ʸ礭ϡեȤȽϷξ˰¸ޤ
<font> ϸФեȤꤹΤ˻ȤޤեȤ
<size> (礭) ñ̤ϡɤʽϷȤ˰¸ޤ
`noenhanced` ϡĥʸ (enhanced text) ⡼ɤͭˤʤäƤ
Ǥ⡢٥ʸĥʸʤ褦ˤޤ
ФõˤϡץĤ˼¹Ԥޤ: "`set y2label`"
θФΥǥեȤΰ֤ϰʲ̤Ǥ:
xlabel: x θФϥդβο
ylabel: y θФϥդκοǡʿ˽뤫ľ
ˤʤ뤫ϽϷ¸
դκ¦˲žʤ ylabel ʸ֤ˤϡʬʥڡ
⤢ꤨޤξϡ`set lmargin` ·ޤ
zlabel: z θФϼɽϰϤǡФο椬 z ο
cblabel: (color box) μθФȢ˱ä·졢Ȣ
ʿʤ鲼ˡľʤ鱦
y2label: y2 θФ y2 αΰ֤ϡϷ¸ y
Ʊͤε§Ƿꡣ
x2label: x2 θФϥդξǡȥϲϡ
ʸȤСˤʣιԤʤ西ȥ x2 θФ
뤳Ȥǽ:
set title "This is the title\n\nThis is the x2label"
ŰȤ٤Ǥ뤳ȤդƤξ硢
2 ĤιԤƱեȤȤޤ
2 ξ x, x2, y, y2 Υ٥ (ž) ϡ
`rotate by <>` ꤹ뤳ȤѹǤޤ3 x, y
Υ٥ϥǥեȤǤϿʿˤʤäƤޤ
`rotate parallel` ꤹ뤳ȤǼʿԤˤ뤳ȤǤޤ
⤷ΰ֤ΥǥեȤΰ֤ʤʤС `set label`
ȤäƤΥޥɤʸɤ֤뤫äȼͳ
Ǥޤ
ХååʸκѡڤʸϤñŰ
㤤˴ؤܤˤĤƤϡʲ: `syntax`
3 (xmtics)
?commands set xmtics
?commands unset xmtics
?commands show xmtics
?set xmtics
?unset xmtics
?show xmtics
?xmtics
?noxmtics
ޥ `set xmtics` x θФѴޤ1=Jan
(1 )12=Dec (12 ) Ȥʤޤ12 ۤϡ12 dzäޤ
Ѵޤ`unset xmtics` ϥǥեȤθФޤ
¾μФƤƱƱͤΥޥɤѰդƤޤ
:
set xmtics
unset xmtics
show xmtics
`x2mtics`, `ymtics`, `y2mtics`, `zmtics`, `cbmtics` ˤƱŬ
ޤ
ʲ⻲: `set format`
3 ϰϻ (xrange)
?commands set xrange
?commands show xrange
?set xrange
?show xrange
?set range
?writeback
?restore
?xrange
ޥ `set xrange` ɽʿϰϤꤷޤ¾μ
ˤƱͤΥޥɤ¸ߤޤ˺ɸǤư r, ѿ t, u, v
ˤ¸ߤޤ
:
set xrange [{{<min>}:{<max>}}] {{no}reverse} {{no}writeback} {{no}extend}
| restore
show xrange
<min> <max> ޤ '*' ǡ'*' ϼư̼ܵǽ
̣ޤǡξ硢ϰϤ `set timefmt` ν˽äʸ
ǰϤɬפޤ<min> <max> άϡ
ߤͤѹޤư̼ܵǽ˴ؤܺ٤ϲ˽Ҥ٤ޤʲ
: `noextend`
`yrange`, `zrange`, `x2range`, `y2range`, `cbrange`, `rrange`, `trange`,
`urange`, `vrange` ƱѤޤ
x x2 뤤 y y2 ϰϤ륪ץˤĤƤ
ʲ: `set link`
ץ `reverse` ϡư̼ܤμդˤޤ㤨Сǡ
ͤϰϤ 10 100 ǤȤϡset xrange [100:10] Ȥ
ΤƱ褦˼ư̼ܤޤ`reverse` ϡư̼ܤǤϤʤФ
Ƥϵǽޤ
ư̼ܵǽ: <min> (ƱͤΤȤ <max> ˤŬѤޤ) ꥹ
"*" ξϼư̼ܵǽˤʤޤξΤͤˡ
<lb>ޤϾ <ub>ޤϤξ¤Ϳޤϰʲ
̤Ǥ
{ <lb> < } * { < <ub> }
㤨
0 < * < 200
<lb> = 0, <ub> = 200 ȤʤޤΤ褦Ǥϡ<min> ϼư
ܤޤκǽŪͤ 0 200 δ֤ˤʤޤ ( '<'
Ǥξüͤޤߤޤ)¤¤ꤷʤϡ '<'
άǤޤ<ub> <lb> 꾮ϡ¤ϥդˤʤꡢʼ
ư̼ܤˤʤޤ
εǽϡư̼ܤɤϰϤ¤¬ǡ䡢
ͤΥåԥޤϥǡۤɤϰϤɬפȤƤʤƤ
ϰϤݾڤΤͭѤǤ礦
ץ `writeback` ϡ`set xrange` ƤХåե
ư̼ܵǽˤ줿ϰϤ¸ޤϡĤδؿƱ
ɽϰϤϤΤΤĤΤΤꤵ
Ǥ`writeback` κѤϡ`plot` μ¹˵ǽΤǡ
ޥɤ˻ꤹɬפޤǸ¸ʿϰϤ
`set xrange restore` Ǥޤ夲ޤ
set xrange [-10:10]
set yrange [] writeback
plot sin(x)
set yrange restore
replot x/2
ξ硢y ϰ (yrange) sin(x) ͰȤƺ줿 [-1:1]
ˤʤꡢx/2 Ͱ [-5:5] ̵뤵ޤ嵭Τ줾Υޥɤθ
`show yrange` ¹ԤСDzԤʤƤ뤫
ˤʤǤ礦
2 ˤơ`xrange` `yrange` ϼϰϤꤷ`trange`
ϡѿ⡼ɤѿϰϡ뤤϶˺ɸ⡼ɤγ٤ϰϤ
ꤷޤƱͤ 3 ѿ⡼ɤǤϡ`xrange`, `yrange`, `zrange`
ϰϤ`urange` `yrange` ѿϰϤޤ
˺ɸ⡼ɤǤϡ`rrange` 褵ư¤ϰϤꤷޤ<rmin>
ư¤ؤɲäȤƺѤ <rmax> ư¤ڤΤƤ (clip)
褦˺Ѥ<rmax> ۤư¤Ф褵ޤ`xrange`
`yrange` ϱƶޤϰϤϡդ r(t)-rmin Υ
դǡθФˤϤ줾 rmin ä褦ʤΤǤ뤫Τ褦
˥åȤޤ
ƤϰϤʬŪˡޤŪ˼ư̼ܤޤǡ
ʤСѥѿμư̼ܵǽϰ̣ʤǤ礦
ϰϤ `plot` Υޥɥ饤ǤǤޤޥɥ饤Ϳ
줿ϰϤñˤ `plot` ޥɤǤȤ졢`set` ޥɤ
ꤵ줿ϰϤϤθǡޥɥ饤ϰϤꤷƤʤ
ƤǻȤޤ `splot` ƱǤ
4 (examples)
?commands set xrange examples
?set xrange examples
?set range examples
?xrange examples
:
x ϰϤǥեȤͤˤޤ:
set xrange [-10:10]
y ϰϤä褦ˤޤ:
set yrange [10:-10]
z κǾͤˤϱƶͿ (ư̼ܤ줿ޤ)ͤΤ 10
ꤷޤ:
set zrange [:10]
x κǾͤϼư̼ܤȤͤѹޤ:
set xrange [*:]
x κǾͤư̼ܤȤޤκǾͤ 0 ʾˤޤ
set xrange [0<*:]
x ϰϤư̼ܤȤޤƤ 10 50 ϰϤݻޤ
(ºݤϤ礭ʤǤ礦):
set xrange [*<10:50<*]
ư̼ܤǺϰϤ -1000 1000ʤ [-1000:1000] Ǽư
ܤޤ:
set xrange [-1000<*:*<1000]
x κǾͤ -200 100 δ֤Τɤˤޤ:
set xrange [-200<*<100:]
4 extend
?commands set xrange noextend
?set xrange noextend
?set range noextend
?xrange noextend
?set xrange extend
?set range extend
?xrange extend
`set xrange noextend` ϡ`set autoscale x noextend` ƱǤ
ʲ: `noextend`
3 (xtics)
?commands set xtics
?commands unset xtics
?commands show xtics
?set xtics
?unset xtics
?show xtics
?xtics
?noxtics
x (ФΤĤ) ޥ `set xtics` Ǥޤ
`unset xtics` Ǿä`set xtics` (ǥեȤξ֤)
꤬Ĥޤy,z,x2,y2 ԤʤƱͤΥޥɤ
ޤ
:
set xtics {axis | border} {{no}mirror}
{in | out} {scale {default | <major> {,<minor>}}}
{{no}rotate {by <ang>}} {offset <offset> | nooffset}
{left | right | center | autojustify}
{add}
{ autofreq
| <incr>
| <start>, <incr> {,<end>}
| ({"<label>"} <pos> {<level>} {,{"<label>"}...) }
{format "formatstring"} {font "name{,<size>}"} {{no}enhanced}
{ numeric | timedate | geographic }
{{no}logscale}
{ rangelimited }
{ textcolor <colorspec> }
unset xtics
show xtics
Ʊ `ytics`, `ztics`, `x2tics`, `y2tics`, `cbtics` ˤŬѤ
ޤ
`axis` `border` `gnuplot` (ιȤȤθФ)
줾켴ˤĤΤˤĤΤؼޤˤ
Ƥᤤ硢`axis` ѤθФʸγ˽Ф
ޤǤ礦ξ缫ưŪʥ쥤ȥ르ꥺˤ;
褯ʤΤȤʤäƤޤޤ
`mirror` `gnuplot` ȿ¦ζƱ֤ˡФΤʤ
Ϥ褦ؼޤ`nomirror` ϡʤƤ̤Τ
Ԥʤޤ
`in` `out` ιߤ¦¦ڤѤޤ
ιߤΥ `scale` ĴǤޤ<minor> λ꤬ά
줿ϡ 0.5*<major> ˤʤޤǥեȤΥϡ
꤬ 1.0 Ǿ꤬ 0.5 ǡ `scale default` ǸƤӤޤ
`rotate` ϡʸ 90 ٲžƽϤ褦Ȥޤϡʸ
βžݡȤƤϥɥ饤 (terminal) Ǥϼ¹Ԥޤ
`norotate` Ϥ뤷ޤ`rotate by <ang>` ϳ <ang>
žԤʤޤϤĤνϷ (terminal) ǥݡȤ
Ƥޤ
x y ΥǥեȤ `border mirror norotate` ǡx2, y2
`border nomirror norotate` ǥեȤǤz ˤϡ
`{axis | border}` ץ̵ǡǥեȤ `nomirror` Ǥz
ߥ顼ʤ顢¿ʬ `set border` ǤΤζ֤
ɬפǤ礦
<offset> x,y ޤ x,y,z ηǻꤷޤ˺ɸϤ
ơ `first`, `second`, `graph`, `screen`, `character`
줫Ĥ뤳ȤǤޤ<offset> ϹʸΥǥեȤΰ
ΤɽǥեȤκɸϤ `character` Ǥܺ٤ϡʲ
: `coordinates``nooffset` Ϥ餷̵ˤޤ
:
xtics ˶Ť:
set xtics offset 0,graph 0.05
ȥռȤŪʽ֤ѹˤϡޥ
`set grid` 'front', 'back', 'layerdefault' ΥץѤ
ۤʤ뼴ʻ˰ۤʤ쥤䡼Ƥ
ץϤޤ
ǥեȤǤϸФ٥ϡ̤褦ˡȲžѤ˰¸
֤˼ưŪ·ޤˤʤСŪ `left`,
`right`, `center` Υɤˤ·ѹǤޤ
`autojustify` ǥǥեȤεưޤ
ץʤ `set xtics` ¹Ԥȡ꤬ɽ֤Ǥ
СϥǥեȤζޤϼǤʤв⤷
˻ꤷδֳ֡ (ȸФ) ݻޤ
ΰ֤ϡǥեȡޤϥץ `autofreq` ꤵƤ
мưŪ˷ޤ
ΰ֤ϡδֳ֤Τߡޤϳϰ֤ȴֳ֤Ƚΰ֡
Τ줫ꤹ뤳ȤǤޤ (ʲ: `xtics series`)
Ūʰ֤ΥꥹȤͿ뤳Ȥǡġΰ֤̤˻ꤹ
ȤǤޤư֤ˤϡФ븫Ф٥ꤹ뤳Ȥ
ޤʲ: `xtics list`
ꤷƤ⡢ɽΤϤޤϰϤΤΤǤ
θФν (ޤϾά) `set format` 椵ޤ
`set xtics (`<label>`)` ηŪʸФʸޤޤ
ƤʤǤ
(Фդʤ) ϡ`set mxtics` ޥɤǼưŪɲä
뤫ޤϰ֤ư `set xtics ("" <pos> 1, ...)` ηͿ
ȤǤޤ
ߤθ () ϡξǤäƤ⡢
ˤäƷꤵޤ (ʲ: `set border`)
4 xtics series
?set xtics series
?xtics series
:
set xtics <incr>
set xtics <start>, <incr>, <end>
żŪ <start>, <incr>, <end> ϡ <start> <end>
δ֤ <incr> δֳ֤ɽޤ<end> ꤷʤС̵
Ȥߤʤޤ<incr> ͤǽǤ<start> <end> ξ
ꤵƤʤ硢<start> -硢<end> +Ȥߤʤ졢
<incr> ܤΰ֤ɽޤпξ硢δֳ
(ʬ) ϡܿȤƻѤޤ
<start> <incr> ͤθ˻ꤹ (㤨
`rotate by <angle>` Ȥ `offset <offset>` θ)gnuplot ιʸ
ϡͤ餽 <start> <incr> ͤΰԤȤ
ְ㤤ȤޤˤϡΤ褦ʾϡ`0-<start>`
`0-<incr>` Τ褦˻ꤷƤ
:
set xtics border offset 0,0.5 -5,1,5
Ǹ ',' ΤȤǼԤޤ
set xtics border offset 0,0.5 0-5,1,5
set xtics offset 0,0.5 border -5,1,5
Τ褦ˤƤϡȻؼ̤ˡˡ
긫Фʸ 0,0.5 ʸʬ餷ơstart, increment, end
줾 -5,1,5 ꤷޤ
:
0, 0.5, 1, 1.5, ..., 9.5, 10 ΰ֤
set xtics 0,.5,10
..., -10, -5, 0, 5, 10, ...
set xtics 5
1, 100, 1e4, 1e6, 1e8
set logscale x; set xtics 1,100,1e8
4 xtics list
?set xtics list
?set xtics add
?xtics list
?xtics add
:
set xtics {add} ("label1" <pos1> <level1>, "label2" <pos2> <level2>, ...)
Ū ("label" <pos> <level>, ...) ηϡǤդΰ֡
뤤ϿǤʤФǽˤޤηǤϡϰ
ονͿɬפϤޤϰ (pos) ȸФ
(label) ޤФɬܤǤϤޤ
ФϰǰϤʸޤʸͤοǤˤϡ
"%3f clients" Τ褦ˤΰ֤ѴʸƤ
ޤʸ "" ǤޤܤˤĤƤϡʲ
: `set format`⤷ʸꤷʤСǥեȤοθ
ФѤޤ
ŪʷǤ 3 ܤΥѥȤƥ٥Ǥޤǥե
ȤΥ٥ 0 ạ̇̄٥ 1 ξϾ
ޤ٥ϡˤϷ褷դޤȾ
gnuplot ưŪޤ桼Ū˻Ǥޤ
٥뤬 2 ʾϡ桼Ū˻ꤷʤФʤ餺ư
⤤ͥ٤ޤƥ٥ιߤ礭
ϡ`set tics scale` 椷ޤ
:
set xtics ("low" 0, "medium" 50, "high" 100)
set xtics (1,2,4,8,16,32,64,128,256,512,1024)
set ytics ("bottom" 0, "" 10, "top" 20)
set ytics ("bottom" 0, "" 10 1, "top" 20)
2 ܤǤϡƤ꤬Фդޤ3 ܤǤϡü
ΤФդޤ4 ܤΡФΤʤϾ
ˤʤޤ
̾Ū (ư) ֤Ϳ줿硢ưŪ
ϻȤޤդˡ`set xtics auto` Τ褦ʤΤꤵ줿
ϡ˼ưꤷϾäƤޤޤμư
ȼưŪ¸ˤϥ `add` ѤƤ
ɲäΥ˽ʤФޤ
:
set xtics 0,.5,10
set xtics add ("Pi" 3.14159)
ϼưŪιߤ x 0.5 ֳ֤ǤĤޤФΤȤ
ŪʸФɲäޤ
4 xtics timedata
?set xtics timedata
?xtics timedata tics
?set xtics time
?xtics time
?timedata tics
֤դǤÿȤݻƤޤ
: ͤͤϡϻ `timefmt` ǻꤷѤÿ
Ѵޤϰϡ֡դκɸ `timefmt` Dz
ǡǰϤͿ뤳ȤǤޤ
: ٥ϡ`set format` `set xtics format` Τ
ǻꤵ줿̤νȤäޤǥեȤǤϡ̾
οͽǤǧޤ (`set xtics numeric`)¾ˡ
ɸ (`set xtics geographic`) 䡢ǡ (`set xtics time`) Υץ
ޤ
: Ǥ gnuplot ȤθߴΤᡢޥ `set xdata time`
ۤ `set xtics time` ¹Ԥޤ`set xdata` `unset xdata`
ϰۤ `set xtics numeric` إꥻåȤޤϤθ
`set xtics` ƤӽФȤѹǤޤ
:
set xdata time # ϥǡβ
set timefmt "%d/%m" # ϥǡɤ߹ߤν
set xtics timedate # Ͻβ
set xtics format "%b %d" # ٥ǻȤ
set xrange ["01/12":"06/12"]
set xtics "01/12", 172800, "05/12"
set xdata time
set timefmt "%d/%m"
set xtics format "%b %d" time
set xrange ["01/12":"06/12"]
set xtics ("01/12", "" "03/12", "05/12")
ξȤ "Dec 1", "Dec 3", "Dec 5", ޤ2
ܤ "Dec 3" ϸФդޤ
<start>, <incr>, <end> Ȥ硢<incr> ϥǥեȤǤñ̤
`minutes`, `hours`, `days`, `weeks`, `months`, `years` Ū
ʻ֤ñ̤ɲä뤳ȤǤޤϡֳ <incr> Τߤ
ꤹƱǤ
set xtics time 5 years # 5 ǯֳ֤٥
set xtics "01-Jan-2000", 1 month, "01-Jan-2001"
Ѥ̤ʻ⡼ɤ⤢ޤʲ: `set mxtics time`
4 ɸ (geographic)
?commands set xtics geographic
?set xtics geographic
?geographic
`set xtics geographic` ϡx ͤ٤ñ̤ɸǤ뤳Ȥ
̣ޤμιߤθФɽλˤϡ`set xtics format`
`set format x` Ȥޤɸǡ˴ؤҤϰʲ
:
%D = ٤ɽ
%<width.precision>d = ٤ưɽ
%M = ʬɽ
%<width.precision>m = ʬưɽ
%S = äɽ
%<width.precision>s = äưɽ
%E = +/- Ǥʤ E/W Υ٥
%N = +/- Ǥʤ N/S Υ٥
㤨Сޥ `set format x "%Ddeg %5.2mmin %E"` ϡx ɸ -1.51
Ȥͤ `" 1deg 30.60min W"` Τ褦ɽޤ
C shige: ܸξȤƽ٤
C ٤ε set encoding locale ǽФ褦ˤʤȡ
xtics ǥեȤξ֤Τޤ (`set xtics numeric`) ξϡɸ
10 ʿ٤ɽ`format` ̤ʵǤϤʤ̾οͽ
ȤƤȤߤʤޤ
ޥå˥٥֤ʤɡȤϰۤʤ/ʬ/äνϤ
ˤϡstrptime Ūֽ %tH %tM %tS ѤǤޤ
: `time_specifiers`, `strptime`
4 xtics logscale
?set xtics logscale
?xtics logscale
=logscale
п˱褦ߤФ `logscale` °ꤹȡߤδֳ֤ϸ
ǤϤʤȲᤵޤ:
# y=20 y=200 y=2000 y=20000 ˹
set log y
set ytics 20, 10, 50000 logscale
y=50000 2*10^x οˤϴޤޤʤΤǡˤϹߤϤĤʤ
դƤlogscale °̵ξ硢ʬϡȤп
ǤäƤȤưޤ:
# y=20 y=40 y=60 ... y=200 ˹ߤ
set log y
set yrange [20:200]
set ytics 20 nologscale
`logscale` °ϡޥ `set log` ǼưŪꤵΤǡ2
Τ褦ʼιߴֳ֤˶ŪˤǤʤС̾ϤΥ
ɤɬפޤ
4 xtics rangelimited
?set xtics rangelimited
?xtics rangelimited
?rangelimited
?range-frame
ΥץϡưŪ뼴θФȡ褵줿
ǼºݤͿϰϤб趭ξ¤ޤ
Ф븽ߤϰ¤Ȥ̵طǤ뤳ȤդƤ㤨
Хǡ "file.dat" Υǡ٤ 2 < y < 4 ϰϤˤȤȡ
ʲΥޥɤϡ¦趭 (y ) y ϰ ([0:10]) Τ
ʬ ([2:4]) Τߤ褵졢ϰ ([2:4]) μΤߤ
ޤĤޤꡢ y ϰ ([0:10]) ˳礵
ޤζ 0 2 δ֡4 10 δ֤϶ΰȤʤޤ
Υϡ`ϰ` (range-frame) ȤƤФޤ
set border 3
set yrange [0:10]
set ytics nomirror rangelimited
plot "file.dat"
3 xy ʿ̰ (xyplane)
?commands set xyplane
?commands show xyplane
?set xyplane
?show xyplane
?xyplane
`set xyplane` ޥɤ 3D xy ʿ̤ΰ֤ĴΤ
ȤޤߴΤˡ"set ticslevel" Ʊ̣Υޥɤ
ƻȤȤǤޤ
:
set xyplane at <zvalue>
set xyplane relative <frac>
set ticslevel <frac> # set xyplane relative Ʊ
show xyplane
`set xyplane relative <frac>` ϡxy ʿ̤ Z ϰϤΤɤ֤
ꤷޤ<frac> ˤϡxy ʿ̤ z ΰֲΰ֤ȤκΡz
ΤФͿޤǥեȤͤ 0.5 Ǥͤ
Ƥޤ 3 ĤμθФŤʤǽ
ޤ
⤦ĤηǤ `set xyplane at <zvalue>` ϡߤ z ϰϤ
ˤ뤳Ȥʤꤷ z ͤΰ֤ xy ʿ̤ꤷޤäơ
x,y,z ̤θ̤褦ˤˤϡ`set xyplane at 0` Ȥ
Ȥˤʤޤ
ʲ⻲: `set view`, `set zeroaxis`
3 xzeroaxis
?commands set xzeroaxis
?commands unset xzeroaxis
?commands show xzeroaxis
?set xzeroaxis
?unset xzeroaxis
?show xzeroaxis
?xzeroaxis
?noxzeroaxis
ޥ `set xzeroaxis` y = 0 ľޤܺ٤˴ؤƤϡ
: `set zeroaxis`
3 y2data
?commands set y2data
?commands show y2data
?set y2data
?show y2data
?y2data
ޥ `set y2data` y2 () Υǡ ()
ޤܺ٤ϡʲ: `set xdata`
3 y2dtics
?commands set y2dtics
?commands unset y2dtics
?set y2dtics
?unset y2dtics
?show y2dtics
?y2dtics
?noy2dtics
ޥ `set y2dtics` y2 () ѹޤܺ٤ϡ
ʲ: `set xdtics`
3 y2label
?commands set y2label
?commands show y2label
?set y2label
?show y2label
?y2label
ޥ `set y2label` y2 () θФꤷޤܺ٤ϡʲ
: `set xlabel`
3 y2mtics
?commands set y2mtics
?commands unset y2mtics
?commands show y2mtics
?set y2mtics
?unset y2mtics
?show y2mtics
?y2mtics
?noy2mtics
ޥ `set y2mtics` y2 () 1 ǯγƷѹޤ
ܺ٤ϡʲ: `set xmtics`
3 y2range
?commands set y2range
?commands show y2range
?set y2range
?show y2range
?y2range
ޥ `set y2range` y2 () ɽľϰϤꤷޤ
ޥɥץΤ٤ƤˤĤƤϡʲ: `set xrange`
⻲: `set link`
3 y2tics
?commands set y2tics
?commands unset y2tics
?commands show y2tics
?set y2tics
?unset y2tics
?show y2tics
?y2tics
?noy2tics
ޥ `set y2tics` y2 () ΡФդ
Ԥʤޤܺ٤ϡʲ: `set xtics`
3 y2zeroaxis
?commands set y2zeroaxis
?commands unset y2zeroaxis
?commands show y2zeroaxis
?set y2zeroaxis
?unset y2zeroaxis
?show y2zeroaxis
?y2zeroaxis
?noy2zeroaxis
ޥ `set y2zeroaxis` ϡ̤ y2 () (x2 = 0)
ܺ٤ϡʲ: `set zeroaxis`
3 ydata
?commands set ydata
?commands show ydata
?set ydata
?show ydata
?ydata
ޥ `set ydata` y Υǡ () ꤷޤ
ʲ: `set xdata`
3 ydtics
?commands set ydtics
?commands unset ydtics
?commands show ydtics
?set ydtics
?unset ydtics
?show ydtics
?ydtics
?noydtics
ޥ `set ydtics` y ѹޤܺ٤ϡʲ
: `set xdtics`
3 ylabel
?commands set ylabel
?commands show ylabel
?set ylabel
?show ylabel
?ylabel
Υޥɤ y θФꤷޤʲ: `set xlabel`
3 ymtics
?commands set ymtics
?commands unset ymtics
?commands show ymtics
?set ymtics
?unset ymtics
?show ymtics
?ymtics
?noymtics
ޥ `set ymtics` ϡy ѹޤܺ٤ϡʲ
: `set xmtics`
3 yrange
?commands set yrange
?commands show yrange
?set yrange
?show yrange
?yrange
ޥ `set yrange` ϡy οľϰϤꤷޤܺ٤ϡʲ
: `set xrange`
3 ytics
?commands set ytics
?commands unset ytics
?commands show ytics
?set ytics
?unset ytics
?show ytics
?ytics
?noytics
ޥ `set ytics` y (Фդ) 椷ޤ
ܺ٤ϡʲ: `set xtics`
3 yzeroaxis
?commands set yzeroaxis
?commands unset yzeroaxis
?commands show yzeroaxis
?set yzeroaxis
?unset yzeroaxis
?show yzeroaxis
?yzeroaxis
?noyzeroaxis
ޥ `set yzeroaxis` x = 0 ľ (y ) ޤܺ٤ϡ
: `set zeroaxis`
3 zdata
?commands set zdata
?commands show zdata
?set zdata
?show zdata
?zdata
ޥ `set zdata` z Υǡ () ꤷޤ
ʲ: `set xdata`
3 zdtics
?commands set zdtics
?commands unset zdtics
?commands show zdtics
?set zdtics
?unset zdtics
?show zdtics
?zdtics
?nozdtics
ޥ `set zdtics` z ѹޤܺ٤ϡʲ
: `set xdtics`
3 zzeroaxis
?commands set zzeroaxis
?commands unset zzeroaxis
?commands show zzeroaxis
?set zzeroaxis
?unset zzeroaxis
?show zzeroaxis
?zzeroaxis
?nozzeroaxis
ޥ `set zzeroaxis` (x=0,y=0) ̤ľޤϡ2D
衢 `set view map` Ǥ splot ǤϸϤޤܺ٤ϡ
ʲ: `set zeroaxis`, `set xyplane`
3 cbdata
?commands set cbdata
?commands show cbdata
?set cbdata
?show cbdata
?cbdata
Υޥɤϥ顼ܥåΥǡ () ˼ꤷ
ޤʲ: `set xdata`
3 cbdtics
?commands set cbdtics
?commands unset cbdtics
?commands show cbdtics
?set cbdtics
?unset cbdtics
?show cbdtics
?cbdtics
?nocbdtics
ޥ `cbdtics` ϥ顼ܥåιߤѴޤ
ܺ٤ϡʲ: `set xdtics`
3 (zero)
?commands set zero
?commands show zero
?set zero
?show zero
?zero
`zero` ͤϡ0.0 ˶ᤤǥեȤͤɽޤ
:
set zero <expression>
show zero
`gnuplot` ϡ(ʣǿͤˤƤ) ͤεʬ
ͤ `zero` ͤ礭 (Ĥޤ¿Ǥʤͤ) ϡ
褷ޤͤ `gnuplot` ¾͡ʬˤƤ
(ޤ) ͤȤƤȤƤޤǥեȤ `zero`
ͤ 1e-8 Ǥ1e-3 (= ŵŪʥӥåȥޥåץǥץ쥤β٤εտ)
礭 `zero` ͤꤹ٤ǤϤʤǤ礦`zero` 0.0
ꤹΤϰ̣ΤʤȤǤϤޤ
3 (zeroaxis)
?commands set zeroaxis
?commands unset zeroaxis
?commands show zeroaxis
?set zeroaxis
?unset zeroaxis
?show zeroaxis
?zeroaxis
x `set xzeroaxis` ˤä졢`unset xzeroaxis` ˤäƺ
ޤƱͤ y, x2, y2, z ѤΥޥɤƱͤƯޤ
`set zeroaxis ...` (ֻʤ) ϡx, y, z ٤Ƥ˵ǽޤ
:
set {x|x2|y|y2|z}zeroaxis { {linestyle | ls <line_style>}
| {linetype | lt <line_type>}
{linewidth | lw <line_width>}
{linecolor | lc <colorspec>}
{dashtype | dt <dashtype>} }
unset {x|x2|y|y2|z}zeroaxis
show {x|y|z}zeroaxis
ǥեȤǤϡΥץϥդˤʤäƤޤ줿 0
μ <line_type> η<line_width> <colorspec> ο
<dashtype> /ѥ (⸽ѤƤϷ
ݡȤƤ)뤤Ϥ餫줿 <line_style> Υ
ޤʲ: `set style line`
ηꤷʤС̾μη ( 0) ޤ
:
y=0 μ褦˴ñ˽:
set xzeroaxis
ˤơäޤѥˤ:
set xzeroaxis linetype 3 linewidth 2.5
3 zlabel
?commands set zlabel
?commands show zlabel
?set zlabel
?show zlabel
?zlabel
Υޥɤ z θФꤷޤʲ: `set xlabel`
3 zmtics
?commands set zmtics
?commands unset zmtics
?commands show zmtics
?set zmtics
?unset zmtics
?show zmtics
?zmtics
?nozmtics
ޥ `set zmtics` z ѹޤܺ٤ϡʲ
: `set xmtics`
3 zrange
?commands set zrange
?commands show zrange
?set zrange
?show zrange
?zrange
ޥ `set zrange` z ɽϰϤꤷޤΥ
ޥɤ `splot` ˤΤͭǡ`plot` Ǥ̵뤵ޤܺ٤ϡʲ
: `set xrange`
3 ztics
?commands set ztics
?commands unset ztics
?commands show ztics
?set ztics
?unset ztics
?show ztics
?ztics
?noztics
ޥ `set ztics` z (Фդ) 椷ޤ
ܺ٤ϡʲ: `set xtics`
3 cblabel
?commands set cblabel
?commands show cblabel
?set cblabel
?show cblabel
?cblabel
Υޥɤϥ顼ܥåθФꤷޤʲ:
`set xlabel`
3 cbmtics
?commands set cbmtics
?commands unset cbmtics
?commands show cbmtics
?set cbmtics
?unset cbmtics
?show cbmtics
?cbmtics
?nocbmtics
ޥ `set cbmtics` ϥ顼ܥåθФѴ
ޤܺ٤ϡʲ: `set xmtics`
3 cbrange
?commands set cbrange
?commands show cbrange
?set cbrange
?show cbrange
?cbrange
ޥ `set cbrange` ϡ `with pm3d`, `with image`
`with palette` ʤɤˤäƸߤΥѥå (`palette`) Ȥäƿդ
ͤϰϤꤷޤϰϳͤФƤϡǤᤤ³ͤ
Ѥޤ
顼ܥå (cb-) `splot` Ǽư̼ܤƤϡ
顼ܥåϰϤ `zrange` Ȥޤ`splot ... pm3d|palette`
褵ϡۤʤ `zrange` `cbrange` ȤȤǥե륿
Ǥޤ
`set cbrange` ν˴ؤܺ٤ϡʲ: `set xrange`ʲ⻲:
`set palette`, `set colorbox`
3 cbtics
?commands set cbtics
?commands unset cbtics
?commands show cbtics
?set cbtics
?unset cbtics
?show cbtics
?cbtics
?nocbtics
ޥ `set cbtics` ϥ顼ܥå (Фդ)
椷ޤܺ٤ϡʲ: `set xtics`
2 륳ޥ (shell)
?commands shell
?shell
`shell` ޥɤŪʥưޤ`gnuplot` ˤϡ
Unix ʤ `exit` ⤷ END-OF-FILE ʸMS-DOS OS/2 ʤ
`exit` ϤƲ
ޥ `shell` ϡʳ gnuplot ޥɥ饤ΤΤ٤
̵뤷ޤǤʤľ˥ޥʸϤϡ
ؿ `system` 硼ȥå `!` ѤƤʲ:
`system`
:
shell
system "print previous_plot.ps"
! print previous_plot.ps
current_time = system("date")
2 show
ۤȤɤ `set` ޥɤˤϡб롢̤ʥץ
ʤ show ޥɤޤ:
show linetype 3
ϡʲΤ褦ˡΥޥɤ鸽ͭ°𤷤ޤ:
set linetype 3 linewidth 2 dashpattern '.-'
ηȤΥ 2, 3 `show` ޥɤˤĤƤ̤ޤ
3 show colornames
?commands show colornames
?show colornames
?show palette colornames
gnuplot 100 ٤ο̾äƤޤ (ʲ: `colornames`)
`show colornames` ȤСνϷФ뿧̾ΰ
Ǥޤ
̾ꤹˡϺϤޤ
3 show functions
?commands show functions
?show functions
`show functions` ޥɤϥ桼ؿȤƤɽ
ޤ
:
show functions
gnuplot ˤؿȤλȤˤĤƤϡʲ:
`expressions`
ʲ⻲
^ <a href="http://www.gnuplot.info/demo/spline.html">
桼ؿǤΥץ饤 (spline.dem)
^ </a>
^ <a href="http://www.gnuplot.info/demo/airfoil.html">
ؿʣѿ˻ (airfoil.dem)
^ </a>
3 show palette
?commands show palette
?show palette
=palette
:
show palette
show palette palette {<ncolors>} {{float | int | hex}}
show palette gradient
show palette rgbformulae
test palette
ޥ `test palette` ϡߤΥѥåȤ R,G,B ʬб
(profile) 褷ͤǡ֥å $PALETTE ˻Ĥޤ
4 show palette gradient
?commands show palette gradient
?show palette gradient
`show palette gradient` ϡޥ `set palette defined`
ʬŪʥǡɽޤߤΥѥåȤrgbformulae
˴Ťޤͤν˴ŤϡΥޥɤϲ
⤷ޤ
4 show palette palette
?commands show palette palette
?show palette palette
show palette palette {<ncolors>} {{float | int | hex}}
`show palette palette <n>` ϡߤΥѥåȤγƥȥοʬɽ
̡ޤ `set print` ǻꤵ줿ե˽Фޤǥ
ȤǤϡϢ³ʥѥåȤ 128 ڤɸܲޤ<ncolors>
ꤹȡѥåȤ (128 Ǥʤ) οζڤ˶ɸܲޤ
ǥեȤϡʲĹǤΰɽǤ:
0. gray=0.0000, (r,g,b)=(0.0000,0.0000,0.0000), #000000 = 0 0 0
1. gray=0.1111, (r,g,b)=(0.3333,0.0014,0.6428), #5500a4 = 85 0 164
2. gray=0.2222, (r,g,b)=(0.4714,0.0110,0.9848), #7803fb = 120 3 251
...
˥ץ `float`, `int`, `hex` Ĥȡ˳
ȥ˰ĤοʬɽΤߤɽޤ
int: 85 0 164
float: 0.3333 0.0014 0.6428
hex: 0x5500a4
`set print` ȤäƤνϤե˽ФȤǡgnuplot θ
Υ顼ѥåȤ Octave Τ褦¾βץꥱ˼
ळȤǤޤ
`set print` ȤäƤνϤǡ֥å˽ФȤǡߤΥ
åȤ¸ǤޤˤͭʥѥåȤǤ⡢
plot ޥɤ¸ѥåȤȤ褦ˤʤޤϡ
ܥåͭʥѥåȤɽǡʣΥѥå
褹륰դ뤳Ȥǽˤޤ
4 show palette rgbformulae
?commands show palette rgbformulae
?show palette rgbformulae
`show palette rgbformulae` ϡѤѤǤ롢Ĵͤ饫
ؤѴɽޤϡߤΥѥåȤξ֤ɽ֤Ƥ
ޤ
3 show plot
?commands show plot
?show plot
ޥ `show plot` ľ襳ޥɡʤ `replot` ޥ
ǺƸ롢ľ˹Ԥ줿 `plot` `splot` ޥɤɽޤ
˥ޥ`show plot add2history` ϡθߤ襳ޥɤ
`history` ˽Фޤϡ`replot` Ȥäľ襳ޥ
˶ɲä硢ƥޥɹΤԽ
Ǥ
3 show variables
?commands show variables
?show variables all
?show variables
`show variables` ޥɤϥ桼ѿѿθߤͤΰ
ɽޤgnuplot ϡGPVAL_, MOUSE_, FIT_, TERM_ ǻϤޤ̾
ѿƤޤ
:
show variables # GPVAL_ ǻϤޤΰʳѿɽ
show variables all # GPVAL_ ǻϤޤΤޤƤѿɽ
show variables NAME # NAME ǻϤޤѿΤߤɽ
2 splot
?commands splot
?splot
`splot` 3 ΤΥޥɤǤ (¸ΤǤ礦
ºݤˤϤ 2 ؤμͱ)ϡ`plot` ޥɤ 3 ǤǤ
`splot` ϡ줾ñ x, y, z ǡ`plot` Ѱդ
Ƥ 2 x2, y2 Τ褦ʤΤϤޤ
2 3 ξǻȤ¿ΥץˤĤƤϡʲ:
`plot`
:
splot {<ranges>}
{<iteration>}
<function> | {{<file name> | <datablock name>}
{datafile-modifiers}}
| <voxelgridname>
| keyentry
{<title-spec>} {with <style>}
{, {definitions{,}} <function> ...}
ޥ `splot` ϡؿ줿ǡޤϥǡե뤫
ɤ߹ǡޤϻ¸줿̾դǡ֥åΥǡ
ޤǡե̾ϡ̾ǰϤʸȤͿ
ޤؿ 1 ܤοǤѿ⡼ (parametric) Ǥ 3 Ĥ
ȤȤͿޤ
С 5.4 ʹߡ`splot` ϥܥǡǤޤʲ
: `voxel-grids`, `set vgrid`, `vxrange`ͭʥܥʻҥǡ
ϡ `with dots`, `with points`, `with isosurface` Τ줫
ȤäǤޤܥʻҥǡͤϡʳ襹
Ǥ `using` ȤлȤǤ㤨пƤʤɤѤǤ
ޤ
ǥեȤǤϡ`splot` 褵ǡβ˴ xy ̤ޤ
z ΰֲ xy ʿ̤ΰִط `set xyplane` ѹǤޤ
`splot` μͱƤθ `set view` Ǥޤܺ٤ϡʲ:
`set view`, `set xyplane`
`splot` ޥɤϰϤλν `plot` ξƱǤѿ
⡼ (parametric) ǤʤСϰϻϰʲνǡ
splot [<xrange>][<yrange>][<zrange>] ...
ѿ⡼ (parametric) ǤϡϰϻϰʲνͿʤФ
ޤ:
splot [<urange>][<vrange>][<xrange>][<yrange>][<zrange>] ...
`title` ץ `plot` ƱǤ`with` `plot` ȤۤƱ
2 襹Ȥ櫓ǤϤޤ
`datafile` ץˤϤ˰㤤ޤ
ѿ⡼ (parametric) ؿѤƶ̤̤ˡˡ
ե '++' Ѥ xy ʿ̤γʻҤξɸ
ޤ
ʲ⻲: `show plot`, `set view map`, `sampling`
3 ǡե (datafile)
?commands splot datafile
?splot datafile
`plot` Ʊ褦ˡ`splot` ǥե뤫饰դǤޤ
:
splot '<file_name>' {binary <binary list>}
{{nonuniform|sparse} matrix}
{index <index list>}
{every <every list>}
{using <using list>}
`""` `"-"` Ȥä̤ʥե̾ `plot` Ʊͤ˵ޤ
: `special-filenames`
`binary` `matrix` ϤΥǡ̤ʷǤ뤳Ȥ
`index` ¿ťǡե뤫ɤΥǡ褹뤫
`every` ϳƥǡ礫ɤʬԤ褹뤫
`using` ϳƥǡԤɤΤ褦֤ꤷޤ
`index` `every` ץ `plot` ξƱ褦˿ޤ
`using` ⡢`using` ΥꥹȤ 2 ĤǤʤ 3 ɬפǤȤȤ
ƤƱͤǤ
`plot` ΥץǤ `smooth` `splot` ǤѤǤޤ
`cntrparam` `dgrid3d` ¤ƤϤޤʿ경Τ
դƤޤ
ǡեηϡ (x,y,z) 3 ȤǤʳϡܼŪ
`plot` ƱǤ⤷ĤͤͿС z ȤƻȤ
졢֥åֹ椬 y Ȥơ x ϤΥ֥åǤֹ椬Ȥ
ޤ⤷ 2 ġ뤤 4 ĤͤͿС`gnuplot` ϤκǸ
ͤ pm3d plot Ǥοη˻Ȥޤ3 Ĥͤ (x,y,z) Ȥȸ
ޤ¾ͤСϰ̤˸ȸʤޤ `fit`
ǻȤȤǽǤ
`splot` ΥǡեǤϡ1 ԤζԤϥǡΥ֥åʬΥҤǤ
`splot` ϸġΥ֥åؿ y-ΩƱΤȤưޤ
1 ԤζԤʬΥƤƱΤʬǷФ뤳ȤϤޤ
Υ֥åƱοľ硢`gnuplot` ϥ֥åǤ
֥åбƱΤָΩޤ "grid data"
ƤФ졢̤衢 (`set contour`)
(`set hidden3d`) ǤϡηΥǡǤ뤳ȤɬפȤʤޤʲ
⻲: `splot grid_data`
4 matrix
?commands plot datafile matrix
?commands splot datafile matrix
?plot datafile matrix
?splot datafile matrix
?binary matrix
?matrix
ƥȥեХʥե뤫顢matrix ǡʷ
(`uniform`, `nonuniform`, `sparse`) Ϥ뤳ȤǤޤ
1 ܤηϡx, y κɸ (uniform) ǤȲꤷơͤ
ΰͤʳʻҤ matrix Τ줾 M[i,j] ˳ƤˡǤ
Ƥ x ɸ [0:NCOLS-1] ϰϤǤ
Ƥ y ɸ [0:NROWS-1] ϰϤǤ
ϡƥȥǡФƤϥǥեȤǤХʥǡФ
ƤϤǤϤޤ
ɲåɤˤĤƤϰʲ: `matrix uniform`
2 ܤηϡx, y ɸ줿 (nonuniform) ʳʻҤǡ
ϥǡκǽιԤ y ɸǽ x ɸȤߤʤޤ
ХʥϥǡǤϡ1 ܤκǽǤϡǤʤФޤ
`binary matrix` ϤǤϤ줬ǥեȤǤƥϥǡ
Ƥɲå `nonuniform` ɬפˤʤޤ
˴ؤƤϰʲ: `nonuniform`
`sparse matrix` ηϰͤʳʻҤޤγʻǤդθ
Τ줾ͤϥե뤫顢ǤդνΰԤ˰ĤΥǡ
ȤơɤޤϡԴʥǡ鲹ʬۿ
(heatmap) ŪΤΤǤ
˴ؤƤϰʲ: `sparse`
5 uniform matrix
?commands plot datafile matrix uniform
?commands splot datafile matrix uniform
?datafile matrix uniform
?matrix uniform
?binary matrix uniform
?uniform
(uniform) matrix ǡ褹륳ޥɤ:
splot 'file' matrix using 1:2:3 # ƥȥǡ
splot 'file' binary general using 1:2:3 # Хʥǡ
ͤʳʻҤ matrix ǡǤϡƥ֥å z ͤϰԤǰ٤ɤ
ޤʤ
z11 z12 z13 z14 ...
z21 z22 z23 z24 ...
z31 z32 z33 z34 ...
ƥȥǡФƤϡ1 ܤǡǤʤ٥ľ硢ɲ
`columnheaders` ȤäƤƱͤˡƹԤκǽ
ǡǤʤ٥Ǥϡɲå `rowheaders` Ѥ
ƤʲϡξѤǤ:
$DATA << EOD
xxx A B C D
aa z11 z12 z13 z14
bb z21 z22 z23 z24
cc z31 z32 z33 z34
EOD
plot $DATA matrix columnheaders rowheaders with image
ƥȥǡǤϡԤ䥳ȹԤǡλʥǡ
֥åϤޤĤΤȤǤ`splot` ޥɤ `index`
ץȤäƥեΥǡ֥åͳǤޤ
columnheaders ϡϺǽΥǡ֥åˤΤŬ
Ѥޤ
5 nonuniform matrix
?commands plot datafile matrix nonuniform
?commands splot datafile matrix nonuniform
?datafile matrix nonuniform
?matrix nonuniform
?binary matrix nonuniform
?nonuniform
ϥǡκǽιԤ y ɸޤ
ϥǡκǽ x ɸޤ
ХʥϥǡǤϡ1 ܤκǽǤǤʤФޤ
(ƥȥǡǤϤ̵ֹ뤵ޤ)
(nonuniform) matrix ǡ褹륳ޥɤ:
splot 'file' nonuniform matrix using 1:2:3 # ƥȥǡ
splot 'file' binary matrix using 1:2:3 # Хʥǡ
äơͤ matrix ǡι¤ϰʲΤ褦ˤʤޤ:
<N+1> <x0> <x1> <x2> ... <xN>
<y0> <z0,0> <z0,1> <z0,2> ... <z0,N>
<y1> <z1,0> <z1,1> <z1,2> ... <z1,N>
: : : : ... :
ϰʲΤ褦 3 ĤοȤѴޤ:
<x0> <y0> <z0,0>
<x0> <y1> <z0,1>
<x0> <y2> <z0,2>
: : :
<x0> <yN> <z0,N>
<x1> <y0> <z1,0>
<x1> <y1> <z1,1>
: : :
ơ 3 ĤοȤ `gnuplot` θΩѴ졢θ
`gnuplot` ̾ˡλĤԤޤ
5 sparse matrix
?datafile sparse matrix
?sparse
:
sparse matrix=(cols,rows) origin=(x0,y0) dx=<delx> dy=<dely>
#TeX \\
`sparse` matrix ϡ`plot` `splot` Υޥɥ饤ΰʬ
ȤơͤʳʻҤޤǽϳʻҤ϶Ǥ
θϥե뤫ġͤǤոġԤĤɤ߹ߡ
˺Ǥᤤʻ˳ƤƹԤޤʤǡԤ
x y value
i = (x - x0) / delx
j = (y - y0) / dely
matrix[i,j] = value
Τ褦ɾޤ
matrix ΥɬܤǤ
`origin` (ץ) ΥǥեȤ origin=(0,0) Ǥ
`dx` (ץ) ΥǥեȤ dx=1 Ǥ
`dy` (ץ) ΥǥեȤ dy=dx Ǥ
ηϡХХǡԴǤäƤ褤ǡ `image`,
`rgbimage`, `rgbalpha` 襹ʤɤѤƲʬۿ (heatmap)
ΤλŪǤʲϡͿ館廰ʬΤߤ
4x4 βʬۿޤηΥ matrix ޤ
Ffigure_sparsematrix
$DATA << EOD
1 1 10
1 2 20
1 3 30
1 4 40
2 2 10
2 3 50
2 4 60
3 3 10
3 4 20
4 4 10
EOD
plot $DATA sparse matrix=(4,4) origin=(1,1) with image
5 every
?datafile matrix every
?matrix every
`every` ϡmatrix ǡФƻѤ̤ʰ̣
ޤǡ֥åŬѤΤǤʤǡιԡŬѤ
matrix ǡιԤֹϡ0 Ϥޤꡢäֹ N ϡ
(N+1) ܤǤ뤳ȤդƤ
:
plot 'file' matrix every {<column_incr>}
{:{<row_incr>}
{:{<start_column>}
{:{<start_row>}
{:{<end_column>}
{:<end_row>}}}}}
:
plot 'file' matrix every :::N::N # N ֤ιԤΤ٤Ƥͤ
plot 'file' matrix every ::3::7 # ٤ƤιԤ 3-7
plot 'file' matrix every ::3:0:7:4 # [3,0], [7,4] Ȥʬ
5 examples
?commands plot datafile matrix examples
?commands splot datafile matrix examples
?datafile matrix examples
?matrix examples
?binary matrix examples
٥ȥΥ֥롼 (C ˤ) `binary.c` Ѱդ
ƤޤХʥǡ롼
int fwrite_matrix(file,m,nrl,nrl,ncl,nch,row_title,column_title)
ǤΥ֥롼Ȥ㤬 `bf_test.c` ȤѰդƤơ
ϥǥե `demo/binary.dem` ѤʣΥХʥե
ޤ
`plot` Ǥλˡ:
plot 'a.dat' matrix
plot 'a.dat' matrix using 1:3
plot 'a.gpbin' {matrix} binary using 1:3
ιԤ褷using 2:3 Ȥ衢using 1:2
ϡκɸ褷ޤ (¿ʬ̵̣Ǥ)ץ `every` ŬѤ
뤳ȤŪ˹ԤǤޤ
-- ƥȥǡեμγ:
splot `a.dat` matrix using (1+$1):(1+$2*10):3
-- ƥȥǡե 3 Ԥ:
plot 'a.dat' matrix using 1:3 every 1:999:1:2
(Ԥ 0 Τǡ3 ǤϤʤ 2 ꤷޤ)
Gnuplot ϡ`array`, `record`, `format`, `filetype` ʤɤ general
ʥꤹ褦ʥɤĤ˥ץ `binary`
Ȥǡmatrix Хʥեɤ߹ळȤǤޤ¾Ѵ
Ѥ general Хʥꥭɤϡmatrix ХʥեˤŬѤǤ
Ǥ礦(ܺ٤ϡʲ: `binary general`)
4 ǡե
?commands splot datafile example
?splot datafile example
?splot example
ʲ3 ǡեñʰĤǤ
splot 'datafile.dat'
ǡ"datafile.dat" ϰʲޤȤޤ:
# The valley of the Gnu.
0 0 10
0 1 10
0 2 10
1 0 10
1 1 5
1 2 10
2 0 10
2 1 1
2 2 10
3 0 10
3 1 0
3 2 10
"datafile.dat" 4*3 γʻ (줾 3 ʤ֥å
4 Ĥι) 뤳ȤդƲ (֥å) 1 Ԥζ
Ƕڤޤ
x ͤϤ줾Υ֥åˤʤäƤ뤳ȤդƲ
⤷ y ͤȤͭʾ֤褹ȡζ̤
֤ǽ뤳Ȥˤʤޤ
ʻҾǡ (grid data) ФơġΥ֥å x ͤȤ
ƤɬפϤޤƱ y ͤƱͤ·Ƥɬפ
ޤ`gnuplot` ϸġΥ֥åοȤȤɬ
פȤƤǤƳΤѤ̤ܤϡ
бŪǷ֤ᡢ·γʻҥǡФ̤
ؤαƶͽۤǤޤϥХθǥƥȤ٤
礦
3 ʻҾǡ (grid data)
?commands splot grid_data
?splot grid_data
?grid_data
3 ΤΥ롼ϡġܤγʻҤˤƤϰĤɸ
ĤΥǡ롢ȤγʻҾǡѤ߷פƤޤƥ
ϡؿͤɾ뤳 (ʲ: `set isosamples`)ޤ
ǡեɤ߹ळ (ʲ: `splot datafile`) ˤä
ޤ"Ω" ȤդϴؿФƤ⡢ǡФƤ⤽
ܤɽΤȤѤޤܤϡɬ x, y ˴ؤĹ
ǤʤƤ褯u,v ѿɽƤʤȤդƲ
ʲ: `set isosamples`
`gnuplot` ϤΤ褦ʷɬɬפȤϤޤ㤨д
ξϡ`samples` `isosamples` ȰäƤƤޤʤ
x-ΩΤ1 ܤ y-ΩȸʤΤĤ뤳Ȥ
ޤǡեξϡġΥ֥åΤФĤθĿ
ƱǤС"Ω" ϥ֥åӡ"ǸΩ" ϳƥ
åбƱΤӡ"" Ȥޤɤξ
⡢ӱ⡼ɤտޤեޥåȤǤä
ȤϰäͿ뤳Ȥˤʤޤ
ФĤΤǡϡ˳ʻҤ˹碌뤳ȤǽǤʲ:
`set dgrid3d`
˴ؤ륳ɤϡy-Ωȡб٤ y-Ω
δ֤ʬ˱äƤ z ĥϤ¬ޤäơx-Ωˡ
y-ΩȤθȤϤʤʤ褦ɸ褦ʶ̤ФƤϡ
`splot` ϤΤ褦ɸ̵뤹뤳Ȥˤʤޤʲ
ߤƲ:
set xrange [-pi/2:pi/2]; set yrange [-pi/2:pi/2]
set style function lp
set contour
set isosamples 10,10; set samples 10,10;
splot cos(x)*cos(y)
set samples 4,10; replot
set samples 10,4; replot
3 splot ζ (splot surfaces)
?commands splot surfaces
?splot surfaces
`splot` νޤȤơ뤤ϡ֤Ȥˤäƶ
ɽ뤳ȤǤޤ`plot` Ʊͤˡϥǡե뤫ɤ
ȤǤޤꤵ줿֤Ǵؿͤɾ뤳ȤǤޤ
ʲ: `set isosamples`̤ϡʬǷ֤ȤǶŪ˺
ޤʲ: `set surface`Ƥξ̤ϡ`set hidden3d`
ƩˤǤޤ3 ̤įϡ`set view` ѹǤ
ޤ
ˡʻҾΥǡФƤϡ`splot` Ʊ⤵֤
뤳ȤǤ (ʲ: `set contour`)Ƥ
ȤǤޤˡηˤϿľʬ餫Ȥ
ȤǤޤ (ʲ: `set cntrparam`)ؿϡ `set isosamples`
`set samples` ǷꤵʻҾǡȤɾޤ
Υǡϡ`data-file` ˽Ƥ褦ʳʻҾǡե
åȤˤ뤫뤤ϳʻҥǡ (ʲ: `set dgrid3d`)
ȤȤʤФϤʤޤ
϶̤ξɽ뤳ȤǤޤ̤˼ͱƤ뤳ȤǤ
̤ؤμͱƤϡե˽ФȤǤƤ `plot`
ǺƤɤ߹ `plot` Τ궯ǽϤȤǤޤ
3 ܥʻҥǡ (voxel-grid)
?commands splot voxel-grid
?splot voxel-grids
?voxel-grids
:
splot $voxelgridname with {dots|points} {above <threshold>} ...
splot $voxelgridname with isosurface {level <threshold>} ...
ܥǡϡꤷ (threshold; ǥեȤ 0) 礭
ͤθġΥܥ˰դ褦ˡwith dots with points
Ǥޤ°ϡ̾ƱͤɲûǤޤ
¿λФơܥʻϡǥץ쥤Ǹߤ
⥢ꤷޤѤϡjitter ƳƥɥåȤ
ºݤΥܥʻҺɸˤ餹Ȥ뤳Ȥǽ
ʲ: `set jitter`
̩ʥܥʻҤϡ`pointinterval` ° (ά `pi`) ȤȤǡ
ο餹褦ɸܲ٥뤳ȤǽǤ
splot $vgrid with points pointtype 6 pointinterval 2
`with isosurface` ϡꤵ줿ͤ礭ܥΤࡢ3
⥶̤ޤζ̤ϡͤ켫Τ̲᤹褦
֤ˤĴ֤ޤ
ʲ: `set vgrid`, `vfill`
ʲΥǥ⻲ȤƤ: `vplot.dem`, `isosurface.dem`
2 stats (ñ)
?commands stats
?stats
?statistics
=filter
:
stats {<ranges>} 'filename' {matrix | using N{:M}} {name 'prefix'}
{{no}output}
stats $voxelgridname {name 'prefix'}
Υޥɤϡե 1 ޤ 2 Υǡδñ
ޤusing Ҥϡplot ޥɤƱDzᤵޤ
`index`, `every`, `using` ˴ؤܺ٤ˤĤƤϰʲ: `plot`
ǡϡβϤ xrange, yrange ˽äƥե륿ˤ
ʲ: `set xrange`ξϥǥեȤǤϥ˽Ϥ
ޤޥ `set print` ˻ȤȤǽϤե˥
쥯Ȥꡢץ `nooutput` ȤȤǽϤʤ褦ˤ뤳
ȤǤޤ
ե뤬Ĥʤ뤤ϥե뤫ɤ߹ʤϡ̿Ū
ǤϤʤٹȯԤޤϡץ२顼ȼʤե
¸߳ǧѤǤޤʲ: `stats test`
̽Ϥ˲ägnuplot ϸġ 3 Ĥѿ롼פ¸
ޤ
1 ܤѿ롼פϡɤʥǡ¤Ǥ뤫ޤƬ
ϡ`set datafile columnheaders` ͭʾˤΤߺޤ:
@start table
STATS_records # ϰΥǡԤ N
STATS_outofrange # ϰϳȤƽ줿Կ
STATS_invalid # ̵/Դ/»ǡԤ
STATS_blank # Ԥ
STATS_blocks # եΥǡ index ֥å
STATS_columns # ǡƬԤ
STATS_column_header # ƬԤ˸Ĥäʸݻ
#\begin{tabular}{|lcl|} \hline
#\verb@STATS_records@ & $~~N~~$ & ϰΥǡԤ $N$ \\
#\verb@STATS_outofrange@ & $~~~~~$ & ϰϳȤƽ줿Կ \\
#\verb@STATS_invalid@ & $~~~~~$ & ̵/Դ/»ǡԤ \\
#\verb@STATS_blank@ & $~~~~~$ & Ԥ \\
#\verb@STATS_blocks@ & $~~~~~$ & եΥǡ index ֥å \\
#\verb@STATS_columns@ & $~~~~~$ & ǡƬԤ \\
#\verb@STATS_column_header@& $~~~~~$ & ƬԤ˸Ĥäʸݻ \\
%l l .
%ѿ@
%_
%STATS_records@ϰΥǡԤ N
%STATS_outofrange@ϰϳȤƽ줿Կ
%STATS_invalid@̵/Դ/»ǡԤ
%STATS_blank@Ԥ
%STATS_blocks@եΥǡ index ֥å
%STATS_columns@ǡƬԤ
%STATS_column_header@ƬԤ˸Ĥäʸݻ
@end table
2 ܤѿ롼פϡ1 ĤΡϰΥǡޤ
y ͤȤưޤy ư̼ܤξϡоݤȤϰ
˸³ϤޤǤʤϰ [ymin:ymax] ͤΤߤо
Ȥޤ
2 ĤƱ 1 `stats` ޥɤDzϤϡѿ̾
"_x", "_y" Ȥɲäޤ㤨 STATS_min_x ϡ1 ܤ
ΥǡκǾͤǡSTATS_min_y 2 ܤΥǡκǾ̣ͤ
ޤξ硢 xrange yrange ξǸ뤳ȤǤդ뤤ˤ
ޤ
@start table
STATS_min # ϰΥǡκǾ
STATS_max # ϰΥǡκ
STATS_index_min # data[i] == STATS_min Ȥʤź i
STATS_index_max # data[i] == STATS_max Ȥʤź i
STATS_lo_quartile # () ʬ̶
STATS_median # (ʬ̶)
STATS_up_quartile # 軰 () ʬ̶
STATS_mean # ϰΥǡʿ
STATS_ssd # ϰΥǡɸк
= sqrt( Sum[(y-ymean)^2] / (N-1) )
STATS_stddev # ϰΥǡɸɸк
= sqrt( Sum[(y-ymean)^2] / N )
STATS_sum #
STATS_sumsq # ʿ
STATS_skewness # ϰΥǡ
STATS_kurtosis # ϰΥǡ
STATS_adev # ϰΥǡʿк
STATS_mean_err # ʿͤɸ
STATS_stddev_err # ɸкɸ
STATS_skewness_err # ٤ɸ
STATS_kurtosis_err # ٤ɸ
#\begin{tabular}{|lrll|} \hline
#\verb@STATS_min@ && $\min(y)$ & ϰΥǡκǾ \\
#\verb@STATS_max@ && $\max(y)$ & ϰΥǡκ \\
#\verb@STATS_index_min@ && $i \mid y_i = \min(y)$ & data[i] == STATS\_min Ȥʤź i \\
#\verb@STATS_index_max@ && $i \mid y_i = \max(y)$ & data[i] == STATS\_max Ȥʤź i \\
#\verb@STATS_mean@ & $\bar{y}=$ & $\frac{1}{N}\sum{y}$ & ϰΥǡʿ \\
#\verb@STATS_stddev@ & $\sigma_y=$ & $\sqrt{\frac{1}{N}{\sum{{(y-\bar{y})}^2}}}$ & ϰΥǡɸɸк \\
#\verb@STATS_ssd@ & $s_y=$ & $\sqrt{\frac{1}{N-1}{\sum{{(y-\bar{y})}^2}}}$ & ϰΥǡɸк \\
#\verb@STATS_lo_quartile@ && ~ & () ʬ̶ \\
#\verb@STATS_median@ && ~ & (ʬ̶) \\
#\verb@STATS_up_quartile@ && ~ & 軰 () ʬ̶ \\
#\verb@STATS_sum@ && $\sum{y}$ & \\
#\verb@STATS_sumsq@ && $\sum{y^2}$ & ʿ \\
#\verb@STATS_skewness@ && $\frac{1}{N\sigma^3}\sum{(y-\bar{y})^3}$ & ϰΥǡ \\
#\verb@STATS_kurtosis@ && $\frac{1}{N\sigma^4}\sum{(y-\bar{y})^4}$ & ϰΥǡ \\
#\verb@STATS_adev@ && $\frac{1}{N}\sum{|{y}-\bar{y}|}$ & ϰΥǡʿк \\
#\verb@STATS_mean_err@ && $\sigma_y / \sqrt{N}$ & ʿͤɸ \\
#\verb@STATS_stddev_err@ && $\sigma_y / \sqrt{2N}$ & ɸкɸ \\
#\verb@STATS_skewness_err@ && $\sqrt{6/N}$ & ٤ɸ \\
#\verb@STATS_kurtosis_err@ && $\sqrt{24/N}$ & ٤ɸ \\
%l c l .
%ѿ@ @
%_
%STATS_min@$min ( y )$@ϰΥǡκǾ
%STATS_max@$max ( y )$@ϰΥǡκ
%STATS_index_min@$i~|~y sub i = min ( y )$@data[i] == STATS_min Ȥʤź i
%STATS_index_max@$i~|~y sub i = max ( y )$@data[i] == STATS_max Ȥʤź i
%STATS_lo_quartile@ @ () ʬ̶
%STATS_median@ @ (ʬ̶)
%STATS_up_quartile@ @軰 () ʬ̶
%STATS_mean@$y bar = 1 over N sum y$@ϰΥǡʿ
%STATS_ssd@$sigma sub y = sqrt { 1 over { N - 1 } sum { ( y - y bar ) sup 2 } }$ϰΥǡɸк
%STATS_stddev@$s sub y = sqrt { 1 over N sum { ( y - y bar ) sup 2 } }$@ϰΥǡɸɸк
%STATS_sum@$sum y$@
%STATS_sumsq@$sum y sup 2$@ʿ
%STATS_skewness@$1 over { N sigma sup 3} sum { left ( y - y bar right ) sup 3}$@ϰΥǡ
%STATS_kurtosis@$1 over { N sigma sup 4} sum { left ( y - y bar right ) sup 4}$@ϰΥǡ
%STATS_adev@$1 over N sum | y - y bar |$@ϰΥǡʿк
%STATS_mean_err@$sigma sub y / sqrt N$@ʿͤɸ
%STATS_stddev_err@$sigma sub y / sqrt { 2 N }$ @ɸкɸ
%STATS_skewness_err@$sqrt { 6 / N }$@٤ɸ
%STATS_kurtosis_err@$sqrt { 24 / N }$@٤ɸ
@end table
3 ܤѿ롼פϡ2 ĤΥǡβѤǤ
@start table
STATS_correlation # x y ط
STATS_slope # ľ y = Ax + B η A
STATS_slope_err # A ԳΤ
STATS_intercept # ľ y = Ax + B η B
STATS_intercept_err # B ԳΤ
STATS_sumxy # (x*y )
STATS_pos_min_y # y κǾͤͿ x ɸ
STATS_pos_max_y # y κͤͿ x ɸ
#\begin{tabular}{|lll|} \hline
#\verb@STATS_correlation@ & & x y ط \\
#\verb@STATS_slope@ & & ľ y = Ax + B η A \\
#\verb@STATS_slope_err@ & & A ԳΤ \\
#\verb@STATS_intercept@ & & ľ y = Ax + B η B \\
#\verb@STATS_intercept_err@ & & B ԳΤ \\
#\verb@STATS_sumxy@ & & (x*y ) \\
#\verb@STATS_pos_min_y@ & & y κǾͤͿ x ɸ \\
#\verb@STATS_pos_max_y@ & & y κͤͿ x ɸ \\
%l l .
%ѿ@
%_
%STATS_correlation@x y ط
%STATS_slope@ľ $y = A x + B$ η A
%STATS_slope_err@A ԳΤ
%STATS_intercept@ľ $y = A x + B$ η B
%STATS_intercept_err@B ԳΤ
%STATS_sumxy@ ($x times y$ ), $sum x~y$
%STATS_pos_min_y@y κǾͤͿ x ɸ
%STATS_pos_max_y@y κͤͿ x ɸ
@end table
`matrix` ϡϤǤ뤳Ȥؼޤ (ʲ:
`matrix`)̾ϡ٤ƤιǤθޤ
Υϡѿ STATS_size_x, STATS_size_y ¸ޤ
@start table
STATS_size_x #
STATS_size_y # ιԿ
#\begin{tabular}{|lll|} \hline
#\verb@STATS_size_x@ & & \\
#\verb@STATS_size_y@ & & \\
%l l .
%Variable@Description
%STATS_size_x@
%STATS_size_y@ιԿ
@end table
STATS_index_xxx Ǽźͤϡplot ޥɤ 0 ($0)
ͤбǽź 0Ǹź N-1 Ȥʤޤ
Ȼʬ̶ͤõݤϥǡͤȤ N
ξϡ (N+1)/2 ܤͤͤȤN ξϡ
N/2 ܤ (N+2)/2 ܤͤʿͤͤȤޤʬ̶
Ʊͤ˽ޤ
θĤ뤿˥ޥ `stats` ѤˤĤ
ϡʲȤƤ
^ <a href="http://www.gnuplot.info/demo/stats.html">
stats.dem
^ </a>
ߤΥС gnuplot `stats` ޥɤǤϡե
(`set xdata time` `set ydata time`) ǤʤпΥǡ
Ǥޤ¤ϡΥСǴ¤Ǥ礦
3 Ƭ̾ (name)
?stats name
?statistics name
2 İʾΥեǡ˰ȤǤ
ǤΤǡѿΥǥեȤƬǤ "STATS" ץ
`name` ǥ桼ꤹʸ֤뤳ȤǤ褦ˤʤäƤ
ޤ㤨Сۤʤ 2 ĤΥեΤ줾 2 ܤΥǡʿ
ϰʲΤ褦ˤӤǤޤ:
stats "file1.dat" using 2 name "A"
stats "file2.dat" using 2 name "B"
if (A_mean < B_mean) {...}
=columnheader
name ȤʸѰդˡ `columnheader`
ؿ `columnheader(N)` ˤꡢǡե 1 ܤǤ
ʸƬ뤳ȤǤޤ:
do for [COL=5:8] { stats 'datafile' using COL name columnheader }
3 ե¸߳ǧ (test for existence of a file)
?stats test
?statistics test
¸ߤʤ뤤ɤ߹ʤե褷褦Ȥȡϥ
顼ȤʤꡢץȤ䷫֤ߤƤޤޤ
ˤϡʲΤ褦 stats ޥɤѤǤޤ
do for [i=first:last] {
filename = sprintf("file%02d.dat", i)
stats filename nooutput
if (GPVAL_ERRNO) {
print GPVAL_ERRMSG
continue
}
plot filename title filename
}
3 voxelgrid
?stats voxelgrid
?statistics voxelgrid
stats $vgridname {name "prefix"}
ޥ stats ϡܥʻҤƤ䤤碌ΤˤȤޤ
ϡ`show vgrid` ƱޤϤץȤ
ѤǤѿ¸Ǥޤ
@start table
STATS_min # ʻҤΤ٤ƤΥܥ 0 ǤʤǾ
STATS_max # ʻҤΤ٤ƤΥܥκ
STATS_mean # ʻҤ 0 Ǥʤܥʿ
STATS_stderr # 0 Ǥʤܥͤɸк
STATS_sum # ʻҤΤ٤ƤΥܥ
STATS_nonzero # 0 Ǥʤܥ
#\begin{tabular}{|lll|} \hline
#\verb@STATS_min@ & & ʻҤΤ٤ƤΥܥ 0 ǤʤǾ \\
#\verb@STATS_max@ & & ʻҤΤ٤ƤΥܥκ \\
#\verb@STATS_mean@ & & ʻҤ 0 Ǥʤܥʿ \\
#\verb@STATS_stddev@ & & 0 Ǥʤܥͤɸк \\
#\verb@STATS_ssum@ & & ʻҤΤ٤ƤΥܥ \\
#\verb@STATS_nonzero@ & & 0 Ǥʤܥ \\
%l l .
%Variable@Description
%_
%STATS_min@ʻҤΤ٤ƤΥܥ 0 ǤʤǾ
%STATS_max@ʻҤΤ٤ƤΥܥκ
%STATS_mean@ʻҤ 0 Ǥʤܥʿ
%STATS_stddev@0 Ǥʤܥͤɸк
%STATS_sum@ʻҤΤ٤ƤΥܥ
%STATS_nonzero@0 Ǥʤܥ
@end table
2 system
?commands system
?system
:
system "command string"
! command string
output = system("command string")
show variable GPVAL_SYSTEM
`system "command"` ϡڥ졼ƥƥΥǥեȥ
ӽФΥ֥ץȤ "command" ¹ԤޤؿȤ
`system("command")` ƤӽФϡΥ֥ץɸϤ
ʸȥʸȤ֤ޤǸ˲ԤĤƤϡ
ϷʸϽޤʲ⻲: `backquotes`
Υ֥ץνλɤϡѿ GPVAL_SYSTEM_ERRNO
GPVAL_SYSTEM_ERRMSG ¸ޤ⤷ޥʸ 2
ʾΥץƤӽФƤϡΤΰĤΥץब
顼ФƤ⡢"" ֤ǽ뤳ȤդƤ㤨
Сfile = system("ls -1 *.plt | tail -1") ϡ*.plt ե뤬Ĥ
ʤǤ "" ֤ޤϡ`ls` ԤƤ `tail`
뤫Ǥ
2 test
?commands test
?test palette
?test
ΥޥɤϡϷѥåȤǤɤΤ褦ʽϤԤʤ뤫
ƥȤɽޤ
:
test {terminal | palette}
`test` ޤ `test terminal` ϡνϷ (`terminal`)
ȤμࡢμࡢޤѲǽʤ¾ޤ
`test palette` ϡR(z),G(z),B(z) (0<=z<=1) ξ֤褷ޤ
ϡ`set palatte` ߤΥ顼ѥåȤ RGB ʬޤ
ޤRGB Ĵ˼ NTSC ѤƷ줿٤
ޤˤΥޥɤϤбط $PALETTE Ȥ̾Υǡ
֥å˼ߤޤ
D viridis 1
2 toggle
?commands toggle
?toggle
:
toggle {<plotno> | "plottitle" | all}
Υޥɤϡ÷Ϸ (qt, wxt, x11) ɽƤ륰դ
key ȥǺåΤƱ̤ͿޤʤΥ
դɽƤФäդäƤкƤɽޤ
`toggle all` ϡۥåȥ "i" Ʊͭ͡ʥդ٤Ƥ˺Ѥޤ
`toggle "title"` ηϡդΥȥȴ˰פ륿ȥ
ꤹɬפޤ`toggle "ti*"` ξϡդΥȥ
'*' ʬפǽΥդ˺ѤޤߤνϷ
Ǥʤϡޥ toggle ϲ⤷ޤ
2 undefine
?commands undefine
?undefine
1 ġޤʣѤߤΥ桼ѿޤϡƥ
Ȥޤ褦ʥץȤξ֤ꥻåȤΤǤ礦
ѿ̾ˤϡǸʸȤƥ磻ɥʸ `*` ȤȤǤ
磻ɥʸĤȡʬǻϤޤ뤹٤Ƥ
ޤϡ̤ƬȤäƤʣѿ
Ǥ礦磻ɥʸѿ̾κǸˤȤʤ
ȤդƤ`undefine` ˥磻ɥʸΤߤȤ
Ϳϲ⤷ޤ
:
undefine foo foo1 foo2
if (!exists("foo")) load "initialize.gp"
bar = 1; bar1 = 2; bar2 = 3
undefine bar* # 3 Ĥѿ
2 unset
?commands unset
?unset
=iteration
ޥ `set` ꤷץϡб `unset` ޥ
ˤäƤΥǥեȤ᤹ͤȤǽǤ`unset` ޥɤˤϷ
֤ѤǤޤʲ: `plot for`
:
set xtics mirror rotate by -45 0,10,100
...
unset xtics
# ֹ 100 200 ޤǤΥ٥ unset
unset for [i=100:200] label i
3 linetype
?unset linetype
:
unset linetype N
ñ˳Ƥ٤Ƥޤθˤ
Ѥ硢ϸߤνϷ˥ǥեȤꤵƤ
ΤѤޤ (ʤ gnuplot 4.6 ΥСͭä
ǥեȤ)
3 monochrome
?unset monochrome
ͭ顼ڤؤޤ`set color` Ʊ
3 output
?unset output
ʣΥդĤνϥե˽ФȤǤϷ⤢
ǡθǽϥեưŪˤĤޤäƤΥե
˰뤿ˤϡޤŪ `unset out` `set output`
Ȥ뤳ȤΥեĤǿեƤ
3 terminal
?unset terminal
ץκǽͭˤʤǥեȤνϷϡġΥƥĶ
gnuplot Υѥ륪ץӴĶѿ GNUTERM ˰¸ޤ
ΥǥեȤǤäƤ⡢gnuplot Ϥѿ GNUTERM ¸
Ƥޤޥ `unset terminal` ϡνϷ
ϡ`set terminal GNUTERM` Ȥ뤳ȤƱǤGNUTERM
Ϸ̾θ terminal ץޤǤϡ
`set terminal @GNUTERM` Ȥɬפޤ
3 warnings
?unset warnings
?set warnings
set warnings
unset warnings
̿ŪǤϤʤ顼Фٹåϡ̾ϥեֹ̾桢
Ӥηٹޥɥ饤 stderr ˽
ޤηٹϡޥ `unset warnings` Ǥޤξ
Ǥɬפʤ饳ޥ `warn "message"` ǷٹǤޤ
Ū `set warnings` ͭˤޤ³ޤ
2 update
?commands update
?update
: Υޥɤϡ侩פǤ `save fit` ѤƤ
2 vclear
?commands vclear
?vclear
:
vclear {$gridname}
ϡ¸ߤܥʻΤ٤ƤΥܥͤ 0 ˥ꥻåȤ
ʻ̾ꤷʤ硢ͭʳʻҤꥢޤ
2 vfill
?commands vfill
?vfill
?vgfill
=VoxelDistance
?VoxelDistance
=GridDistance
?GridDistance
:
vfill FILE using x:y:z:radius:(<expression>)
vgfill FILE using x:y:z:radius:(<expression>)
ޥ `vfill` ϡ줬դ˸ͭʥܥ
ʻҥǡѹʳϡޥ `plot` Ʊͤ˺Ѥޤϥ
뤫ɤ߹Фơޤܥ롢ڤ濴
(x,y,z) ǻȾ (radius) ε˴ޤޤ뤽¾٤ƤΥܥ뤬ʲ
Τ褦䤵ޤ:
#start
#b (x,y,z) 餽ΥܥΥ桼ɸǤθ (vx,vy,vz) ޤǤεΥ
## 桼ѿ VoxelDistance ˥åȤޤ
#b (x,y,z) 餽ΥܥγʻҺɸǤθޤǤεΥ桼ѿ
## GridDistance ˥åȤޤ
#b `using` 5 ܤ˻ꤷɾޤοϡ
## VoxelDistance GridDistance ͤѤǤޤ
#b voxel(vx,vy,vz) += ο <expression> ɾ
#end
:
vfill "file.dat" using 1:2:3:(3.0):(1.0)
Υޥɤϡfile.dat γȾ 3.0 εˤ뤹٤ƤΥܥ
ͤ 1 䤷ޤεȽŤʤܥθĿϡ桼ɸǤ
ʻҤδֳ֤˰¸ޤ
vgfill "file.dat" using 1:2:3:(2):(1.0)
Υޥɤϡߤ濴Ȥܥ 5x5x5 ΩΥܥ
ͤ 1 䤷ޤȾ¤ "2" ϡx ξy ξz ξ
2 ܥ뤺Ĺ뤳ȤȲᤷϤμ˴ؤ
桼ɸŪʥȤ̵طǤ
:
vfill "file.dat" using 1:2:3:4:(VoxelDistance < 1 ? 1 : 1/VoxelDistance)
Υޥɤϡ 4 ܤǷޤȾ¤αΤ٤ƤΥܥͤ
ѹޤƥܥɲäʬͤϡǡεΥ˽ä
ޤ
`vfill` `vgfill` ϡߤΥܥʻҤ¸ߤͤä
ȤդƤ
ܥĤ 0 ˥ꥻåȤˤϡ`voxel(x,y,z) = 0` Ѥ
٤ƤγʻҤ 0 ˥ꥻåȤˤϡ`vclear` ѤƤ
2 warn
?warn
?commands warn
:
warn "message"
ޥ `warn` ϡ¼Ū `printerr` ƱǤꤷå
stderr ˽ϤˡߤΥե̾ؿ֥å̾Ӹ
ߤιֹɲäȤ㤤ޤ
`printerr` Ȥϰ㤤`warn` νϤ `unset warnings` ޤ
2 While
?while
?commands while
:
while (<expr>) {
<commands>
}
ϡޥɤΥ֥å<expr> 0 Ǥʤͤɾ֡
֤¹ԤޤΥޥɤϡŤ (äʤ) if/else ʸ
Ȱ˻ȤȤϤǤޤʲ⻲: `do`, `continue`, `break`
1 Ϸ (Terminal)
^ <h2> Terminal Types </h2>
?complete list of terminals
2 Ϸΰ
?terminal
?term
gnuplot ϤȤƤ¿νϷݡȤƤޤϡŬڤ
Ϸɬפʤ鵡ǽѹɲåץĤ뤳
ˤꤵޤʲ: `set terminal`
ʸϡʤΥƥǽꤪӥȡ뤬ʤʤ
äѤǤʤϷˤĤƤҤƤ뤫Τޤ
`legacy` (Ť) ȰΤĤϷϡǶΥС gnuplot
ϥǥեȤǤϥӥɤ줺ºݤˤϻѤǤʤ⤷ޤ
ġ gnuplot ÷¹ԻˡɤνϷͭʤΤΰ
ˤϡץĤ 'set terminal' ǤäƤ
(: ܸ˴ޤޤ terminal Υޥ˥奢ϡΰˤϤ
ϷΤΤޤޤƤ뤫⤷ޤդˤΰνϷ
ǥޥ˥奢뤬ʤΤ⤢뤫⤷ޤ)
TeX/LaTeX ʸƥǤλѤΤ߷פ줿ϷĤ
ޤTeX ѤνϷ˴ؤʲˤޤ:
^ <a href="http://www.gnuplot.info/docs/latex_demo.pdf">
http://www.gnuplot.info/docs/latex_demo.pdf
^ </a>
<3 -- Ƥνϥɥ饤Фιܤϡ.trm ե뤫ĥäޤ
|