1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
|
/* Implementation for the timsort sorting algorithm for GNUStep
Copyright (C) 2012 Free Software Foundation, Inc.
Written by: Niels Grewe <niels.grewe@halbordnung.de>
Date: September 2012
This file is part of the GNUstep Base Library.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free
Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110 USA.
*/
#import "common.h"
#import "Foundation/NSSortDescriptor.h"
#import "Foundation/NSCoder.h"
#import "Foundation/NSException.h"
#import "Foundation/NSKeyValueCoding.h"
#import "GNUstepBase/GSObjCRuntime.h"
#import "GSPrivate.h"
#import "GSSorting.h"
/*
* About this implementation.
*
* Timsort is a stable, adaptive hybrid of merge- and insertion-sort which
* exploits existing structure in the data to be sorted, so that it takes
* usually takes less than O(n*log(n)) comparisons for real world data. The
* algorithm has been developed by Tim Peters and is described in [0].
*
* This implementation takes inspiration both from the C implementation in
* Python [1] and from the Java implementation in OpenJDK [2].
*
* [0] http://svn.python.org/projects/python/trunk/Objects/listsort.txt
* [1] http://svn.python.org/projects/python/trunk/Objects/listobject.c
* [2] http://cr.openjdk.java.net/~martin/webrevs/openjdk7/timsort/raw_files/new/src/share/classes/java/util/TimSort.java
*/
#define GS_MIN_MERGE 32
#define GS_MIN_GALLOP 7
#define GS_INITIAL_TEMP_STORAGE 256
/*
* Galloping from left searches for an insertion point for key into the
* already sorted buffer and returns the point immediately left of the first
* equal element. We can also use this function, and gallopRight(), its twin, to
* implement -[NSArray indexOfObject:inSortedRange:options:usingComparator:].
* Since we want to do that, this implementation is a bit different than the one
* in Python's listobject.c, since it takes into account the range and does just
* the buffer's length starting from the base address. The hint argument is used
* to give galloping a sensible start point for the search (it's usually 0 or
* (r.length - 1)).
*/
static NSUInteger
gallopLeft(id key, id *buf, NSRange r, NSUInteger hint, id descOrComp,
GSComparisonType type, void* context)
{
NSInteger offset = 1;
NSInteger lastOffset = 0;
NSInteger k = 0;
buf += (hint + r.location);
if (NSOrderedAscending == GSCompareUsingDescriptorOrComparator(*buf,
key,
descOrComp,
type,
context))
{
/* In an ascending order, we gallop to the right until the key
* is no longer greater than the element from the range
*/
NSInteger maxOffset = (r.length - hint);
while (offset < maxOffset)
{
if (NSOrderedAscending
== GSCompareUsingDescriptorOrComparator(buf[offset],
key,
descOrComp,
type,
context))
{
lastOffset = offset;
// We gallop by 1, 3, 7, 15,...
offset = (offset << 1) + 1;
if (offset <= 0)
{
offset = maxOffset;
}
}
else
{
break;
}
}
if (offset > maxOffset)
{
offset = maxOffset;
}
/* we incremented the buf pointer by hint, so we need to
* account for that in order to get the offset to the base address
*/
lastOffset += r.location + hint;
offset += r.location + hint;
}
else
{
/* In descending (or equal) order, we gallop to the left
* until the key is no longer less than the element from the range
*/
NSInteger maxOffset = hint + 1;
while (offset < maxOffset)
{
if (NSOrderedAscending
== GSCompareUsingDescriptorOrComparator(*(buf - offset),
key, descOrComp, type, context))
{
break;
}
lastOffset = offset;
offset = (offset << 1) + 1;
if (offset <= 0)
{
offset = maxOffset;
}
}
// Translate into positive offsets from array base address again.
k = lastOffset;
lastOffset = (r.location + hint) - offset;
offset = (r.location + hint) - k;
}
// Restore base address:
buf -= (hint + r.location);
/*
* We are now sure that we need to insert key somewhere between offset and
* lastOffset, though the stride might have been to large for the range.
* Fix the range and do a binary search with a vastly diminished search space.
*/
offset = MIN(offset, NSMaxRange(r));
if (lastOffset < (NSInteger)r.location)
{
lastOffset = (NSInteger)r.location;
}
while (lastOffset < offset)
{
NSInteger midPoint = lastOffset + ((offset - lastOffset) >> 1);
if (NSOrderedAscending
== GSCompareUsingDescriptorOrComparator(buf[midPoint],
key, descOrComp, type, context))
{
lastOffset = midPoint + 1;
}
else
{
offset = midPoint;
}
}
return (NSUInteger)offset;
}
/*
* Equivalent to gallopLeft() except that it searches for an insertion point
* right of the last equal element.
*/
static NSUInteger
gallopRight(id key, id *buf, NSRange r, NSUInteger hint,
id descOrComp, GSComparisonType type, void *context)
{
NSInteger offset = 1;
NSInteger lastOffset = 0;
NSInteger k = 0;
buf += (hint + r.location);
if (NSOrderedAscending == GSCompareUsingDescriptorOrComparator(key, *buf,
descOrComp, type, context))
{
/* In an ascending order, we gallop to the right until
* the key is no longer greater than the element from the range
*/
NSInteger maxOffset = hint + 1;
while (offset < maxOffset)
{
if (NSOrderedAscending == GSCompareUsingDescriptorOrComparator(key,
*(buf - offset), descOrComp, type, context))
{
lastOffset = offset;
offset = (offset << 1) + 1;
if (offset <= 0)
{
offset = maxOffset;
}
}
else
{
break;
}
}
if (offset > maxOffset)
{
offset = maxOffset;
}
// Translation to positive offsets against the base address.
k = lastOffset;
lastOffset = (r.location + hint) - offset;
offset = (r.location + hint) - k;
}
else
{
// In descending (or equal) order, we gallop to the right
NSInteger maxOffset = (r.length - hint);
while (offset < maxOffset)
{
if (NSOrderedAscending
== GSCompareUsingDescriptorOrComparator(key, buf[offset],
descOrComp, type, context))
{
break;
}
lastOffset = offset;
offset = (offset << 1) + 1;
if (offset <= 0)
{
offset = maxOffset;
}
}
// Translate into positive offsets from array base address again.
lastOffset += (hint + r.location);
offset += (hint + r.location);
}
// Restore base address:
buf -= (hint + r.location);
/*
* We are now sure that we need to insert key somewhere between offset and
* lastOffset, though the stride might have been to large for the range.
* Fix the range and do a binary search with a vastly diminished search space.
*/
lastOffset++;
offset = MIN(offset, NSMaxRange(r));
if (lastOffset < (NSInteger)r.location)
{
lastOffset = (NSInteger)r.location;
}
while (lastOffset < offset)
{
NSInteger midPoint = lastOffset + ((offset - lastOffset) >> 1);
if (NSOrderedAscending
== GSCompareUsingDescriptorOrComparator(key, buf[midPoint],
descOrComp, type, context))
{
offset = midPoint;
}
else
{
lastOffset = midPoint + 1;
}
}
return (NSUInteger)offset;
}
// Public versions of the galloping functions
NSUInteger
GSLeftInsertionPointForKeyInSortedRange(id key, id *buffer,
NSRange range, NSComparator cmptr)
{
return gallopLeft(key, buffer, range, 0, (id)cmptr,
GSComparisonTypeComparatorBlock, NULL);
}
NSUInteger
GSRightInsertionPointForKeyInSortedRange(id key, id *buffer,
NSRange range, NSComparator cmptr)
{
return gallopRight(key, buffer, range, 0, (id)cmptr,
GSComparisonTypeComparatorBlock, NULL);
}
static inline void
reverseRange(id *buffer, NSRange r)
{
NSUInteger loc = r.location;
NSUInteger max = (NSMaxRange(r) - 1);
while (loc < max)
{
id temp = buffer[loc];
buffer[loc++] = buffer[max];
buffer[max--] = temp;
}
}
/* In-place binary insertion sorting for small arrays (i.e. those which are
* smaller than GS_MIN_MERGE. We use this to generate minimal runs for timsort.
*/
static void
internalBinarySort(id *buffer,
NSRange r,
NSUInteger start,
id compOrDesc,
GSComparisonType type,
void *context)
{
NSUInteger min = r.location;
NSUInteger max = NSMaxRange(r);
NSCAssert2(NSLocationInRange(start, r),
@"Start index %lu not in range %@",
start, NSStringFromRange(r));
if (min == start)
{
start++;
}
// We assume that everything before start is sorted.
for (; start < max; ++start)
{
NSUInteger left = min;
NSUInteger right = start;
id pivot = buffer[right];
int i = 0;
do
{
NSUInteger midPoint = (left + ((right - left) >> 1));
NSComparisonResult res = GSCompareUsingDescriptorOrComparator(pivot,
buffer[midPoint],
compOrDesc,
type,
context);
if (NSOrderedAscending == res)
{
right = midPoint;
}
else
{
left = midPoint + 1;
}
} while (left < right);
NSCAssert(left == right, @"Binary sort iteration did not end correctly,");
// We make room for the pivot and place it at left.
for (i = start; i > left; --i)
{
buffer[i] = buffer[(i - 1)];
}
buffer[left] = pivot;
}
}
/*
* Count the number of elements in the range that are already ordered.
* If the order is a descending one, reverse it so that all runs are ordered the
* same way.
*/
static inline NSUInteger
countAscendizedRun(id *buf, NSRange r, id descOrComp,
GSComparisonType type, void*context)
{
NSUInteger min = r.location;
NSUInteger runMax = min + 1;
NSUInteger rangeMax = NSMaxRange(r);
if (runMax == rangeMax)
{
return 1;
}
if (NSOrderedDescending == GSCompareUsingDescriptorOrComparator(buf[min],
buf[runMax++], descOrComp, type, context))
{
while ((runMax < rangeMax) && NSOrderedDescending
== GSCompareUsingDescriptorOrComparator(buf[runMax - 1],
buf[runMax], descOrComp, type, context))
{
runMax++;
}
reverseRange(buf, NSMakeRange(min, (runMax - min)));
}
else // ascending or equal
{
while ((runMax < rangeMax) && NSOrderedDescending
!= GSCompareUsingDescriptorOrComparator(buf[runMax - 1],
buf[runMax], descOrComp, type, context))
{
runMax++;
}
}
return (runMax - min);
}
/*
* Calculate a sensible minimum length for the runs, these need to be powers of
* two, or less than, but close to, one, but always at least GS_MIN_MERGE. For
* details on why this is useful, see Python's listsort.txt.
*/
static inline NSUInteger
minimumRunLength(NSUInteger length)
{
NSUInteger r = 0;
while (length >= GS_MIN_MERGE)
{
r |= length & 1;
length >>= 1;
}
return (length + r);
}
/*
* For arrays up to GS_MIN_MERGE, we don't do merging. Instead, we identify
* pre-ordering at the begining of the range and sort the rest using binary
* sort.
*/
static inline void
miniTimSort(id *buf, NSRange r, id descOrComp, GSComparisonType ty, void *ctx)
{
NSUInteger firstRunLength = countAscendizedRun(buf, r, descOrComp, ty, ctx);
if (r.length == firstRunLength)
{
// In this case, we have already sorted the array here.
return;
}
internalBinarySort(buf, r, (r.location + firstRunLength),
descOrComp, ty, ctx);
}
/* These macros make calling the cached IMPs easier,
* if we choose to do so later.
*/
#define GS_TIMSORT_CACHED_MSG(recv, sel) sel ## Imp(recv,@selector(sel))
#define GS_TIMSORT_CACHED_MSGV(recv, imp, sel, ...) imp(recv, @selector(sel), __VA_ARGS__)
#define GS_TIMSORT_SUGGEST_MERGE(desc) GS_TIMSORT_CACHED_MSG(desc, suggestMerge)
#define GS_TIMSORT_FORCE_MERGE(desc) GS_TIMSORT_CACHED_MSG(desc, forceMerge)
#define GS_TIMSORT_PUSH_RUN(desc, run) \
GS_TIMSORT_CACHED_MSGV(desc, pushRunImp, pushRun:, run)
#define GS_TIMSORT_MERGE_AT_INDEX(desc, n) \
GS_TIMSORT_CACHED_MSGV(desc, mergeAtIndexImp, mergeAtIndex:, n)
#define GS_TIMSORT_MERGE_LOW(desc, r1, r2) \
GS_TIMSORT_CACHED_MSGV(desc, mergeLowImp, mergeLowRun:withRun:, r1, r2)
#define GS_TIMSORT_MERGE_HIGH(desc, r1, r2) \
GS_TIMSORT_CACHED_MSGV(desc, mergeHighImp, mergeHighRun:withRun:, r1, r2)
#define GS_TIMSORT_ENSURE_TEMP_CAPACITY(desc, length) \
GS_TIMSORT_CACHED_MSGV(desc, ensureCapImp, ensureTempCapacity:, length)
static IMP pushRunImp;
static IMP suggestMergeImp;
static IMP forceMergeImp;
static IMP mergeAtIndexImp;
static IMP mergeLowImp;
static IMP mergeHighImp;
static IMP ensureCapImp;
@interface GSTimSortPlaceHolder : NSObject
{
id *objects;
NSRange sortRange;
id sortDescriptorOrComparator;
GSComparisonType comparisonType;
void *functionContext;
NSUInteger minGallop;
NSUInteger tempCapacity;
id *tempBuffer;
NSUInteger stackSize;
NSRange* runStack;
}
- (id)initWithObjects: (id*)theObjects
sortRange: (NSRange)theSortRange
descriptor: (NSSortDescriptor*)descriptor;
- (id)initWithObjects: (id*)theObjects
sortRange: (NSRange)theSortRange
comparator: (NSComparator)comparator;
- (void)mergeAtIndex: (NSUInteger)index;
- (void)suggestMerge;
- (void)forceMerge;
@end
// Prototype for the actual timsort function.
static void
_GSTimSort(id *objects,
NSRange sortRange,
id sortDescriptorOrComparator,
GSComparisonType comparisonType,
void *context);
@implementation GSTimSortPlaceHolder
+ (void) load
{
_GSSortStable = _GSTimSort;
}
+ (void) initialize
{
if ([GSTimSortPlaceHolder class] == [self class])
{
// We need to be fast, so we cache a lot of IMPs
pushRunImp =
[self instanceMethodForSelector: @selector(pushRun:)];
suggestMergeImp =
[self instanceMethodForSelector: @selector(suggestMerge)];
forceMergeImp =
[self instanceMethodForSelector: @selector(forceMerge)];
mergeAtIndexImp =
[self instanceMethodForSelector: @selector(mergeAtIndex:)];
mergeLowImp =
[self instanceMethodForSelector: @selector(mergeLowRun:withRun:)];
mergeHighImp =
[self instanceMethodForSelector: @selector(mergeHighRun:withRun:)];
ensureCapImp =
[self instanceMethodForSelector: @selector(ensureTempCapacity:)];
}
}
+ (void) setUnstable
{
_GSSortUnstable = _GSTimSort; // Use for unstable even though we are stable
}
- (id) initWithObjects: (id*)theObjects
sortRange: (NSRange)theSortRange
descriptorOrComparator: (id)descriptorOrComparator
comparisonType: (GSComparisonType)ty
functionContext: (void*)ctx
{
NSUInteger sortLength = theSortRange.length;
NSUInteger stackSpace = 0;
if (nil == (self = [super init]))
{
return nil;
}
/* GSTimSortPlaceHolders are ephemeral objects that just track state, so we
* don't bother making sure that the objects don't go away.
*/
objects = theObjects;
sortRange = theSortRange;
sortDescriptorOrComparator = descriptorOrComparator;
comparisonType = ty;
functionContext = ctx;
/* minGallop will be adjusted based on heuristics on whether we have a highly
* structured array (in which case galloping is useful) or a more random one
* (when it isn't).
*/
minGallop = GS_MIN_GALLOP;
stackSize = 0;
/* timsort needs at most half the array size as temporary storage, so
* we optimize for arrays that require less storage than we'd usually
* allocate.
*/
tempCapacity = ((sortLength < (2 * GS_INITIAL_TEMP_STORAGE))
? sortLength >> 1 : GS_INITIAL_TEMP_STORAGE);
tempBuffer = malloc(sizeof(id) * tempCapacity );
/* We also allocate the stack in which we track the runs based on the array
* size. (The values are based of the OpenJDK implementation of timsort)
*/
stackSpace = (sortLength < 120 ? 5 :
sortLength < 1542 ? 10 :
sortLength < 119151 ? 19 : 40);
runStack = malloc(sizeof(NSRange) * stackSpace);
return self;
}
- (id) initWithObjects: (id*)theObjects
sortRange: (NSRange)theSortRange
descriptor: (NSSortDescriptor*)descriptor
{
return [self initWithObjects: theObjects
sortRange: theSortRange
descriptorOrComparator: descriptor
comparisonType: GSComparisonTypeSortDescriptor
functionContext: NULL];
}
- (id) initWithObjects: (id*)theObjects
sortRange: (NSRange)theSortRange
comparator: (NSComparator)comparator
{
return [self initWithObjects: theObjects
sortRange: theSortRange
descriptorOrComparator: (id)comparator
comparisonType: GSComparisonTypeComparatorBlock
functionContext: NULL];
}
- (void) pushRun: (NSRange)r
{
runStack[stackSize] = r;
stackSize++;
NSDebugMLLog(@"GSTimSort", @"Pushing run: %@", NSStringFromRange(r));
}
/**
* Ensure that the invariant enabling the algorithm holds for the stack.
*
* see: http://www.envisage-project.eu/proving-android-java-and-python-sorting-algorithm-is-broken-and-how-to-fix-it/#sec3
*/
- (void) suggestMerge
{
while (stackSize > 1)
{
NSInteger n = stackSize -2;
if ((n >= 1 && runStack[n-1].length
<= (runStack[n].length + runStack[n+1].length))
|| (n >= 2 && runStack[n-2].length
<= (runStack[n].length + runStack[n-1].length)))
{
if (runStack[n-1].length < runStack[n+1].length)
{
n--;
}
}
else if (runStack[n].length > runStack[n+1].length)
{
break; //invariant reached
}
GS_TIMSORT_MERGE_AT_INDEX(self, n);
}
}
- (void) ensureTempCapacity: (NSUInteger)elementsRequired
{
if (elementsRequired <= tempCapacity)
{
return;
}
/* We don't realloc any memory because we don't care about the contents from
* previous merge iterations.
*/
free(tempBuffer);
tempBuffer = malloc(sizeof(id) * elementsRequired);
tempCapacity = elementsRequired;
//TODO: OOM exception
}
/*
* Main merge algorithm: Does a pairwise merge in the general-case and
* adaptively switches to galloping mode, which moves around whole chunks of the
* array. This method is called if r1 is the shorter run (i.e. the one which
* requires less temporary storage).
*/
- (void) mergeLowRun: (NSRange)r1 withRun: (NSRange)r2
{
NSUInteger num1 = r1.length;
NSUInteger num2 = r2.length;
id *buf1 = objects + r1.location;
id *buf2 = objects + r2.location;
id *destination = buf1;
NSUInteger k = 0;
// Local variables for performance
NSUInteger localMinGallop = minGallop;
id descOrComp = sortDescriptorOrComparator;
GSComparisonType ty = comparisonType;
void *ctx = functionContext;
/* We use the first run as our destination, so we copy out its contents into
* the temporary storage (which needs to be large enough, though).
*/
GS_TIMSORT_ENSURE_TEMP_CAPACITY(self, r1.length);
memcpy(tempBuffer, buf1, (sizeof(id) * r1.length));
destination = buf1;
buf1 = tempBuffer;
*destination++ = *buf2++;
num2--;
if (num2 == 0)
{
if (0 != num1)
{
memcpy(destination, buf1, num1 * sizeof(id));
}
return;
}
if (num1 == 1)
{
memmove(destination, buf2, num2 * sizeof(id));
destination[num2] = *buf1;
return;
}
NS_DURING
{
for (;;)
{
// Variables to track whether galloping is useful
NSUInteger winners1 = 0;
NSUInteger winners2 = 0;
do
{
if (NSOrderedAscending
== GSCompareUsingDescriptorOrComparator(*buf2, *buf1,
descOrComp, ty, ctx))
{
*destination++ = *buf2++;
winners2++;
winners1 = 0;
num2--;
if (num2 == 0)
{
goto Success;
}
}
else
{
*destination++ = *buf1++;
winners1++;
winners2 = 0;
num1--;
if (num1 == 1)
{
goto CopyB;
}
}
} while ((winners1 | winners2) < localMinGallop);
localMinGallop++;
do
{
/* If we fall through here, one of the runs is very structured,
* so we assume that galloping will also be useful in the future.
*/
localMinGallop -= localMinGallop > 1;
minGallop = localMinGallop;
k = gallopRight(*buf2, buf1,
NSMakeRange(0,num1), 0, descOrComp, ty, ctx);
winners1 = k;
if (0 != k)
{
memcpy(destination, buf1, k * sizeof(id));
destination += k;
buf1 += k;
num1 -= k;
if (1 == num1)
{
goto CopyB;
}
if (0 == num1)
{
goto Success;
}
}
/* Since our galloping run finishes here, the next element
* comes from r2
*/
*destination++ = *buf2++;
num2--;
if (0 == num2)
{
goto Success;
}
// Now we try to gallop into the other direction
k = gallopLeft(*buf1, buf2, NSMakeRange(0, num2),
0, descOrComp, ty, ctx);
winners2 = k;
if (0 != k)
{
/* buf2 is part of the destination, not the temporary
* storage, so we need to memmove instead of memcpy to
* account for potential overlap.
*/
memmove(destination, buf2, k * sizeof(id));
destination += k;
buf2 += k;
num2 -= k;
if (0 == num2)
{
goto Success;
}
}
/* Galloping run for r2 finished, next element comes from r1,
* and starts the next loop iteration
*/
*destination++ = *buf1++;
num1--;
if (1 == num1)
{
goto CopyB;
}
} while (winners1 >= GS_MIN_GALLOP || winners2 >= GS_MIN_GALLOP);
localMinGallop++;
minGallop = localMinGallop;
}
Success:
if (0 != num1)
{
memcpy(destination, buf1, num1 * sizeof(id));
}
NS_VOIDRETURN;
CopyB:
memmove(destination, buf2, num2 * sizeof(id));
destination[num2] = *buf1;
NS_VOIDRETURN;
}
NS_HANDLER
{
//In case of an exception, we need to copy back r1 into its original
//position
if (0 != num1)
{
memcpy(destination, buf1, num1 * sizeof(id));
}
[localException raise];
}
NS_ENDHANDLER
}
- (void) mergeHighRun: (NSRange)r1 withRun: (NSRange)r2
{
NSUInteger num1 = r1.length;
NSUInteger num2 = r2.length;
id *buf1 = objects + r1.location;
id *buf2 = objects + r2.location;
id *base1 = buf1;
id *base2 = NULL;
// We are walking backwards, so destination pointer is at the high end
// initially.
id *destination = buf2 + num2 - 1;
NSUInteger k = 0;
// Local variables for performance
NSUInteger localMinGallop = minGallop;
id descOrComp = sortDescriptorOrComparator;
GSComparisonType ty = comparisonType;
void *ctx = functionContext;
// We use the first run as our destination, so we copy out its contents into
// the temporary storage (which needs to be large enough, though).
GS_TIMSORT_ENSURE_TEMP_CAPACITY(self, r2.length);
memcpy(tempBuffer, buf2, (sizeof(id) * r2.length));
base2 = tempBuffer;
buf2 = tempBuffer + num2 - 1;
buf1 += num1 - 1;
*destination-- = *buf1--;
num1--;
if (num1 == 0)
{
if (0 != num2)
{
memcpy(destination - (num2-1), base2, num2 * sizeof(id));
}
return;
}
if (num2 == 1)
{
destination -= num1;
buf1 -= num1;
memmove(destination + 1, buf1 + 1, num1 * sizeof(id));
*destination = *buf2;
return;
}
NS_DURING
{
for (;;)
{
// Variables to track whether galloping is useful
NSUInteger winners1 = 0;
NSUInteger winners2 = 0;
do
{
if (NSOrderedAscending
== GSCompareUsingDescriptorOrComparator(*buf2, *buf1,
descOrComp, ty, ctx))
{
*destination-- = *buf1--;
winners1++;
winners2 = 0;
num1--;
if (num1 == 0)
{
goto Success;
}
}
else
{
*destination-- = *buf2--;
winners2++;
winners1 = 0;
num2--;
if (num2 == 1)
{
goto CopyA;
}
}
} while ((winners1 | winners2) < localMinGallop);
localMinGallop++;
do
{
/* If we fall through here, one of the runs is very structured,
* so we assume that galloping will also be useful in the future.
*/
localMinGallop -= localMinGallop > 1;
minGallop = localMinGallop;
k = gallopRight(*buf2, base1,
NSMakeRange(0, num1), num1 - 1, descOrComp, ty, ctx);
k = num1 - k;
winners1 = k;
if (0 != k)
{
destination -= k;
buf1 -= k;
memmove(destination+1, buf1+1, k * sizeof(id));
num1 -= k;
if (0 == num1)
{
goto Success;
}
}
/* Since our galloping run finishes here,
* the next element comes from r2
*/
*destination-- = *buf2--;
num2--;
if (1 == num2)
{
goto CopyA;
}
// Now we try to gallop into the other direction
k = gallopLeft(*buf1, base2,
NSMakeRange(0, num2), num2-1, descOrComp, ty, ctx);
k = num2 - k;
winners2 = k;
if (0 != k)
{
destination -= k;
buf2 -= k;
memcpy(destination + 1, buf2 + 1, k * sizeof(id));
num2 -= k;
if (1 == num2)
{
goto CopyA;
}
if (0 == num2)
{
goto Success;
}
}
/* Galloping run for r2 finished, next element comes from r1,
* and starts the next loop iteration
*/
*destination-- = *buf1--;
num1--;
if (0 == num1)
{
goto Success;
}
} while (winners1 >= GS_MIN_GALLOP || winners2 >= GS_MIN_GALLOP);
localMinGallop++;
minGallop = localMinGallop;
}
Success:
if (0 != num2)
{
memcpy(destination - (num2-1), base2, num2 * sizeof(id));
}
NS_VOIDRETURN;
CopyA:
destination -= num1;
buf1 -= num1;
memmove(destination + 1, buf1 + 1, num1 * sizeof(id));
*destination = *buf2;
NS_VOIDRETURN;
}
NS_HANDLER
{
//In case of an exception, we need to copy back r1 into its original
//position
if (0 != num2)
{
memcpy(destination - (num2-1), base2, num2 * sizeof(id));
}
[localException raise];
}
NS_ENDHANDLER
}
- (void) mergeAtIndex: (NSUInteger)i
{
NSRange r1;
NSRange r2;
NSUInteger insert = 0;
NSAssert((stackSize >= 2), @"Trying to merge without a plurality of runs.");
NSAssert(((i == (stackSize - 2)) || (i == (stackSize - 3))),
@"Trying at an index other than the penultimate or antepenultimate.");
r1 = runStack[i];
r2 = runStack[i+1];
NSDebugMLLog(@"GSTimSort",
@"Merging stack location %lu (stack size: %lu, run %@ with %@)", i,
stackSize, NSStringFromRange(r1), NSStringFromRange(r2));
/* Do some housekeeping on the stack: We combine the two runs
* being merged and move around the last run on the stack
* if we are merging on the antepenultimate run.
* In any case, the run at i+1 is consumed in the merge and
* the stack shrinks.
*/
runStack[i] = NSUnionRange(r1, r2);
if (i == (stackSize - 3))
{
runStack[i+1] = runStack[i+2];
}
stackSize--;
// Find an insertion point for the first element in r2 into r1
insert = gallopRight(objects[r2.location], objects, r1, 0,
sortDescriptorOrComparator, comparisonType, functionContext);
r1.length = r1.length - (insert - r1.location);
r1.location = insert;
if (r1.length == 0)
{
// The entire run r2 lies after r1, just return.
return;
}
NSDebugMLLog(@"GSTimSort",
@"Insertion point for r2 in r1: %lu, r1 for the merge is now %@.",
insert, NSStringFromRange(r1));
// Find an insertion point for the last element of r1 into r2. Subtracting the
// location from that point gives us the length of the subrange we need to
// merge.
r2.length = (gallopLeft(objects[NSMaxRange(r1) - 1], objects, r2,
(r2.length - 1),
sortDescriptorOrComparator, comparisonType, functionContext)
- r2.location);
if (r2.length == 0)
{
return;
}
(r1.length <= r2.length)
? GS_TIMSORT_MERGE_LOW(self, r1, r2)
: GS_TIMSORT_MERGE_HIGH(self, r1, r2);
}
/**
* Force a final merge of the runs on the stack, so that only one run, covering
* the whole array, remains.
*/
- (void) forceMerge
{
while (stackSize > 1)
{
NSInteger n = stackSize - 2;
if ((n > 0) && (runStack[n-1].length < runStack[n+1].length))
{
n--;
}
GS_TIMSORT_MERGE_AT_INDEX(self, n);
}
}
- (void) dealloc
{
free(runStack);
free(tempBuffer);
[super dealloc];
}
@end
static void
_GSTimSort(id *objects,
NSRange sortRange,
id sortDescriptorOrComparator,
GSComparisonType comparisonType,
void *context)
{
NSUInteger sortStart = sortRange.location;
NSUInteger sortEnd = NSMaxRange(sortRange);
NSUInteger sortLen = sortRange.length;
NSUInteger minimalRunLen = 0;
GSTimSortPlaceHolder *desc = nil;
if (sortLen < 2)
{
// Don't sort anything that doesn't contain at least two elements.
return;
}
if (sortLen < GS_MIN_MERGE)
{
miniTimSort(objects, sortRange,
sortDescriptorOrComparator, comparisonType, context);
return;
}
// Now we need a timsort descriptor for state-tracking.
desc = [[GSTimSortPlaceHolder alloc] initWithObjects: objects
sortRange: sortRange
descriptorOrComparator: sortDescriptorOrComparator
comparisonType: comparisonType
functionContext: context];
NS_DURING
{
minimalRunLen = minimumRunLength(sortLen);
do
{
NSUInteger runLen = countAscendizedRun(objects,
NSMakeRange(sortStart, sortLen),
sortDescriptorOrComparator,
comparisonType, context);
/* If the run is too short, coerce it up to minimalRunLen
* or the end of the sortRange.
*/
if (runLen < MIN(sortLen, minimalRunLen))
{
NSUInteger coercionLen;
coercionLen = sortLen <= minimalRunLen ? sortLen : minimalRunLen;
internalBinarySort(objects,
NSMakeRange(sortStart, coercionLen),
sortStart + runLen,
sortDescriptorOrComparator,
comparisonType,
context);
runLen = coercionLen;
}
GS_TIMSORT_PUSH_RUN(desc, NSMakeRange(sortStart, runLen));
GS_TIMSORT_SUGGEST_MERGE(desc);
sortStart += runLen;
sortLen -= runLen;
} while (sortLen != 0);
NSCAssert(sortStart == sortEnd, @"Sorting did not complete");
GS_TIMSORT_FORCE_MERGE(desc);
}
NS_HANDLER
{
[desc release];
[localException raise];
}
NS_ENDHANDLER
[desc release];
}
|