1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
#!/usr/bin/env python
"""
Transmit 2 signals, one out each daughterboard.
Outputs SSB (USB) signals on side A and side B at frequencies
specified on command line.
Side A is 600 Hz tone.
Side B is 350 + 440 Hz tones.
"""
from gnuradio import gr
from gnuradio.eng_notation import num_to_str, str_to_num
from gnuradio import usrp
from gnuradio import audio
from gnuradio import blks
from gnuradio.eng_option import eng_option
from optparse import OptionParser
import usrp_dbid
import math
import sys
class example_signal_0(gr.hier_block):
"""
Sinusoid at 600 Hz.
"""
def __init__(self, fg, sample_rate):
src = gr.sig_source_c (sample_rate, # sample rate
gr.GR_SIN_WAVE, # waveform type
600, # frequency
1.0, # amplitude
0) # DC Offset
gr.hier_block.__init__(self, fg, None, src)
class example_signal_1(gr.hier_block):
"""
North American dial tone (350 + 440 Hz).
"""
def __init__(self, fg, sample_rate):
src0 = gr.sig_source_c (sample_rate, # sample rate
gr.GR_SIN_WAVE, # waveform type
350, # frequency
1.0, # amplitude
0) # DC Offset
src1 = gr.sig_source_c (sample_rate, # sample rate
gr.GR_SIN_WAVE, # waveform type
440, # frequency
1.0, # amplitude
0) # DC Offset
sum = gr.add_cc()
fg.connect(src0, (sum, 0))
fg.connect(src1, (sum, 1))
gr.hier_block.__init__(self, fg, None, sum)
class my_graph(gr.flow_graph):
def __init__(self):
gr.flow_graph.__init__ (self)
usage="%prog: [options] side-A-tx-freq side-B-tx-freq"
parser = OptionParser (option_class=eng_option, usage=usage)
(options, args) = parser.parse_args ()
if len(args) != 2:
parser.print_help()
raise SystemExit
else:
freq0 = str_to_num(args[0])
freq1 = str_to_num(args[1])
# ----------------------------------------------------------------
# Set up USRP to transmit on both daughterboards
self.u = usrp.sink_c(nchan=2) # say we want two channels
self.dac_rate = self.u.dac_rate() # 128 MS/s
self.usrp_interp = 400
self.u.set_interp_rate(self.usrp_interp)
self.usrp_rate = self.dac_rate / self.usrp_interp # 320 kS/s
# we're using both daughterboard slots, thus subdev is a 2-tuple
self.subdev = (self.u.db[0][0], self.u.db[1][0])
print "Using TX d'board %s" % (self.subdev[0].side_and_name(),)
print "Using TX d'board %s" % (self.subdev[1].side_and_name(),)
# set up the Tx mux so that
# channel 0 goes to Slot A I&Q and channel 1 to Slot B I&Q
self.u.set_mux(0xba98)
self.subdev[0].set_gain(self.subdev[0].gain_range()[1]) # set max Tx gain
self.subdev[1].set_gain(self.subdev[1].gain_range()[1]) # set max Tx gain
self.set_freq(0, freq0)
self.set_freq(1, freq1)
self.subdev[0].set_enable(True) # enable transmitter
self.subdev[1].set_enable(True) # enable transmitter
# ----------------------------------------------------------------
# build two signal sources, interleave them, amplify and connect them to usrp
sig0 = example_signal_0(self, self.usrp_rate)
sig1 = example_signal_1(self, self.usrp_rate)
intl = gr.interleave(gr.sizeof_gr_complex)
self.connect(sig0, (intl, 0))
self.connect(sig1, (intl, 1))
# apply some gain
if_gain = 10000
ifamp = gr.multiply_const_cc(if_gain)
# and wire them up
self.connect(intl, ifamp, self.u)
def set_freq(self, side, target_freq):
"""
Set the center frequency we're interested in.
@param side: 0 = side A, 1 = side B
@param target_freq: frequency in Hz
@rtype: bool
Tuning is a two step process. First we ask the front-end to
tune as close to the desired frequency as it can. Then we use
the result of that operation and our target_frequency to
determine the value for the digital up converter.
"""
print "Tuning side %s to %sHz" % (("A", "B")[side], num_to_str(target_freq))
r = self.u.tune(self.subdev[side]._which, self.subdev[side], target_freq)
if r:
print " r.baseband_freq =", num_to_str(r.baseband_freq)
print " r.dxc_freq =", num_to_str(r.dxc_freq)
print " r.residual_freq =", num_to_str(r.residual_freq)
print " r.inverted =", r.inverted
print " OK"
return True
else:
print " Failed!"
return False
if __name__ == '__main__':
try:
my_graph().run()
except KeyboardInterrupt:
pass
|