1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
|
#!/usr/bin/env python
from gnuradio import gr
from gnuradio import audio
from gnuradio import trellis
from gnuradio import eng_notation
import math
import sys
import random
import fsm_utils
def run_test (f,Kb,bitspersymbol,K,dimensionality,constellation,N0,seed):
fg = gr.flow_graph ()
# TX
packet = [0]*Kb
# this for loop is TOO slow!!!
for i in range(Kb-1*16): # last 16 bits = 0 to drive the final state to 0
packet[i] = random.randint(0, 1) # random 0s and 1s
src = gr.vector_source_s(packet,False)
#src = gr.lfsr_32k_source_s()
#src_head = gr.head (gr.sizeof_short,Kb/16) # packet size in shorts
b2s = gr.unpacked_to_packed_ss(1,gr.GR_MSB_FIRST) # pack bits in shorts
s2fsmi = gr.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the FSM input cardinality
enc = trellis.encoder_ss(f,0) # initial state = 0
mod = gr.chunks_to_symbols_sf(constellation,dimensionality)
# CHANNEL
add = gr.add_ff()
noise = gr.noise_source_f(gr.GR_GAUSSIAN,math.sqrt(N0/2),seed)
# RX
metrics = trellis.metrics_f(f.O(),dimensionality,constellation,trellis.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for Viterbi
va = trellis.viterbi_s(f,K,0,-1) # Put -1 if the Initial/Final states are not set.
fsmi2s = gr.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts
s2b = gr.packed_to_unpacked_ss(1,gr.GR_MSB_FIRST) # unpack shorts to bits
dst = gr.vector_sink_s();
#dst = gr.check_lfsr_32k_s();
#fg.connect (src,src_head,s2fsmi,enc,mod)
fg.connect (src,b2s,s2fsmi,enc,mod)
fg.connect (mod,(add,0))
fg.connect (noise,(add,1))
fg.connect (add,metrics)
#fg.connect (metrics,va,fsmi2s,dst)
fg.connect (metrics,va,fsmi2s,s2b,dst)
fg.run()
# A bit of cheating: run the program once and print the
# final encoder state..
# Then put it as the last argument in the viterbi block
#print "final state = " , enc.ST()
#ntotal = dst.ntotal ()
#nright = dst.nright ()
#runlength = dst.runlength ()
ntotal = len(packet)
if len(dst.data()) != ntotal:
print "Error: not enough data\n"
nright = 0;
# this for loop is TOO slow!!!
for i in range(ntotal):
if packet[i]==dst.data()[i]:
nright=nright+1
#else:
#print "Error in ", i
return (ntotal,ntotal-nright)
def main(args):
nargs = len (args)
if nargs == 3:
fname=args[0]
esn0_db=float(args[1]) # Es/No in dB
rep=int(args[2]) # number of times the experiment is run to collect enough errors
else:
sys.stderr.write ('usage: test_tcm.py fsm_fname Es/No_db repetitions\n')
sys.exit (1)
# system parameters
f=trellis.fsm(fname) # get the FSM specification from a file
Kb=1024*16 # packet size in bits (make it multiple of 16 so it can be packed in a short)
bitspersymbol = int(round(math.log(f.I())/math.log(2))) # bits per FSM input symbol
K=Kb/bitspersymbol # packet size in trellis steps
modulation = fsm_utils.psk4 # see fsm_utlis.py for available predefined modulations
dimensionality = modulation[0]
constellation = modulation[1]
if len(constellation)/dimensionality != f.O():
sys.stderr.write ('Incompatible FSM output cardinality and modulation size.\n')
sys.exit (1)
# calculate average symbol energy
Es = 0
for i in range(len(constellation)):
Es = Es + constellation[i]**2
Es = Es / (len(constellation)/dimensionality)
N0=Es/pow(10.0,esn0_db/10.0); # noise variance
tot_s=0 # total number of transmitted shorts
terr_s=0 # total number of shorts in error
terr_p=0 # total number of packets in error
for i in range(rep):
(s,e)=run_test(f,Kb,bitspersymbol,K,dimensionality,constellation,N0,-long(666+i)) # run experiment with different seed to get different noise realizations
tot_s=tot_s+s
terr_s=terr_s+e
terr_p=terr_p+(terr_s!=0)
if ((i+1)%1==0) : # display progress
print i+1,terr_p, '%.2e' % ((1.0*terr_p)/(i+1)),tot_s,terr_s, '%.2e' % ((1.0*terr_s)/tot_s)
# estimate of the (short or bit) error rate
print rep,terr_p, '%.2e' % ((1.0*terr_p)/(i+1)),tot_s,terr_s, '%.2e' % ((1.0*terr_s)/tot_s)
if __name__ == '__main__':
main (sys.argv[1:])
|