File: freq_sink_c_impl.cc

package info (click to toggle)
gnuradio 3.7.13.4-4
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 45,992 kB
  • sloc: cpp: 155,723; python: 88,934; xml: 42,165; ansic: 41,036; fortran: 927; asm: 803; sh: 224; lisp: 31; makefile: 17
file content (810 lines) | stat: -rw-r--r-- 22,481 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
/* -*- c++ -*- */
/*
 * Copyright 2012,2014-2015 Free Software Foundation, Inc.
 *
 * This file is part of GNU Radio
 *
 * GNU Radio is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3, or (at your option)
 * any later version.
 *
 * GNU Radio is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with GNU Radio; see the file COPYING.  If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street,
 * Boston, MA 02110-1301, USA.
 */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include "freq_sink_c_impl.h"
#include <gnuradio/io_signature.h>
#include <gnuradio/prefs.h>
#include <string.h>
#include <volk/volk.h>
#include <qwt_symbol.h>

namespace gr {
  namespace qtgui {

    freq_sink_c::sptr
    freq_sink_c::make(int fftsize, int wintype,
		      double fc, double bw,
		      const std::string &name,
		      int nconnections,
		      QWidget *parent)
    {
      return gnuradio::get_initial_sptr
	(new freq_sink_c_impl(fftsize, wintype,
			      fc, bw, name,
			      nconnections,
			      parent));
    }

    freq_sink_c_impl::freq_sink_c_impl(int fftsize, int wintype,
				       double fc, double bw,
				       const std::string &name,
				       int nconnections,
				       QWidget *parent)
      : sync_block("freq_sink_c",
                   io_signature::make(0, nconnections, sizeof(gr_complex)),
                   io_signature::make(0, 0, 0)),
	d_fftsize(fftsize), d_fftavg(1.0),
	d_wintype((filter::firdes::win_type)(wintype)),
  d_center_freq(fc), d_bandwidth(bw), d_name(name),
  d_nconnections(nconnections),
  d_port(pmt::mp("freq")),
  d_parent(parent)
    {
      // Required now for Qt; argc must be greater than 0 and argv
      // must have at least one valid character. Must be valid through
      // life of the qApplication:
      // http://harmattan-dev.nokia.com/docs/library/html/qt4/qapplication.html
      d_argc = 1;
      d_argv = new char;
      d_argv[0] = '\0';

      // setup output message port to post frequency when display is
      // double-clicked
      message_port_register_out(d_port);
      message_port_register_in(d_port);
      set_msg_handler(d_port,
                      boost::bind(&freq_sink_c_impl::handle_set_freq, this, _1));

      // setup PDU handling input port
      message_port_register_in(pmt::mp("in"));
      set_msg_handler(pmt::mp("in"),
                      boost::bind(&freq_sink_c_impl::handle_pdus, this, _1));

      d_main_gui = NULL;

      // Perform fftshift operation;
      // this is usually desired when plotting
      d_shift = true;

      d_fft = new fft::fft_complex(d_fftsize, true);
      d_fbuf = (float*)volk_malloc(d_fftsize*sizeof(float),
                                   volk_get_alignment());
      memset(d_fbuf, 0, d_fftsize*sizeof(float));

      d_tmpbuflen = (unsigned int)(floor(d_fftsize/2.0));
      d_tmpbuf = (float*)volk_malloc(sizeof(float)*(d_tmpbuflen + 1),
                                     volk_get_alignment());


      d_index = 0;
      // save the last "connection" for the PDU memory
      for(int i = 0; i < d_nconnections; i++) {
	d_residbufs.push_back((gr_complex*)volk_malloc(d_fftsize*sizeof(gr_complex),
                                                       volk_get_alignment()));
	d_magbufs.push_back((double*)volk_malloc(d_fftsize*sizeof(double),
                                                 volk_get_alignment()));

	memset(d_residbufs[i], 0, d_fftsize*sizeof(gr_complex));
	memset(d_magbufs[i], 0, d_fftsize*sizeof(double));
      }

      d_residbufs.push_back((gr_complex*)volk_malloc(d_fftsize*sizeof(gr_complex),
                                                     volk_get_alignment()));
      d_pdu_magbuf = (double*)volk_malloc(d_fftsize*sizeof(double),
                                          volk_get_alignment());
      d_magbufs.push_back(d_pdu_magbuf);
      memset(d_residbufs[d_nconnections], 0, d_fftsize*sizeof(gr_complex));
      memset(d_pdu_magbuf, 0, d_fftsize*sizeof(double));

      buildwindow();

      initialize();

      set_trigger_mode(TRIG_MODE_FREE, 0, 0);
    }

    freq_sink_c_impl::~freq_sink_c_impl()
    {
      if(!d_main_gui->isClosed())
        d_main_gui->close();

      // +1 to handle PDU buffers; will also take care of d_pdu_magbuf
      for(int i = 0; i < d_nconnections+1; i++) {
	volk_free(d_residbufs[i]);
	volk_free(d_magbufs[i]);
      }
      delete d_fft;
      volk_free(d_fbuf);
      volk_free(d_tmpbuf);

      delete d_argv;
    }

    bool
    freq_sink_c_impl::check_topology(int ninputs, int noutputs)
    {
      return ninputs == d_nconnections;
    }

    void
    freq_sink_c_impl::initialize()
    {
      if(qApp != NULL) {
	d_qApplication = qApp;
      }
      else {
#if QT_VERSION >= 0x040500 && QT_VERSION < 0x050000
        std::string style = prefs::singleton()->get_string("qtgui", "style", "raster");
        QApplication::setGraphicsSystem(QString(style.c_str()));
#endif
        d_qApplication = new QApplication(d_argc, &d_argv);
      }

      // If a style sheet is set in the prefs file, enable it here.
      check_set_qss(d_qApplication);

      int numplots = (d_nconnections > 0) ? d_nconnections : 1;
      d_main_gui = new FreqDisplayForm(numplots, d_parent);
      set_fft_window(d_wintype);
      set_fft_size(d_fftsize);
      set_frequency_range(d_center_freq, d_bandwidth);

      if(d_name.size() > 0)
        set_title(d_name);

      set_output_multiple(d_fftsize);

      // initialize update time to 10 times a second
      set_update_time(0.1);
    }

    void
    freq_sink_c_impl::exec_()
    {
      d_qApplication->exec();
    }

    QWidget*
    freq_sink_c_impl::qwidget()
    {
      return d_main_gui;
    }

#ifdef ENABLE_PYTHON
    PyObject*
    freq_sink_c_impl::pyqwidget()
    {
      PyObject *w = PyLong_FromVoidPtr((void*)d_main_gui);
      PyObject *retarg = Py_BuildValue("N", w);
      return retarg;
    }
#else
    void *
    freq_sink_c_impl::pyqwidget()
    {
      return NULL;
    }
#endif

    void
    freq_sink_c_impl::set_fft_size(const int fftsize)
    {
      if((fftsize > 16) && (fftsize < 16384))
        d_main_gui->setFFTSize(fftsize);
      else
        throw std::runtime_error("freq_sink: FFT size must be > 16 and < 16384.");
    }

    int
    freq_sink_c_impl::fft_size() const
    {
      return d_fftsize;
    }

    void
    freq_sink_c_impl::set_fft_average(const float fftavg)
    {
      d_main_gui->setFFTAverage(fftavg);
    }

    float
    freq_sink_c_impl::fft_average() const
    {
      return d_fftavg;
    }

    void
    freq_sink_c_impl::set_fft_window(const filter::firdes::win_type win)
    {
      d_main_gui->setFFTWindowType(win);
    }

    filter::firdes::win_type
    freq_sink_c_impl::fft_window()
    {
      return d_wintype;
    }

    void
    freq_sink_c_impl::set_frequency_range(const double centerfreq,
					  const double bandwidth)
    {
      d_center_freq = centerfreq;
      d_bandwidth = bandwidth;
      d_main_gui->setFrequencyRange(d_center_freq, d_bandwidth);
    }

    void
    freq_sink_c_impl::set_y_axis(double min, double max)
    {
      d_main_gui->setYaxis(min, max);
    }

    void
    freq_sink_c_impl::set_y_label(const std::string &label,
                                  const std::string &unit)
    {
        d_main_gui->setYLabel(label, unit);
    }

    void
    freq_sink_c_impl::set_update_time(double t)
    {
      //convert update time to ticks
      gr::high_res_timer_type tps = gr::high_res_timer_tps();
      d_update_time = t * tps;
      d_main_gui->setUpdateTime(t);
      d_last_time = 0;
    }

    void
    freq_sink_c_impl::set_title(const std::string &title)
    {
      d_main_gui->setTitle(title.c_str());
    }

    void
    freq_sink_c_impl::set_line_label(int which, const std::string &label)
    {
      d_main_gui->setLineLabel(which, label.c_str());
    }

    void
    freq_sink_c_impl::set_line_color(int which, const std::string &color)
    {
      d_main_gui->setLineColor(which, color.c_str());
    }

    void
    freq_sink_c_impl::set_line_width(int which, int width)
    {
      d_main_gui->setLineWidth(which, width);
    }

    void
    freq_sink_c_impl::set_line_style(int which, int style)
    {
      d_main_gui->setLineStyle(which, (Qt::PenStyle)style);
    }

    void
    freq_sink_c_impl::set_line_marker(int which, int marker)
    {
      d_main_gui->setLineMarker(which, (QwtSymbol::Style)marker);
    }

    void
    freq_sink_c_impl::set_line_alpha(int which, double alpha)
    {
      d_main_gui->setMarkerAlpha(which, (int)(255.0*alpha));
    }

    void
    freq_sink_c_impl::set_size(int width, int height)
    {
      d_main_gui->resize(QSize(width, height));
    }

    void
    freq_sink_c_impl::set_trigger_mode(trigger_mode mode,
                                       float level,
                                       int channel,
                                       const std::string &tag_key)
    {
      gr::thread::scoped_lock lock(d_setlock);

      d_trigger_mode = mode;
      d_trigger_level = level;
      d_trigger_channel = channel;
      d_trigger_tag_key = pmt::intern(tag_key);
      d_triggered = false;
      d_trigger_count = 0;

      d_main_gui->setTriggerMode(d_trigger_mode);
      d_main_gui->setTriggerLevel(d_trigger_level);
      d_main_gui->setTriggerChannel(d_trigger_channel);
      d_main_gui->setTriggerTagKey(tag_key);

      _reset();
    }

    std::string
    freq_sink_c_impl::title()
    {
      return d_main_gui->title().toStdString();
    }

    std::string
    freq_sink_c_impl::line_label(int which)
    {
      return d_main_gui->lineLabel(which).toStdString();
    }

    std::string
    freq_sink_c_impl::line_color(int which)
    {
      return d_main_gui->lineColor(which).toStdString();
    }

    int
    freq_sink_c_impl::line_width(int which)
    {
      return d_main_gui->lineWidth(which);
    }

    int
    freq_sink_c_impl::line_style(int which)
    {
      return d_main_gui->lineStyle(which);
    }

    int
    freq_sink_c_impl::line_marker(int which)
    {
      return d_main_gui->lineMarker(which);
    }

    double
    freq_sink_c_impl::line_alpha(int which)
    {
      return (double)(d_main_gui->markerAlpha(which))/255.0;
    }

    void
    freq_sink_c_impl::enable_menu(bool en)
    {
      d_main_gui->enableMenu(en);
    }

    void
    freq_sink_c_impl::enable_grid(bool en)
    {
      d_main_gui->setGrid(en);
    }

    void
    freq_sink_c_impl::enable_autoscale(bool en)
    {
      d_main_gui->autoScale(en);
    }

    void
    freq_sink_c_impl::enable_axis_labels(bool en)
    {
        d_main_gui->setAxisLabels(en);
    }

    void
    freq_sink_c_impl::enable_control_panel(bool en)
    {
      if(en)
        d_main_gui->setupControlPanel();
      else
        d_main_gui->teardownControlPanel();
    }

    void
    freq_sink_c_impl::enable_max_hold(bool en)
    {
      d_main_gui->notifyMaxHold(en);
    }

    void
    freq_sink_c_impl::enable_min_hold(bool en)
    {
      d_main_gui->notifyMinHold(en);
    }

    void
    freq_sink_c_impl::clear_max_hold()
    {
      d_main_gui->clearMaxHold();
    }

    void
    freq_sink_c_impl::clear_min_hold()
    {
      d_main_gui->clearMinHold();
    }

    void
    freq_sink_c_impl::disable_legend()
    {
      d_main_gui->disableLegend();
    }

    void
    freq_sink_c_impl::reset()
    {
      gr::thread::scoped_lock lock(d_setlock);
      _reset();
    }

    void
    freq_sink_c_impl::_reset()
    {
      d_trigger_count = 0;

      // Reset the trigger.
      if(d_trigger_mode == TRIG_MODE_FREE) {
        d_triggered = true;
      }
      else {
        d_triggered = false;
      }
    }


    void
    freq_sink_c_impl::fft(float *data_out, const gr_complex *data_in, int size)
    {
      if(d_window.size()) {
	volk_32fc_32f_multiply_32fc(d_fft->get_inbuf(), data_in,
                                    &d_window.front(), size);
      }
      else {
	memcpy(d_fft->get_inbuf(), data_in, sizeof(gr_complex)*size);
      }

      d_fft->execute();     // compute the fft

      volk_32fc_s32f_x2_power_spectral_density_32f(data_out, d_fft->get_outbuf(),
                                                   size, 1.0, size);

      // Perform shift operation
      memcpy(d_tmpbuf, &data_out[0], sizeof(float)*(d_tmpbuflen + 1));
      memcpy(&data_out[0], &data_out[size - d_tmpbuflen], sizeof(float)*(d_tmpbuflen));
      memcpy(&data_out[d_tmpbuflen], d_tmpbuf, sizeof(float)*(d_tmpbuflen + 1));
    }

    bool
    freq_sink_c_impl::windowreset()
    {
      gr::thread::scoped_lock lock(d_setlock);

      filter::firdes::win_type newwintype;
      newwintype = d_main_gui->getFFTWindowType();
      if(d_wintype != newwintype) {
        d_wintype = newwintype;
        buildwindow();
        return true;
      }
      return false;
    }

    void
    freq_sink_c_impl::buildwindow()
    {
      d_window.clear();
      if(d_wintype != filter::firdes::WIN_NONE) {
	d_window = filter::firdes::window(d_wintype, d_fftsize, 6.76);
      }
    }

    bool
    freq_sink_c_impl::fftresize()
    {
      gr::thread::scoped_lock lock(d_setlock);

      int newfftsize = d_main_gui->getFFTSize();
      d_fftavg = d_main_gui->getFFTAverage();

      if(newfftsize != d_fftsize) {
	// Resize residbuf and replace data
        // +1 to handle PDU buffers
	for(int i = 0; i < d_nconnections+1; i++) {
	  volk_free(d_residbufs[i]);
	  volk_free(d_magbufs[i]);

	  d_residbufs[i] = (gr_complex*)volk_malloc(newfftsize*sizeof(gr_complex),
                                                    volk_get_alignment());
	  d_magbufs[i] = (double*)volk_malloc(newfftsize*sizeof(double),
                                              volk_get_alignment());

	  memset(d_residbufs[i], 0, newfftsize*sizeof(gr_complex));
	  memset(d_magbufs[i], 0, newfftsize*sizeof(double));
	}

        // Update the pointer to the newly allocated memory
        d_pdu_magbuf = d_magbufs[d_nconnections];

	// Set new fft size and reset buffer index
	// (throws away any currently held data, but who cares?)
	d_fftsize = newfftsize;
	d_index = 0;

	// Reset window to reflect new size
	buildwindow();

	// Reset FFTW plan for new size
	delete d_fft;
	d_fft = new fft::fft_complex(d_fftsize, true);

	volk_free(d_fbuf);
	d_fbuf = (float*)volk_malloc(d_fftsize*sizeof(float),
                                     volk_get_alignment());
	memset(d_fbuf, 0, d_fftsize*sizeof(float));

	volk_free(d_tmpbuf);
        d_tmpbuflen = (unsigned int)(floor(d_fftsize/2.0));
        d_tmpbuf = (float*)volk_malloc(sizeof(float)*(d_tmpbuflen + 1),
                                       volk_get_alignment());

        d_last_time = 0;

        set_output_multiple(d_fftsize);

        return true;
      }
      return false;
    }

    void
    freq_sink_c_impl::check_clicked()
    {
      if(d_main_gui->checkClicked()) {
        double freq = d_main_gui->getClickedFreq();
        message_port_pub(d_port,
                         pmt::cons(d_port,
                                   pmt::from_double(freq)));
      }
    }

    void
    freq_sink_c_impl::handle_set_freq(pmt::pmt_t msg)
    {
      if(pmt::is_pair(msg)) {
        pmt::pmt_t x = pmt::cdr(msg);
        if(pmt::is_real(x)) {
          d_center_freq = pmt::to_double(x);
          d_qApplication->postEvent(d_main_gui,
                                    new SetFreqEvent(d_center_freq, d_bandwidth));
        }
      }
    }

    void
    freq_sink_c_impl::_gui_update_trigger()
    {
      trigger_mode new_trigger_mode = d_main_gui->getTriggerMode();
      d_trigger_level = d_main_gui->getTriggerLevel();
      d_trigger_channel = d_main_gui->getTriggerChannel();

      std::string tagkey = d_main_gui->getTriggerTagKey();
      d_trigger_tag_key = pmt::intern(tagkey);

      if(new_trigger_mode != d_trigger_mode) {
        d_trigger_mode = new_trigger_mode;
        _reset();
      }
    }

    void
    freq_sink_c_impl::_test_trigger_tags(int start, int nitems)
    {
      uint64_t nr = nitems_read(d_trigger_channel);
      std::vector<gr::tag_t> tags;
      get_tags_in_range(tags, d_trigger_channel,
                        nr+start, nr+start+nitems,
                        d_trigger_tag_key);
      if(tags.size() > 0) {
        d_triggered = true;
        d_index = tags[0].offset - nr;
        d_trigger_count = 0;
      }
    }

    void
    freq_sink_c_impl::_test_trigger_norm(int nitems, std::vector<double*> inputs)
    {
      const double *in = (const double*)inputs[d_trigger_channel];
      for(int i = 0; i < nitems; i++) {
        d_trigger_count++;

        // Test if trigger has occurred based on the FFT magnitude and
        // channel number. Test if any value is > the level (in dBx).
        if(in[i] > d_trigger_level) {
          d_triggered = true;
          d_trigger_count = 0;
          break;
        }
      }

      // If using auto trigger mode, trigger periodically even
      // without a trigger event.
      if((d_trigger_mode == TRIG_MODE_AUTO) && (d_trigger_count > d_fftsize)) {
        d_triggered = true;
        d_trigger_count = 0;
      }
    }

    int
    freq_sink_c_impl::work(int noutput_items,
			   gr_vector_const_void_star &input_items,
			   gr_vector_void_star &output_items)
    {
      const gr_complex *in = (const gr_complex*)input_items[0];

      // Update the FFT size from the application
      bool updated = false;
      updated |= fftresize();
      updated |= windowreset();
      if(updated)
        return 0;

      check_clicked();
      _gui_update_trigger();

      gr::thread::scoped_lock lock(d_setlock);
      for(d_index = 0; d_index < noutput_items; d_index+=d_fftsize) {

        if((gr::high_res_timer_now() - d_last_time) > d_update_time) {

          // Trigger off tag, if active
          if((d_trigger_mode == TRIG_MODE_TAG) && !d_triggered) {
            _test_trigger_tags(d_index, d_fftsize);
            if(d_triggered) {
              // If not enough from tag position, early exit
              if((d_index + d_fftsize) >= noutput_items)
                return d_index;
            }
          }

          // Perform FFT and shift operations into d_magbufs
          for(int n = 0; n < d_nconnections; n++) {
            in = (const gr_complex*)input_items[n];
            memcpy(d_residbufs[n], &in[d_index], sizeof(gr_complex)*d_fftsize);

            fft(d_fbuf, d_residbufs[n], d_fftsize);
            for(int x = 0; x < d_fftsize; x++) {
              d_magbufs[n][x] = (double)((1.0-d_fftavg)*d_magbufs[n][x] + (d_fftavg)*d_fbuf[x]);
            }
            //volk_32f_convert_64f(d_magbufs[n], d_fbuf, d_fftsize);
          }

          // Test trigger off signal power in d_magbufs
          if((d_trigger_mode == TRIG_MODE_NORM) || (d_trigger_mode == TRIG_MODE_AUTO)) {
            _test_trigger_norm(d_fftsize, d_magbufs);
          }

          // If a trigger (FREE always triggers), plot and reset state
          if(d_triggered) {
            d_last_time = gr::high_res_timer_now();
            d_qApplication->postEvent(d_main_gui,
                                      new FreqUpdateEvent(d_magbufs, d_fftsize));
            _reset();
          }
        }
      }

      return noutput_items;
    }


    void
    freq_sink_c_impl::handle_pdus(pmt::pmt_t msg)
    {
      size_t len;
      pmt::pmt_t dict, samples;

      // Test to make sure this is either a PDU or a uniform vector of
      // samples. Get the samples PMT and the dictionary if it's a PDU.
      // If not, we throw an error and exit.
      if(pmt::is_pair(msg)) {
        dict = pmt::car(msg);
        samples = pmt::cdr(msg);
      }
      else if(pmt::is_uniform_vector(msg)) {
        samples = msg;
      }
      else {
        throw std::runtime_error("time_sink_c: message must be either "
                                 "a PDU or a uniform vector of samples.");
      }

      len = pmt::length(samples);

      const gr_complex *in;
      if(pmt::is_c32vector(samples)) {
        in = (const gr_complex*)pmt::c32vector_elements(samples, len);
      }
      else {
        throw std::runtime_error("freq_sink_c: unknown data type "
                                 "of samples; must be complex.");
      }

      // Plot if we're past the last update time
      if(gr::high_res_timer_now() - d_last_time > d_update_time) {
        d_last_time = gr::high_res_timer_now();

        // Update the FFT size from the application
        fftresize();
        windowreset();
        check_clicked();

        int winoverlap = 4;
        int fftoverlap = d_fftsize / winoverlap;
        float num = static_cast<float>(winoverlap * len) / static_cast<float>(d_fftsize);
        int nffts = static_cast<int>(ceilf(num));

        // Clear this as we will be accumulating in the for loop over nffts
        memset(d_pdu_magbuf, 0, sizeof(double)*d_fftsize);

        size_t min = 0;
        size_t max = std::min(d_fftsize, static_cast<int>(len));
        for(int n = 0; n < nffts; n++) {
          // Clear in case (max-min) < d_fftsize
          memset(d_residbufs[d_nconnections], 0x00, sizeof(gr_complex)*d_fftsize);

          // Copy in as much of the input samples as we can
          memcpy(d_residbufs[d_nconnections], &in[min], sizeof(gr_complex)*(max-min));

          // Apply the window and FFT; copy data into the PDU
          // magnitude buffer.
          fft(d_fbuf, d_residbufs[d_nconnections], d_fftsize);
          for(int x = 0; x < d_fftsize; x++) {
            d_pdu_magbuf[x] += (double)d_fbuf[x];
          }

          // Increment our indices; set max up to the number of
          // samples in the input PDU.
          min += fftoverlap;
          max = std::min(max + fftoverlap, len);
        }

        // Perform the averaging
        for(int x = 0; x < d_fftsize; x++) {
          d_pdu_magbuf[x] /= static_cast<double>(nffts);
        }

        //update gui per-pdu
        d_qApplication->postEvent(d_main_gui,
                                  new FreqUpdateEvent(d_magbufs, d_fftsize));
      }
    }

  } /* namespace qtgui */
} /* namespace gr */