File: GrDataPlotter.py

package info (click to toggle)
gnuradio 3.7.13.4-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 45,992 kB
  • sloc: cpp: 155,723; python: 88,934; xml: 42,165; ansic: 41,036; fortran: 927; asm: 803; sh: 224; lisp: 31; makefile: 17
file content (491 lines) | stat: -rw-r--r-- 16,184 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
#!/usr/bin/env python
#
# Copyright 2012,2013 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING.  If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#

from gnuradio import gr
from gnuradio import blocks
from gnuradio import filter
from gnuradio.ctrlport.GNURadio import ControlPort
import sys, time, struct

try:
    from gnuradio import qtgui
    from PyQt5 import QtGui, QtCore
    import sip
except ImportError:
    sys.stderr.write("Error: Program requires PyQt5 and gr-qtgui.\n")
    sys.exit(1)

class GrDataPlotParent(gr.top_block, QtGui.QWidget):
    # Setup signals
    plotupdated = QtCore.pyqtSignal(QtGui.QWidget)

    def __init__(self, name, rate, pmin=None, pmax=None):
        gr.top_block.__init__(self)
        QtGui.QWidget.__init__(self, None)

        self._name = name
        self._npts = 500
        self._rate = rate
        self.knobnames = [name,]

        self.layout = QtGui.QVBoxLayout()
        self.setLayout(self.layout)

        self.setAcceptDrops(True)

    def _setup(self, nconnections):
        self.stop()
        self.wait()

        if(self.layout.count() > 0):
            # Remove and disconnect. Making sure no references to snk
            # remain so that the plot gets deleted.
            self.layout.removeWidget(self.py_window)
            self.disconnect(self.thr, (self.snk, 0))
            self.disconnect(self.src[0], self.thr)
            for n in xrange(1, self._ncons):
                self.disconnect(self.src[n], (self.snk,n))

        self._ncons = nconnections
        self._data_len = self._ncons*[0,]

        self.thr = blocks.throttle(self._datasize, self._rate)
        self.snk = self.get_qtsink()

        self.connect(self.thr, (self.snk, 0))

        self._last_data = []
        self.src = []
        for n in xrange(self._ncons):
            self.set_line_label(n, self.knobnames[n])

            self._last_data.append(int(self._npts)*[0,])
            self.src.append(self.get_vecsource())

            if(n == 0):
                self.connect(self.src[n], self.thr)
            else:
                self.connect(self.src[n], (self.snk,n))

        self.py_window = sip.wrapinstance(self.snk.pyqwidget(), QtGui.QWidget)

        self.layout.addWidget(self.py_window)

    def __del__(self):
        pass

    def close(self):
        self.snk.close()

    def qwidget(self):
        return self.py_window

    def name(self):
        return self._name

    def semilogy(self, en=True):
        self.snk.enable_semilogy(en)

    def dragEnterEvent(self, e):
        e.acceptProposedAction()

    def dropEvent(self, e):
        if(e.mimeData().hasFormat("text/plain")):
            data = str(e.mimeData().text())

            #"PlotData:{0}:{1}".format(tag, iscomplex)
            datalst = data.split(":::")
            tag = datalst[0]
            name = datalst[1]
            cpx = datalst[2] != "0"

            if(tag == "PlotData" and cpx == self._iscomplex):
                self.knobnames.append(name)

                # create a new qwidget plot with the new data stream.
                self._setup(len(self.knobnames))

                # emit that this plot has been updated with a new qwidget.
                self.plotupdated.emit(self)

                e.acceptProposedAction()

    def data_to_complex(self, data):
        if(self._iscomplex):
            data_r = data[0::2]
            data_i = data[1::2]
            data = [complex(r,i) for r,i in zip(data_r, data_i)]
        return data

    def update(self, data):
        # Ask GUI if there has been a change in nsamps
        npts = self.get_npts()
        if(self._npts != npts):

            # Adjust buffers to accommodate new settings
            for n in xrange(self._ncons):
                if(npts < self._npts):
                    if(self._data_len[n] < npts):
                        self._last_data[n] = self._last_data[n][0:npts]
                    else:
                        self._last_data[n] = self._last_data[n][self._data_len[n]-npts:self._data_len[n]]
                        self._data_len[n] = npts
                else:
                    self._last_data[n] += (npts - self._npts)*[0,]
            self._npts = npts
            self.snk.reset()

        if(self._stripchart):
            # Update the plot data depending on type
            for n in xrange(self._ncons):
                if(type(data[n]) == list):
                    data[n] = self.data_to_complex(data[n])
                    if(len(data[n]) > self._npts):
                        self.src[n].set_data(data[n])
                        self._last_data[n] = data[n][-self._npts:]
                    else:
                        newdata = self._last_data[n][-(self._npts-len(data)):]
                        newdata += data[n]
                        self.src[n].set_data(newdata)
                        self._last_data[n] = newdata

                else: # single value update
                    if(self._iscomplex):
                        data[n] = complex(data[n][0], data[n][1])
                    if(self._data_len[n] < self._npts):
                        self._last_data[n][self._data_len[n]] = data[n]
                        self._data_len[n] += 1
                    else:
                        self._last_data[n] = self._last_data[n][1:]
                        self._last_data[n].append(data[n])
                    self.src[n].set_data(self._last_data[n])
        else:
            for n in xrange(self._ncons):
                if(type(data[n]) != list):
                    data[n] = [data[n],]
                data[n] = self.data_to_complex(data[n])
                self.src[n].set_data(data[n])



class GrDataPlotterC(GrDataPlotParent):
    def __init__(self, name, rate, pmin=None, pmax=None, stripchart=False):
        GrDataPlotParent.__init__(self, name, rate, pmin, pmax)

        self._stripchart = stripchart
        self._datasize = gr.sizeof_gr_complex
        self._iscomplex = True

        self._setup(1)

    def stem(self, en=True):
        self.snk.enable_stem_plot(en)

    def get_qtsink(self):
        snk = qtgui.time_sink_c(self._npts, 1.0,
                                self._name, self._ncons)
        snk.enable_autoscale(True)
        return snk

    def get_vecsource(self):
        return blocks.vector_source_c([])

    def get_npts(self):
        self._npts = self.snk.nsamps()
        return self._npts

    def set_line_label(self, n, name):
        self.snk.set_line_label(2*n+0, "Re{" + self.knobnames[n] + "}")
        self.snk.set_line_label(2*n+1, "Im{" + self.knobnames[n] + "}")


class GrDataPlotterF(GrDataPlotParent):
    def __init__(self, name, rate, pmin=None, pmax=None, stripchart=False):
        GrDataPlotParent.__init__(self, name, rate, pmin, pmax)

        self._stripchart = stripchart
        self._datasize = gr.sizeof_float
        self._iscomplex = False

        self._setup(1)

    def stem(self, en=True):
        self.snk.enable_stem_plot(en)

    def get_qtsink(self):
        snk = qtgui.time_sink_f(self._npts, 1.0,
                                self._name, self._ncons)
        snk.enable_autoscale(True)
        return snk

    def get_vecsource(self):
        return blocks.vector_source_f([])

    def get_npts(self):
        self._npts = self.snk.nsamps()
        return self._npts

    def set_line_label(self, n, name):
        self.snk.set_line_label(n, self.knobnames[n])


class GrDataPlotterConst(GrDataPlotParent):
    def __init__(self, name, rate, pmin=None, pmax=None, stripchart=False):
        GrDataPlotParent.__init__(self, name, rate, pmin, pmax)

        self._datasize = gr.sizeof_gr_complex
        self._stripchart = stripchart
        self._iscomplex = True

        self._setup(1)

    def get_qtsink(self):
        snk = qtgui.const_sink_c(self._npts,
                                 self._name,
                                 self._ncons)
        snk.enable_autoscale(True)
        return snk

    def get_vecsource(self):
        return blocks.vector_source_c([])

    def get_npts(self):
        self._npts = self.snk.nsamps()
        return self._npts

    def scatter(self, en=True):
        if(en):
            self.snk.set_line_style(0, 0)
        else:
            self.snk.set_line_style(0, 1)

    def set_line_label(self, n, name):
        self.snk.set_line_label(n, self.knobnames[n])


class GrDataPlotterPsdC(GrDataPlotParent):
    def __init__(self, name, rate, pmin=None, pmax=None):
        GrDataPlotParent.__init__(self, name, rate, pmin, pmax)

        self._datasize = gr.sizeof_gr_complex
        self._stripchart = True
        self._iscomplex = True

        self._npts = 2048
        self._wintype = filter.firdes.WIN_BLACKMAN_hARRIS
        self._fc = 0

        self._setup(1)

    def get_qtsink(self):
        snk = qtgui.freq_sink_c(self._npts, self._wintype,
                                self._fc, 1.0,
                                self._name,
                                self._ncons)
        snk.enable_autoscale(True)
        return snk

    def get_vecsource(self):
        return blocks.vector_source_c([])

    def get_npts(self):
        self._npts = self.snk.fft_size()
        return self._npts

    def set_line_label(self, n, name):
        self.snk.set_line_label(n, self.knobnames[n])


class GrDataPlotterPsdF(GrDataPlotParent):
    def __init__(self, name, rate, pmin=None, pmax=None):
        GrDataPlotParent.__init__(self, name, rate, pmin, pmax)

        self._datasize = gr.sizeof_float
        self._stripchart = True
        self._iscomplex = False

        self._npts = 2048
        self._wintype = filter.firdes.WIN_BLACKMAN_hARRIS
        self._fc = 0

        self._setup(1)

    def get_qtsink(self):
        snk = qtgui.freq_sink_f(self._npts, self._wintype,
                                self._fc, 1.0,
                                self._name,
                                self._ncons)
        snk.enable_autoscale(True)
        return snk

    def get_vecsource(self):
        return blocks.vector_source_f([])

    def get_npts(self):
        self._npts = self.snk.fft_size()
        return self._npts

    def set_line_label(self, n, name):
        self.snk.set_line_label(n, self.knobnames[n])


class GrTimeRasterF(GrDataPlotParent):
    def __init__(self, name, rate, pmin=None, pmax=None):
        GrDataPlotParent.__init__(self, name, rate, pmin, pmax)

        self._npts = 10
        self._rows = 40

        self._datasize = gr.sizeof_float
        self._stripchart = False
        self._iscomplex = False

        self._setup(1)

    def get_qtsink(self):
        snk = qtgui.time_raster_sink_f(1.0, self._npts, self._rows,
                                       [], [], self._name,
                                       self._ncons)
        return snk

    def get_vecsource(self):
        return blocks.vector_source_f([])

    def get_npts(self):
        self._npts = self.snk.num_cols()
        return self._npts

    def set_line_label(self, n, name):
        self.snk.set_line_label(n, self.knobnames[n])

class GrTimeRasterB(GrDataPlotParent):
    def __init__(self, name, rate, pmin=None, pmax=None):
        GrDataPlotParent.__init__(self, name, rate, pmin, pmax)

        self._npts = 10
        self._rows = 40

        self._datasize = gr.sizeof_char
        self._stripchart = False
        self._iscomplex = False

        self._setup(1)

    def get_qtsink(self):
        snk = qtgui.time_raster_sink_b(1.0, self._npts, self._rows,
                                       [], [], self._name,
                                       self._ncons)
        return snk

    def get_vecsource(self):
        return blocks.vector_source_b([])

    def get_npts(self):
        self._npts = self.snk.num_cols()
        return self._npts

    def set_line_label(self, n, name):
        self.snk.set_line_label(n, self.knobnames[n])


class GrDataPlotterValueTable:
    def __init__(self, uid, parent, x, y, xsize, ysize,
                 headers=['Statistic Key ( Source Block :: Stat Name )  ',
                          'Curent Value', 'Units', 'Description']):
	# must encapsulate, cuz Qt's bases are not classes
        self.uid = uid
        self.treeWidget = QtGui.QTreeWidget(parent)
        self.treeWidget.setColumnCount(len(headers))
        self.treeWidget.setGeometry(x,y,xsize,ysize)
        self.treeWidget.setHeaderLabels(headers)
        self.treeWidget.resizeColumnToContents(0)

    def updateItems(self, knobs, knobprops):
        items = []
        foundKeys = []
        deleteKeys = []
        numItems = self.treeWidget.topLevelItemCount()

        # The input knobs variable is a dict of stats to display in the tree.

        # Update tree stat values with new values found in knobs.
        # Track found keys and track keys in tree that are not in input knobs.
        for i in range(0, numItems):
            item = self.treeWidget.topLevelItem(i)

            # itemKey is the text in the first column of a QTreeWidgetItem
            itemKey = str(item.text(0))
            if itemKey in knobs.keys():

                # This key was found in the tree, update its values.
                foundKeys.append(itemKey)
                v = knobs[itemKey].value
                units = str(knobprops[itemKey].units)
                descr = str(knobprops[itemKey].description)

                if(type(v) == ControlPort.complex):
                    v = v.re + v.im*1j
                # If it's a byte stream, Python thinks it's a string.
                # Unpack and convert to floats for plotting.
                # Ignore the edge list knob if it's being exported
                elif(type(v) == str and itemKey.find('probe2_b') == 0):
                    v = struct.unpack(len(v)*'b', v)

                # Convert the final value to a string for displaying
                v = str(v)

                if (item.text(1) != v or
                    item.text(2) != units or
                    item.text(3) != descr):

                    item.setText(1, v)
                    item.setText(2, units)
                    item.setText(3, descr)
            else:
                # This item is not in the knobs list...track it for removal.
                deleteKeys.append(itemKey)

        # Add items to tree that are not currently in the tree.
        for k in knobs.keys():
            if k not in foundKeys:
                v = knobs[k].value
                if(type(v) == ControlPort.complex):
                    v = v.re + v.im*1j
                # If it's a byte stream, Python thinks it's a string.
                # Unpack and convert to floats for plotting.
                # Ignore the edge list knob if it's being exported
                elif(type(v) == str and k.find('probe2_b') == 0):
                    v = struct.unpack(len(v)*'b', v)

                item = QtGui.QTreeWidgetItem([k, str(v),
                            knobprops[k].units, knobprops[k].description])
                self.treeWidget.addTopLevelItem(item)

        # Remove items currently in tree that are not in the knob list.
        for itemKey in deleteKeys:
            qtwiList = self.treeWidget.findItems(itemKey, Qt.Qt.MatchFixedString)
            if (len(qtwiList) > 1):
                raise Exception('More than one item with key %s in tree' %
                                itemKey)
            elif (len(qtwiList) == 1):
                i = self.treeWidget.indexOfTopLevelItem(qtwiList[0])
                self.treeWidget.takeTopLevelItem(i)