1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
#!/usr/bin/env python
#
# Copyright 2005 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
#
# All Your Frequencies are Belong to Us!
#
# Transmit NBFM message on 25 channels simultaneously!
#
from gnuradio import gr, gru, eng_notation
from gnuradio import usrp
from gnuradio import audio
from gnuradio import blks
from gnuradio import optfir
from gnuradio.eng_option import eng_option
from optparse import OptionParser
import math
import sys
import random
from gnuradio.wxgui import stdgui, fftsink
import wx
def make_random_complex_tuple(L):
result = []
for x in range(L):
result.append(complex(random.gauss(0, 1),random.gauss(0, 1)))
return tuple(result)
def random_noise_c():
src = gr.vector_source_c(make_random_complex_tuple(32*1024), True)
return src
def plot_taps(taps, sample_rate=2):
return gru.gnuplot_freqz (gru.freqz (taps, 1), sample_rate)
class ayfabtu_graph (stdgui.gui_flow_graph):
def __init__(self, frame, panel, vbox, argv):
stdgui.gui_flow_graph.__init__ (self, frame, panel, vbox, argv)
parser = OptionParser (option_class=eng_option)
parser.add_option ("-c", "--duc-freq", type="eng_float", default=29.325e6,
help="set Tx ddc frequency to FREQ", metavar="FREQ")
(options, args) = parser.parse_args ()
nchan = 25
IF_GAIN = 80000
AUDIO_GAIN = 100
self.dac_rate = 128e6
self.usrp_interp = 256
self.usrp_rate = self.dac_rate / self.usrp_interp # 500 kS/s
self.audio_rate = 32000 # 32 kS/s
self.audio_src = gr.file_source(gr.sizeof_float, "ayfabtu.dat", True)
ahp_taps = gr.firdes.high_pass(1, # gain
32e3, # Fs
300, # cutoff
600, # trans width
gr.firdes.WIN_HANN)
self.audio_hp = gr.fir_filter_fff(1, ahp_taps)
self.audio_gain = gr.multiply_const_ff(AUDIO_GAIN)
null_src = gr.null_source(gr.sizeof_gr_complex)
#noise_src = gr.noise_source_c(gr.GR_UNIFORM, 1, 0)
noise_src = random_noise_c()
if 0:
artaps = optfir.low_pass(1, # gain
2, # Fs
.75/32, # freq1
1.0/32, # freq2
1, # pb ripple in dB
50, # stopband atten in dB
2) # + extra taps
else:
artaps = gr.firdes.low_pass(1, # gain
32e3*15,# Fs
2.7e3, # cutoff
.3e3, # trans width
gr.firdes.WIN_HANN)
print "len(artaps) =", len(artaps)
self.audio_resampler = blks.rational_resampler_fff(self, 15, 32, artaps)
self.fm_mod = blks.nbfm_tx(self, 15000, 15000, max_dev=4.5e3)
fbtaps = gr.firdes.low_pass(1, # gain
25*15e3, # rate
13e3, # cutoff
2e3, # trans width
gr.firdes.WIN_HANN)
print "len(fbtabs) =", len(fbtaps)
#self.plot = plot_taps(fbtaps, 25*15e3)
self.filter_bank = blks.synthesis_filterbank(self, nchan, fbtaps)
self.if_gain = gr.multiply_const_cc(IF_GAIN)
if 0:
ifrtaps = optfir.low_pass(1,
2, # Fs
.75/3, # freq1
1.0/3, # freq2
1, # pb ripple in dB
50, # stopband atten in dB
2) # + extra taps
else:
ifrtaps = gr.firdes.low_pass(1,
2, # Fs
.75/3, # freq1
.25/3, # trans width
gr.firdes.WIN_HANN)
print "len(ifrtaps) =", len(ifrtaps)
self.if_resampler = blks.rational_resampler_ccf(self, 4, 3, ifrtaps)
self.u = usrp.sink_c(0, 256)
self.u.set_tx_freq(0, options.duc_freq)
self.u.set_pga(0, self.u.pga_max())
# wire it all together
self.connect(self.audio_src, self.audio_hp, self.audio_gain,
self.audio_resampler, self.fm_mod)
null_sink = gr.null_sink(gr.sizeof_gr_complex)
for i in range(nchan):
if True or i == 0:
self.connect(self.fm_mod, (self.filter_bank, i))
else:
self.connect(null_src, (self.filter_bank, i))
self.connect(self.filter_bank, self.if_gain, self.if_resampler, self.u)
def main ():
app = stdgui.stdapp (ayfabtu_graph, "All Your Frequency Are Belong to Us")
app.MainLoop ()
if __name__ == '__main__':
main ()
|