1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
#!/usr/bin/env python
"""
Transmit N simultaneous narrow band FM signals.
They will be centered at the frequency specified on the command line,
and will spaced at 25kHz steps from there.
The program opens N files with names audio-N.dat where N is in [0,7].
These files should contain floating point audio samples in the range [-1,1]
sampled at 32kS/sec. You can create files like this using
audio_to_file.py
"""
from gnuradio import gr, eng_notation
from gnuradio import usrp
from gnuradio import audio
from gnuradio import blks
from gnuradio.eng_option import eng_option
from optparse import OptionParser
import usrp_dbid
import math
import sys
from gnuradio.wxgui import stdgui, fftsink
from gnuradio import tx_debug_gui
import wx
########################################################
# instantiate one transmit chain for each call
class pipeline(gr.hier_block):
def __init__(self, fg, filename, lo_freq, audio_rate, if_rate):
src = gr.file_source (gr.sizeof_float, filename, True)
fmtx = blks.nbfm_tx (fg, audio_rate, if_rate,
max_dev=5e3, tau=75e-6)
# Local oscillator
lo = gr.sig_source_c (if_rate, # sample rate
gr.GR_SIN_WAVE, # waveform type
lo_freq, #frequency
1.0, # amplitude
0) # DC Offset
mixer = gr.multiply_cc ()
fg.connect (src, fmtx, (mixer, 0))
fg.connect (lo, (mixer, 1))
gr.hier_block.__init__(self, fg, src, mixer)
class fm_tx_graph (stdgui.gui_flow_graph):
def __init__(self, frame, panel, vbox, argv):
MAX_CHANNELS = 7
stdgui.gui_flow_graph.__init__ (self, frame, panel, vbox, argv)
parser = OptionParser (option_class=eng_option)
parser.add_option("-T", "--tx-subdev-spec", type="subdev", default=None,
help="select USRP Tx side A or B")
parser.add_option("-f", "--freq", type="eng_float", default=None,
help="set Tx frequency to FREQ [required]", metavar="FREQ")
parser.add_option("-n", "--nchannels", type="int", default=4,
help="number of Tx channels [1,4]")
parser.add_option("","--debug", action="store_true", default=False,
help="Launch Tx debugger")
(options, args) = parser.parse_args ()
if len(args) != 0:
parser.print_help()
sys.exit(1)
if options.nchannels < 1 or options.nchannels > MAX_CHANNELS:
sys.stderr.write ("fm_tx4: nchannels out of range. Must be in [1,%d]\n" % MAX_CHANNELS)
sys.exit(1)
if options.freq is None:
sys.stderr.write("fm_tx4: must specify frequency with -f FREQ\n")
parser.print_help()
sys.exit(1)
# ----------------------------------------------------------------
# Set up constants and parameters
self.u = usrp.sink_c () # the USRP sink (consumes samples)
self.dac_rate = self.u.dac_rate() # 128 MS/s
self.usrp_interp = 400
self.u.set_interp_rate(self.usrp_interp)
self.usrp_rate = self.dac_rate / self.usrp_interp # 320 kS/s
self.sw_interp = 10
self.audio_rate = self.usrp_rate / self.sw_interp # 32 kS/s
# determine the daughterboard subdevice we're using
if options.tx_subdev_spec is None:
options.tx_subdev_spec = usrp.pick_tx_subdevice(self.u)
m = usrp.determine_tx_mux_value(self.u, options.tx_subdev_spec)
#print "mux = %#04x" % (m,)
self.u.set_mux(m)
self.subdev = usrp.selected_subdev(self.u, options.tx_subdev_spec)
print "Using TX d'board %s" % (self.subdev.side_and_name(),)
self.subdev.set_gain(self.subdev.gain_range()[1]) # set max Tx gain
self.set_freq(options.freq)
self.subdev.set_enable(True) # enable transmitter
sum = gr.add_cc ()
# Instantiate N NBFM channels
step = 25e3
offset = (0 * step, 1 * step, -1 * step, 2 * step, -2 * step, 3 * step, -3 * step)
for i in range (options.nchannels):
t = pipeline (self, "audio-%d.dat" % (i % 4), offset[i],
self.audio_rate, self.usrp_rate)
self.connect (t, (sum, i))
gain = gr.multiply_const_cc (4000.0 / options.nchannels)
# connect it all
self.connect (sum, gain)
self.connect (gain, self.u)
# plot an FFT to verify we are sending what we want
if 1:
post_mod = fftsink.fft_sink_c(self, panel, title="Post Modulation",
fft_size=512, sample_rate=self.usrp_rate,
y_per_div=20, ref_level=40)
self.connect (sum, post_mod)
vbox.Add (post_mod.win, 1, wx.EXPAND)
if options.debug:
self.debugger = tx_debug_gui.tx_debug_gui(self.subdev)
self.debugger.Show(True)
def set_freq(self, target_freq):
"""
Set the center frequency we're interested in.
@param target_freq: frequency in Hz
@rypte: bool
Tuning is a two step process. First we ask the front-end to
tune as close to the desired frequency as it can. Then we use
the result of that operation and our target_frequency to
determine the value for the digital up converter. Finally, we feed
any residual_freq to the s/w freq translater.
"""
r = self.u.tune(self.subdev._which, self.subdev, target_freq)
if r:
print "r.baseband_freq =", eng_notation.num_to_str(r.baseband_freq)
print "r.dxc_freq =", eng_notation.num_to_str(r.dxc_freq)
print "r.residual_freq =", eng_notation.num_to_str(r.residual_freq)
print "r.inverted =", r.inverted
# Could use residual_freq in s/w freq translator
return True
return False
def main ():
app = stdgui.stdapp (fm_tx_graph, "Multichannel FM Tx")
app.MainLoop ()
if __name__ == '__main__':
main ()
|