1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
|
// Package lexer is an AWK lexer (tokenizer).
//
// The lexer turns a string of AWK source code into a stream of
// tokens for parsing.
//
// To tokenize some source, create a new lexer with NewLexer(src) and
// then call Scan() until the token type is EOF or ILLEGAL.
package lexer
import (
"errors"
"fmt"
"unicode/utf8"
)
// Lexer tokenizes a byte string of AWK source code. Use NewLexer to
// actually create a lexer, and Scan() or ScanRegex() to get tokens.
type Lexer struct {
src []byte
offset int
ch byte
pos Position
nextPos Position
hadSpace bool
lastTok Token
}
// Position stores the source line and column where a token starts.
type Position struct {
// Line number of the token (starts at 1).
Line int
// Column on the line (starts at 1). Note that this is the byte
// offset into the line, not rune offset.
Column int
}
// String returns the position in "line:col" format.
func (p Position) String() string {
return fmt.Sprintf("%d:%d", p.Line, p.Column)
}
// NewLexer creates a new lexer that will tokenize the given source
// code. See the module-level example for a working example.
func NewLexer(src []byte) *Lexer {
l := &Lexer{src: src}
l.nextPos.Line = 1
l.nextPos.Column = 1
l.next()
return l
}
// HadSpace returns true if the previously-scanned token had
// whitespace before it. Used by the parser because when calling a
// user-defined function the grammar doesn't allow a space between
// the function name and the left parenthesis.
func (l *Lexer) HadSpace() bool {
return l.hadSpace
}
// Scan scans the next token and returns its position (line/column),
// token value (one of the uppercase token constants), and the
// string value of the token. For most tokens, the token value is
// empty. For NAME, NUMBER, STRING, and REGEX tokens, it's the
// token's value. For an ILLEGAL token, it's the error message.
func (l *Lexer) Scan() (Position, Token, string) {
pos, tok, val := l.scan()
l.lastTok = tok
return pos, tok, val
}
// Does the real work of scanning. Scan() wraps this to more easily
// set lastTok.
func (l *Lexer) scan() (Position, Token, string) {
// Skip whitespace (except newline, which is a token)
l.hadSpace = false
for l.ch == ' ' || l.ch == '\t' || l.ch == '\r' || l.ch == '\\' {
l.hadSpace = true
if l.ch == '\\' {
l.next()
if l.ch == '\r' {
l.next()
}
if l.ch != '\n' {
return l.pos, ILLEGAL, "expected \\n after \\ line continuation"
}
}
l.next()
}
if l.ch == '#' {
// Skip comment till end of line
l.next()
for l.ch != '\n' && l.ch != 0 {
l.next()
}
}
if l.ch == 0 {
// l.next() reached end of input
return l.pos, EOF, ""
}
pos := l.pos
tok := ILLEGAL
val := ""
ch := l.ch
l.next()
// Names: keywords and functions
if isNameStart(ch) {
start := l.offset - 2
for isNameStart(l.ch) || isDigit(l.ch) {
l.next()
}
name := string(l.src[start : l.offset-1])
tok := KeywordToken(name)
if tok == ILLEGAL {
tok = NAME
val = name
}
return pos, tok, val
}
// These are ordered by my guess at frequency of use. Should run
// through a corpus of real AWK programs to determine actual
// frequency.
switch ch {
case '$':
tok = DOLLAR
case '@':
tok = AT
case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '.':
// Avoid make/append and use l.offset directly for performance
start := l.offset - 2
gotDigit := false
if ch != '.' {
gotDigit = true
for isDigit(l.ch) {
l.next()
}
if l.ch == '.' {
l.next()
}
}
for isDigit(l.ch) {
gotDigit = true
l.next()
}
if !gotDigit {
return l.pos, ILLEGAL, "expected digits"
}
if l.ch == 'e' || l.ch == 'E' {
l.next()
gotSign := false
if l.ch == '+' || l.ch == '-' {
gotSign = true
l.next()
}
gotDigit = false
for isDigit(l.ch) {
l.next()
gotDigit = true
}
// Per awk/gawk, "1e" is allowed and parsed as "1 e" (with "e"
// considered a variable). "1e+" is parsed as "1e + ...".
if !gotDigit {
if gotSign {
l.unread() // unread the '+' or '-'
}
l.unread() // unread the 'e' or 'E'
}
}
tok = NUMBER
val = string(l.src[start : l.offset-1])
case '{':
tok = LBRACE
case '}':
tok = RBRACE
case '=':
tok = l.choice('=', ASSIGN, EQUALS)
case '<':
tok = l.choice('=', LESS, LTE)
case '>':
switch l.ch {
case '=':
l.next()
tok = GTE
case '>':
l.next()
tok = APPEND
default:
tok = GREATER
}
case '"', '\'':
// Note: POSIX awk spec doesn't allow single-quoted strings,
// but this helps with quoting, especially on Windows
// where the shell quote character is " (double quote).
s, err := parseString(ch, func() byte { return l.ch }, l.next)
if err != nil {
return l.pos, ILLEGAL, err.Error()
}
if l.ch != ch {
return l.pos, ILLEGAL, "didn't find end quote in string"
}
l.next()
tok = STRING
val = s
case '(':
tok = LPAREN
case ')':
tok = RPAREN
case ',':
tok = COMMA
case ';':
tok = SEMICOLON
case '+':
switch l.ch {
case '+':
l.next()
tok = INCR
case '=':
l.next()
tok = ADD_ASSIGN
default:
tok = ADD
}
case '-':
switch l.ch {
case '-':
l.next()
tok = DECR
case '=':
l.next()
tok = SUB_ASSIGN
default:
tok = SUB
}
case '*':
switch l.ch {
case '*':
l.next()
tok = l.choice('=', POW, POW_ASSIGN)
case '=':
l.next()
tok = MUL_ASSIGN
default:
tok = MUL
}
case '/':
tok = l.choice('=', DIV, DIV_ASSIGN)
case '%':
tok = l.choice('=', MOD, MOD_ASSIGN)
case '[':
tok = LBRACKET
case ']':
tok = RBRACKET
case '\n':
tok = NEWLINE
case '^':
tok = l.choice('=', POW, POW_ASSIGN)
case '!':
switch l.ch {
case '=':
l.next()
tok = NOT_EQUALS
case '~':
l.next()
tok = NOT_MATCH
default:
tok = NOT
}
case '~':
tok = MATCH
case '?':
tok = QUESTION
case ':':
tok = COLON
case '&':
tok = l.choice('&', ILLEGAL, AND)
if tok == ILLEGAL {
return l.pos, ILLEGAL, "unexpected char after '&'"
}
case '|':
tok = l.choice('|', PIPE, OR)
default:
tok = ILLEGAL
val = "unexpected char"
}
return pos, tok, val
}
// ScanRegex parses an AWK regular expression in /slash/ syntax. The
// AWK grammar has somewhat special handling of regex tokens, so the
// parser can only call this after a DIV or DIV_ASSIGN token has just
// been scanned.
func (l *Lexer) ScanRegex() (Position, Token, string) {
pos, tok, val := l.scanRegex()
l.lastTok = tok
return pos, tok, val
}
// Does the real work of scanning a regex. ScanRegex() wraps this to
// more easily set lastTok.
func (l *Lexer) scanRegex() (Position, Token, string) {
pos := l.pos
chars := make([]byte, 0, 32) // most won't require heap allocation
switch l.lastTok {
case DIV:
// Regex after '/' (the usual case)
pos.Column -= 1
case DIV_ASSIGN:
// Regex after '/=' (happens when regex starts with '=')
pos.Column -= 2
chars = append(chars, '=')
default:
panic("ScanRegex should only be called after DIV or DIV_ASSIGN token")
}
for l.ch != '/' {
c := l.ch
if c == 0 {
return l.pos, ILLEGAL, "didn't find end slash in regex"
}
if c == '\r' || c == '\n' {
return l.pos, ILLEGAL, "can't have newline in regex"
}
if c == '\\' {
l.next()
if l.ch != '/' {
chars = append(chars, '\\')
}
c = l.ch
}
chars = append(chars, c)
l.next()
}
l.next()
return pos, REGEX, string(chars)
}
// Load the next character into l.ch (or 0 on end of input) and update
// line and column position.
func (l *Lexer) next() {
l.pos = l.nextPos
if l.offset >= len(l.src) {
// For last character, move offset 1 past the end as it
// simplifies offset calculations in NAME and NUMBER
if l.ch != 0 {
l.ch = 0
l.offset++
l.nextPos.Column++
}
return
}
ch := l.src[l.offset]
if ch == '\n' {
l.nextPos.Line++
l.nextPos.Column = 1
} else if ch != '\r' {
l.nextPos.Column++
}
l.ch = ch
l.offset++
}
// Un-read the character just scanned (doesn't handle line boundaries).
func (l *Lexer) unread() {
l.offset--
l.pos.Column--
l.nextPos.Column--
l.ch = l.src[l.offset-1]
}
func isNameStart(ch byte) bool {
return ch == '_' || ch >= 'a' && ch <= 'z' || ch >= 'A' && ch <= 'Z'
}
func isDigit(ch byte) bool {
return ch >= '0' && ch <= '9'
}
// Return the hex digit 0-15 corresponding to the given ASCII byte,
// or -1 if it's not a valid hex digit.
func hexDigit(ch byte) int {
switch {
case isDigit(ch):
return int(ch - '0')
case ch >= 'a' && ch <= 'f':
return int(ch - 'a' + 10)
case ch >= 'A' && ch <= 'F':
return int(ch - 'A' + 10)
default:
return -1
}
}
func (l *Lexer) choice(ch byte, one, two Token) Token {
if l.ch == ch {
l.next()
return two
}
return one
}
// PeekByte returns the next unscanned byte; used when parsing
// "getline lvalue" expressions. Returns 0 at end of input.
func (l *Lexer) PeekByte() byte {
return l.ch
}
// Unescape unescapes the backslash escapes in s (which shouldn't include the
// surrounding quotes) and returns the unquoted string. It's intended for use
// when unescaping command line var=value assignments, as required by the
// POSIX AWK spec.
func Unescape(s string) (string, error) {
i := 0
ch := func() byte {
if i >= len(s) {
return 0
}
return s[i]
}
next := func() {
i++
}
return parseString(0, ch, next)
}
// Parses a string ending with given quote character (not parsed). The ch
// function returns the current character (or 0 at the end); the next function
// moves forward one character.
func parseString(quote byte, ch func() byte, next func()) (string, error) {
chars := make([]byte, 0, 32) // most strings won't require heap allocation
for {
c := ch()
if c == quote || c == 0 {
break
}
if c == '\r' || c == '\n' {
return "", errors.New("can't have newline in string")
}
if c != '\\' {
// Normal, non-escaped character
chars = append(chars, c)
next()
continue
}
// Escape sequence, skip over \ and process
next()
switch ch() {
case 'n':
c = '\n'
next()
case 't':
c = '\t'
next()
case 'r':
c = '\r'
next()
case 'a':
c = '\a'
next()
case 'b':
c = '\b'
next()
case 'f':
c = '\f'
next()
case 'v':
c = '\v'
next()
case 'x':
// Hex byte of one or two hex digits
next()
digit := hexDigit(ch())
if digit < 0 {
return "", errors.New("1 or 2 hex digits expected")
}
c = byte(digit)
next()
digit = hexDigit(ch())
if digit >= 0 {
c = c*16 + byte(digit)
next()
}
case 'u':
// Hex Unicode character of 1-8 digits
next()
r := hexDigit(ch())
if r < 0 {
return "", errors.New("1-8 hex digits expected")
}
next()
for i := 0; i < 7; i++ {
digit := hexDigit(ch())
if digit < 0 {
break
}
next()
r = r*16 + digit
}
if !utf8.ValidRune(rune(r)) {
return "", errors.New("invalid Unicode character")
}
runeBytes := make([]byte, utf8.UTFMax)
n := utf8.EncodeRune(runeBytes, rune(r))
chars = append(chars, runeBytes[:n]...)
continue
case '0', '1', '2', '3', '4', '5', '6', '7':
// Octal byte of 1-3 octal digits
c = ch() - '0'
next()
for i := 0; i < 2 && ch() >= '0' && ch() <= '7'; i++ {
c = c*8 + ch() - '0'
next()
}
default:
// Any other escape character is just the char
// itself, eg: "\z" is just "z".
c = ch()
if c == 0 {
// Expect backslash right at the end of the string, which is
// interpreted as a literal backslash (only for Unescape).
c = '\\'
}
next()
}
chars = append(chars, c)
}
return string(chars), nil
}
|