File: flat_flowgraph.cc

package info (click to toggle)
gnuradio 3.7.10.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 37,104 kB
  • ctags: 37,270
  • sloc: cpp: 150,156; python: 86,734; xml: 40,886; ansic: 19,461; fortran: 927; sh: 271; lisp: 31; makefile: 14
file content (499 lines) | stat: -rw-r--r-- 18,053 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
/* -*- c++ -*- */
/*
 * Copyright 2015 Free Software Foundation, Inc.
 *
 * This file is part of GNU Radio
 *
 * GNU Radio is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3, or (at your option)
 * any later version.
 *
 * GNU Radio is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with GNU Radio; see the file COPYING.  If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street,
 * Boston, MA 02110-1301, USA.
 */

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include "flat_flowgraph.h"
#include <gnuradio/block_detail.h>
#include <gnuradio/buffer.h>
#include <gnuradio/prefs.h>
#include <volk/volk.h>
#include <iostream>
#include <map>
#include <boost/format.hpp>

namespace gr {

#define FLAT_FLOWGRAPH_DEBUG  0

// 32Kbyte buffer size between blocks
#define GR_FIXED_BUFFER_SIZE (32*(1L<<10))

  static const unsigned int s_fixed_buffer_size = GR_FIXED_BUFFER_SIZE;

  flat_flowgraph_sptr
  make_flat_flowgraph()
  {
    return flat_flowgraph_sptr(new flat_flowgraph());
  }

  flat_flowgraph::flat_flowgraph()
  {
    configure_default_loggers(d_logger, d_debug_logger, "flat_flowgraph");
  }

  flat_flowgraph::~flat_flowgraph()
  {
  }

  void
  flat_flowgraph::setup_connections()
  {
    basic_block_vector_t blocks = calc_used_blocks();

    // Assign block details to blocks
    for(basic_block_viter_t p = blocks.begin(); p != blocks.end(); p++)
      cast_to_block_sptr(*p)->set_detail(allocate_block_detail(*p));

    // Connect inputs to outputs for each block
    for(basic_block_viter_t p = blocks.begin(); p != blocks.end(); p++) {
      connect_block_inputs(*p);

      block_sptr block = cast_to_block_sptr(*p);
      block->set_unaligned(0);
      block->set_is_unaligned(false);
    }

    // Connect message ports connetions
    for(msg_edge_viter_t i = d_msg_edges.begin(); i != d_msg_edges.end(); i++) {
      if(FLAT_FLOWGRAPH_DEBUG)
        std::cout << boost::format("flat_fg connecting msg primitives: (%s, %s)->(%s, %s)\n") %
          i->src().block() % i->src().port() %
          i->dst().block() % i->dst().port();
      i->src().block()->message_port_sub(i->src().port(), pmt::cons(i->dst().block()->alias_pmt(), i->dst().port()));
    }
  }

  block_detail_sptr
  flat_flowgraph::allocate_block_detail(basic_block_sptr block)
  {
    int ninputs = calc_used_ports(block, true).size();
    int noutputs = calc_used_ports(block, false).size();
    block_detail_sptr detail = make_block_detail(ninputs, noutputs);

    block_sptr grblock = cast_to_block_sptr(block);
    if(!grblock)
      throw std::runtime_error(
        (boost::format("allocate_block_detail found non-gr::block (%s)")%
        block->alias()).str());

    if(FLAT_FLOWGRAPH_DEBUG)
      std::cout << "Creating block detail for " << block << std::endl;

    for(int i = 0; i < noutputs; i++) {
      grblock->expand_minmax_buffer(i);

      buffer_sptr buffer = allocate_buffer(block, i);
      if(FLAT_FLOWGRAPH_DEBUG)
        std::cout << "Allocated buffer for output " << block << ":" << i << std::endl;
      detail->set_output(i, buffer);

      // Update the block's max_output_buffer based on what was actually allocated.
      if((grblock->max_output_buffer(i) != buffer->bufsize()) && (grblock->max_output_buffer(i) != -1))
        GR_LOG_WARN(d_logger, boost::format("Block (%1%) max output buffer set to %2%"
                                            " instead of requested %3%") \
                    % grblock->alias() % buffer->bufsize() % grblock->max_output_buffer(i));
      grblock->set_max_output_buffer(i, buffer->bufsize());
    }

    return detail;
  }

  buffer_sptr
  flat_flowgraph::allocate_buffer(basic_block_sptr block, int port)
  {
    block_sptr grblock = cast_to_block_sptr(block);
    if(!grblock)
      throw std::runtime_error("allocate_buffer found non-gr::block");
    int item_size = block->output_signature()->sizeof_stream_item(port);

    // *2 because we're now only filling them 1/2 way in order to
    // increase the available parallelism when using the TPB scheduler.
    // (We're double buffering, where we used to single buffer)
    int nitems = s_fixed_buffer_size * 2 / item_size;

    // Make sure there are at least twice the output_multiple no. of items
    if(nitems < 2*grblock->output_multiple())	// Note: this means output_multiple()
      nitems = 2*grblock->output_multiple();	// can't be changed by block dynamically

    // If any downstream blocks are decimators and/or have a large output_multiple,
    // ensure we have a buffer at least twice their decimation factor*output_multiple
    basic_block_vector_t blocks = calc_downstream_blocks(block, port);

    // limit buffer size if indicated
    if(grblock->max_output_buffer(port) > 0) {
      //std::cout << "constraining output items to " << block->max_output_buffer(port) << "\n";
      nitems = std::min((long)nitems, (long)grblock->max_output_buffer(port));
      nitems -= nitems%grblock->output_multiple();
      if(nitems < 1)
        throw std::runtime_error("problems allocating a buffer with the given max output buffer constraint!");
    }
    else if(grblock->min_output_buffer(port) > 0) {
      nitems = std::max((long)nitems, (long)grblock->min_output_buffer(port));
      nitems -= nitems%grblock->output_multiple();
      if(nitems < 1)
        throw std::runtime_error("problems allocating a buffer with the given min output buffer constraint!");
    }

    for(basic_block_viter_t p = blocks.begin(); p != blocks.end(); p++) {
      block_sptr dgrblock = cast_to_block_sptr(*p);
      if(!dgrblock)
        throw std::runtime_error("allocate_buffer found non-gr::block");

      double decimation = (1.0/dgrblock->relative_rate());
      int multiple      = dgrblock->output_multiple();
      int history       = dgrblock->history();
      nitems = std::max(nitems, static_cast<int>(2*(decimation*multiple+history)));
    }

    //  std::cout << "make_buffer(" << nitems << ", " << item_size << ", " << grblock << "\n";
    // We're going to let this fail once and retry. If that fails,
    // throw and exit.
    buffer_sptr b;
    try {
      b = make_buffer(nitems, item_size, grblock);
    }
    catch(std::bad_alloc&) {
      b = make_buffer(nitems, item_size, grblock);
    }

    // Set the max noutput items size here to make sure it's always
    // set in the block and available in the start() method.
    // But don't overwrite if the user has set this externally.
    if(!grblock->is_set_max_noutput_items())
      grblock->set_max_noutput_items(nitems);

    return b;
  }

  void
  flat_flowgraph::connect_block_inputs(basic_block_sptr block)
  {
    block_sptr grblock = cast_to_block_sptr(block);
    if (!grblock)
      throw std::runtime_error("connect_block_inputs found non-gr::block");

    // Get its detail and edges that feed into it
    block_detail_sptr detail = grblock->detail();
    edge_vector_t in_edges = calc_upstream_edges(block);

    // For each edge that feeds into it
    for(edge_viter_t e = in_edges.begin(); e != in_edges.end(); e++) {
      // Set the buffer reader on the destination port to the output
      // buffer on the source port
      int dst_port = e->dst().port();
      int src_port = e->src().port();
      basic_block_sptr src_block = e->src().block();
      block_sptr src_grblock = cast_to_block_sptr(src_block);
      if(!src_grblock)
        throw std::runtime_error("connect_block_inputs found non-gr::block");
      buffer_sptr src_buffer = src_grblock->detail()->output(src_port);

      if(FLAT_FLOWGRAPH_DEBUG)
        std::cout << "Setting input " << dst_port << " from edge " << (*e) << std::endl;

      detail->set_input(dst_port, buffer_add_reader(src_buffer, grblock->history()-1, grblock,
                                                    grblock->sample_delay(src_port)));
    }
  }

  void
  flat_flowgraph::merge_connections(flat_flowgraph_sptr old_ffg)
  {
    // Allocate block details if needed.  Only new blocks that aren't pruned out
    // by flattening will need one; existing blocks still in the new flowgraph will
    // already have one.
    for(basic_block_viter_t p = d_blocks.begin(); p != d_blocks.end(); p++) {
      block_sptr block = cast_to_block_sptr(*p);

      if(!block->detail()) {
        if(FLAT_FLOWGRAPH_DEBUG)
          std::cout << "merge: allocating new detail for block " << (*p) << std::endl;
        block->set_detail(allocate_block_detail(block));
      }
      else {
        if(FLAT_FLOWGRAPH_DEBUG)
          std::cout << "merge: reusing original detail for block " << (*p) << std::endl;
      }
    }

    // Calculate the old edges that will be going away, and clear the
    // buffer readers on the RHS.
    for(edge_viter_t old_edge = old_ffg->d_edges.begin(); old_edge != old_ffg->d_edges.end(); old_edge++) {
      if(FLAT_FLOWGRAPH_DEBUG)
        std::cout << "merge: testing old edge " << (*old_edge) << "...";

      edge_viter_t new_edge;
      for(new_edge = d_edges.begin(); new_edge != d_edges.end(); new_edge++)
        if(new_edge->src() == old_edge->src() &&
           new_edge->dst() == old_edge->dst())
          break;

      if(new_edge == d_edges.end()) { // not found in new edge list
        if(FLAT_FLOWGRAPH_DEBUG)
          std::cout << "not in new edge list" << std::endl;
        // zero the buffer reader on RHS of old edge
        block_sptr block(cast_to_block_sptr(old_edge->dst().block()));
        int port = old_edge->dst().port();
        block->detail()->set_input(port, buffer_reader_sptr());
      }
      else {
        if (FLAT_FLOWGRAPH_DEBUG)
          std::cout << "found in new edge list" << std::endl;
      }
    }

    // Now connect inputs to outputs, reusing old buffer readers if they exist
    for(basic_block_viter_t p = d_blocks.begin(); p != d_blocks.end(); p++) {
      block_sptr block = cast_to_block_sptr(*p);

      if(FLAT_FLOWGRAPH_DEBUG)
        std::cout << "merge: merging " << (*p) << "...";

      if(old_ffg->has_block_p(*p)) {
        // Block exists in old flow graph
        if(FLAT_FLOWGRAPH_DEBUG)
          std::cout << "used in old flow graph" << std::endl;
        block_detail_sptr detail = block->detail();

        // Iterate through the inputs and see what needs to be done
        int ninputs = calc_used_ports(block, true).size(); // Might be different now
        for(int i = 0; i < ninputs; i++) {
          if(FLAT_FLOWGRAPH_DEBUG)
            std::cout << "Checking input " << block << ":" << i << "...";
          edge edge = calc_upstream_edge(*p, i);

          // Fish out old buffer reader and see if it matches correct buffer from edge list
          block_sptr src_block = cast_to_block_sptr(edge.src().block());
          block_detail_sptr src_detail = src_block->detail();
          buffer_sptr src_buffer = src_detail->output(edge.src().port());
          buffer_reader_sptr old_reader;
          if(i < detail->ninputs()) // Don't exceed what the original detail has
            old_reader = detail->input(i);

          // If there's a match, use it
          if(old_reader && (src_buffer == old_reader->buffer())) {
            if(FLAT_FLOWGRAPH_DEBUG)
              std::cout << "matched, reusing" << std::endl;
          }
          else {
            if(FLAT_FLOWGRAPH_DEBUG)
              std::cout << "needs a new reader" << std::endl;

            // Create new buffer reader and assign
            detail->set_input(i, buffer_add_reader(src_buffer, block->history()-1, block));
          }
        }
      }
      else {
        // Block is new, it just needs buffer readers at this point
        if(FLAT_FLOWGRAPH_DEBUG)
          std::cout << "new block" << std::endl;
        connect_block_inputs(block);

        // Make sure all buffers are aligned
        setup_buffer_alignment(block);
      }

      // Connect message ports connetions
      for(msg_edge_viter_t i = d_msg_edges.begin(); i != d_msg_edges.end(); i++) {
          if(FLAT_FLOWGRAPH_DEBUG)
              std::cout << boost::format("flat_fg connecting msg primitives: (%s, %s)->(%s, %s)\n") %
                  i->src().block() % i->src().port() %
                  i->dst().block() % i->dst().port();
          i->src().block()->message_port_sub(i->src().port(), pmt::cons(i->dst().block()->alias_pmt(), i->dst().port()));
      }

      // Now deal with the fact that the block details might have
      // changed numbers of inputs and outputs vs. in the old
      // flowgraph.

      block->detail()->reset_nitem_counters();
      block->detail()->clear_tags();
    }
  }

  void
  flat_flowgraph::setup_buffer_alignment(block_sptr block)
  {
    const int alignment = volk_get_alignment();
    for(int i = 0; i < block->detail()->ninputs(); i++) {
      void *r = (void*)block->detail()->input(i)->read_pointer();
      uintptr_t ri = (uintptr_t)r % alignment;
      //std::cerr << "reader: " << r << "  alignment: " << ri << std::endl;
      if(ri != 0) {
        size_t itemsize = block->detail()->input(i)->get_sizeof_item();
        block->detail()->input(i)->update_read_pointer((alignment-ri)/itemsize);
      }
      block->set_unaligned(0);
      block->set_is_unaligned(false);
    }

    for(int i = 0; i < block->detail()->noutputs(); i++) {
      void *w = (void*)block->detail()->output(i)->write_pointer();
      uintptr_t wi = (uintptr_t)w % alignment;
      //std::cerr << "writer: " << w << "  alignment: " << wi << std::endl;
      if(wi != 0) {
        size_t itemsize = block->detail()->output(i)->get_sizeof_item();
        block->detail()->output(i)->update_write_pointer((alignment-wi)/itemsize);
      }
      block->set_unaligned(0);
      block->set_is_unaligned(false);
    }
  }

  std::string
  flat_flowgraph::edge_list()
  {
    std::stringstream s;
    for(edge_viter_t e = d_edges.begin(); e != d_edges.end(); e++)
      s << (*e) << std::endl;
    return s.str();
  }

  std::string
  flat_flowgraph::msg_edge_list()
  {
    std::stringstream s;
    for(msg_edge_viter_t e = d_msg_edges.begin(); e != d_msg_edges.end(); e++)
      s << (*e) << std::endl;
    return s.str();
  }

  void flat_flowgraph::dump()
  {
    for(edge_viter_t e = d_edges.begin(); e != d_edges.end(); e++)
      std::cout << " edge: " << (*e) << std::endl;

    for(basic_block_viter_t p = d_blocks.begin(); p != d_blocks.end(); p++) {
      std::cout << " block: " << (*p) << std::endl;
      block_detail_sptr detail = cast_to_block_sptr(*p)->detail();
      std::cout << "  detail @" << detail << ":" << std::endl;

      int ni = detail->ninputs();
      int no = detail->noutputs();
      for(int i = 0; i < no; i++) {
        buffer_sptr buffer = detail->output(i);
        std::cout << "   output " << i << ": " << buffer << std::endl;
      }

      for(int i = 0; i < ni; i++) {
        buffer_reader_sptr reader = detail->input(i);
        std::cout << "   reader " <<  i << ": " << reader
                  << " reading from buffer=" << reader->buffer() << std::endl;
      }
    }
  }

  block_vector_t
  flat_flowgraph::make_block_vector(basic_block_vector_t &blocks)
  {
    block_vector_t result;
    for(basic_block_viter_t p = blocks.begin(); p != blocks.end(); p++) {
      result.push_back(cast_to_block_sptr(*p));
    }

    return result;
  }

  void
  flat_flowgraph::clear_endpoint(const msg_endpoint &e, bool is_src)
  {
    for(size_t i=0; i<d_msg_edges.size(); i++) {
      if(is_src) {
        if(d_msg_edges[i].src() == e) {
          d_msg_edges.erase(d_msg_edges.begin() + i);
          i--;
        }
      }
      else {
        if(d_msg_edges[i].dst() == e) {
          d_msg_edges.erase(d_msg_edges.begin() + i);
          i--;
        }
      }
    }
  }

  void
  flat_flowgraph::clear_hier()
  {
    if(FLAT_FLOWGRAPH_DEBUG)
      std::cout << "Clear_hier()" << std::endl;
    for(size_t i=0; i<d_msg_edges.size(); i++) {
      if(FLAT_FLOWGRAPH_DEBUG)
        std::cout << "edge: " << d_msg_edges[i].src() << "-->" << d_msg_edges[i].dst() << std::endl;
      if(d_msg_edges[i].src().is_hier() || d_msg_edges[i].dst().is_hier()){
        if(FLAT_FLOWGRAPH_DEBUG)
          std::cout << "is hier" << std::endl;
        d_msg_edges.erase(d_msg_edges.begin() + i);
        i--;
      }
    }
  }

  void
  flat_flowgraph::replace_endpoint(const msg_endpoint &e, const msg_endpoint &r, bool is_src)
  {
    size_t n_replr(0);
    if(FLAT_FLOWGRAPH_DEBUG)
      std::cout << boost::format("flat_flowgraph::replace_endpoint( %s, %s, %d )\n") % e.block()% r.block()% is_src;
    for(size_t i=0; i<d_msg_edges.size(); i++) {
      if(is_src) {
        if(d_msg_edges[i].src() == e) {
          if(FLAT_FLOWGRAPH_DEBUG)
            std::cout << boost::format("flat_flowgraph::replace_endpoint() flattening to ( %s, %s )\n") \
              % r% d_msg_edges[i].dst();
          d_msg_edges.push_back( msg_edge(r, d_msg_edges[i].dst() ) );
          n_replr++;
        }
      }
      else {
        if(d_msg_edges[i].dst() == e) {
          if(FLAT_FLOWGRAPH_DEBUG)
            std::cout << boost::format("flat_flowgraph::replace_endpoint() flattening to ( %s, %s )\n") \
              % r% d_msg_edges[i].src();
          d_msg_edges.push_back( msg_edge(d_msg_edges[i].src(), r ) );
          n_replr++;
        }
      }
    }
  }

  void
  flat_flowgraph::enable_pc_rpc()
  {
#ifdef GR_PERFORMANCE_COUNTERS
    if(prefs::singleton()->get_bool("PerfCounters", "on", false)) {
      basic_block_viter_t p;
      for(p = d_blocks.begin(); p != d_blocks.end(); p++) {
        block_sptr block = cast_to_block_sptr(*p);
        if(!block->is_pc_rpc_set())
          block->setup_pc_rpc();
      }
    }
#endif /* GR_PERFORMANCE_COUNTERS */
  }

} /* namespace gr */