File: gaussianiir2d.c

package info (click to toggle)
go-dlib 5.6.0.9%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,212 kB
  • sloc: ansic: 4,664; xml: 1,456; makefile: 20; sh: 15
file content (213 lines) | stat: -rw-r--r-- 6,587 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
/*
 * Copyright (C) 2014 ~ 2018 Deepin Technology Co., Ltd.
 *
 * Author:     jouyouyun <jouyouwen717@gmail.com>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <math.h>
#include "gaussianiir2d.h"

/**
 * Fast 2D Gaussian convolution IIR approximation
 * @image the image data, modified in-place
 * @width, height image dimensions
 * @sigma the standard deviation of the Gaussian in pixels
 * @numsteps number of timesteps, more steps implies better accuracy
 *
 * Implements the fast Gaussian convolution algorithm of Alvarez and Mazorra,
 * where the Gaussian is approximated by a cascade of first-order infinite
 * impulsive response (IIR) filters.  Boundaries are handled with half-sample
 * symmetric extension.
 *
 * Gaussian convolution is approached as approximating the heat equation and
 * each timestep is performed with an efficient recursive computation.  Using
 * more steps yields a more accurate approximation of the Gaussian.  A
 * reasonable default value for \c numsteps is 4.
 *
 * The data is assumed to be ordered such that
 *   image[x + width*y] = pixel value at (x,y).
 *
 * Reference:
 * Alvarez, Mazorra, "Signal and Image Restoration using Shock Filters and
 * Anisotropic Diffusion," SIAM J. on Numerical Analysis, vol. 31, no. 2,
 * pp. 590-605, 1994.
 */
void
gaussianiir2d_f (double *image,
	         long width, long height,
                 double sigma, long numsteps)
{
    const long numpixels = width*height;
    double lambda, dnu;
    double nu, boundaryscale, postscale;
    double *ptr;
    long i, x, y;
    long step;

    if(sigma <= 0 || numsteps < 0)
        return;

    lambda = (sigma * sigma)/(2.0 * numsteps);
    dnu = (1.0 + 2.0 * lambda - sqrt (1.0 + 4.0 * lambda)) / (2.0 * lambda);
    nu = (double)dnu;
    boundaryscale = (double)(1.0 / (1.0 - dnu));
    postscale = (double)(pow (dnu / lambda, 2 * numsteps));

    /* Filter horizontally along each row */
    for(y = 0; y < height; y++)
    {
        for(step = 0; step < numsteps; step++)
        {
            ptr = image + width*y;
            ptr[0] *= boundaryscale;

            /* Filter rightwards */
            for(x = 1; x < width; x++)
                ptr[x] += nu * ptr[x - 1];

            ptr[x = width - 1] *= boundaryscale;

            /* Filter leftwards */
            for(; x > 0; x--)
                ptr[x - 1] += nu * ptr[x];
        }
    }

    /* Filter vertically along each column */
    for(x = 0; x < width; x++)
    {
        for(step = 0; step < numsteps; step++)
        {
            ptr = image + x;
            ptr[0] *= boundaryscale;

            /* Filter downwards */
            for(i = width; i < numpixels; i += width)
                ptr[i] += nu * ptr[i - width];

            ptr[i = numpixels - width] *= boundaryscale;

            /* Filter upwards */
            for(; i > 0; i -= width)
                ptr[i - width] += nu*ptr[i];
        }
    }

    for(i = 0; i < numpixels; i++)
        image[i] *= postscale;

    return;
}

void gaussianiir2d_pixbuf_c(unsigned char* image_data,
			    int width, int height,
			    int rowstride, int n_channels,
			    double sigma, double numsteps)
{
    //1. unsigned char* ----> float*
    double* _image_f_red = g_new0 (double, width * height);
    double* _image_f_green = g_new0 (double, width * height);
    double* _image_f_blue = g_new0 (double, width * height);

    int i = 0;
    int j = 0;

    for (i = 0; i < width; i++)
    {
	for (j = 0; j < height; j++)
	{
	    _image_f_red[i + width * j] = (double) (image_data[j*rowstride +i*n_channels + 0]);
	    _image_f_green[i + width * j] = (double) (image_data[j*rowstride +i*n_channels + 1]);
	    _image_f_blue[i + width * j] = (double) (image_data[j*rowstride +i*n_channels + 2]);
	}
    }

    //2.
    gaussianiir2d_f(_image_f_red, width, height, sigma, numsteps);
    gaussianiir2d_f(_image_f_green, width, height, sigma, numsteps);
    gaussianiir2d_f(_image_f_blue, width, height, sigma, numsteps);

    //test: dump data

    //3. float* ----> unsigned char*
    i = 0;
    j = 0;
    for (i = 0; i < width; i++)
    {
	for (j = 0; j < height; j++)
	{
	    image_data[j*rowstride +i*n_channels + 0] = _image_f_red[i+width*j];
	    image_data[j*rowstride +i*n_channels + 1] = _image_f_green[i+width*j];
	    image_data[j*rowstride +i*n_channels + 2] = _image_f_blue[i+width*j];
	}
    }
    g_free (_image_f_red);
    g_free (_image_f_green);
    g_free (_image_f_blue);
}
#if 0
void gaussianiir2d_c(unsigned char* image_c,
		     long width, long height,
		     double sigma, long numsteps)
{
    guint32* _image_i = (guint32*)image_c;

    //1. unsigned char* ----> float*
    double* _image_f_red = g_new0 (double, width * height);
    double* _image_f_green = g_new0 (double, width * height);
    double* _image_f_blue = g_new0 (double, width * height);

    int i = 0;
    int j = 0;

    for (i = 0; i < width; i++)
    {
	for (j = 0; j < height; j++)
	{
	    _image_f_red[i + width * j] = (double) ((_image_i[i + width * j]&0x00ff0000)>>16);
	    _image_f_green[i + width * j] = (double) ((_image_i[i + width * j]&0x0000ff00)>>8);
	    _image_f_blue[i + width * j] = (double) (_image_i[i + width * j]&0x000000ff);
	}
    }

    //2.
    gaussianiir2d_f(_image_f_red, width, height, sigma, numsteps);
    gaussianiir2d_f(_image_f_green, width, height, sigma, numsteps);
    gaussianiir2d_f(_image_f_blue, width, height, sigma, numsteps);

    //test: dump data

    //3. float* ----> unsigned char*
    i = 0;
    j = 0;
    guint32 sum;
    for (i = 0; i < width; i++)
    {
	for (j = 0; j < height; j++)
	{
#define CLAMP_COLOR(x) (guint32)((x)>255 ? 255 : (x)>=0 ? x : 0)
	    sum = 0;
	    sum += (CLAMP_COLOR(_image_f_red[i + width * j]) << 16);
	    sum += (CLAMP_COLOR(_image_f_green[i + width * j]) << 8);
	    sum += (CLAMP_COLOR(_image_f_blue[i + width * j]));
	    _image_i[i + width * j] = sum ;
	}
    }
    g_free (_image_f_red);
    g_free (_image_f_green);
    g_free (_image_f_blue);
}
#endif