1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
|
// Package parser is an AWK parser and abstract syntax tree.
//
// Use the ParseProgram function to parse an AWK program, and then give the
// result to interp.Exec, interp.ExecProgram, or interp.New to execute it.
package parser
import (
"fmt"
"io"
"regexp"
"strconv"
"strings"
"github.com/benhoyt/goawk/internal/ast"
"github.com/benhoyt/goawk/internal/compiler"
"github.com/benhoyt/goawk/internal/resolver"
. "github.com/benhoyt/goawk/lexer"
)
// ParseError (actually *ParseError) is the type of error returned by
// ParseProgram.
type ParseError struct {
// Source line/column position where the error occurred.
Position Position
// Error message.
Message string
}
// Error returns a formatted version of the error, including the line
// and column numbers.
func (e *ParseError) Error() string {
return fmt.Sprintf("parse error at %d:%d: %s", e.Position.Line, e.Position.Column, e.Message)
}
// ParserConfig lets you specify configuration for the parsing
// process (for example printing type information for debugging).
type ParserConfig struct {
// Enable printing of type information
DebugTypes bool
// io.Writer to print type information on (for example, os.Stderr)
DebugWriter io.Writer
// Map of named Go functions to allow calling from AWK. See docs
// on interp.Config.Funcs for details.
Funcs map[string]interface{}
}
func (c *ParserConfig) toResolverConfig() *resolver.Config {
if c == nil {
return nil
}
return &resolver.Config{
DebugTypes: c.DebugTypes,
DebugWriter: c.DebugWriter,
Funcs: c.Funcs,
}
}
// ParseProgram parses an entire AWK program, returning the *Program
// abstract syntax tree or a *ParseError on error. "config" describes
// the parser configuration (and is allowed to be nil).
func ParseProgram(src []byte, config *ParserConfig) (prog *Program, err error) {
defer func() {
// The parser and resolver use panic with an *ast.PositionError to signal parsing
// errors internally, and they're caught here. This significantly simplifies
// the recursive descent calls as we don't have to check errors everywhere.
if r := recover(); r != nil {
// Convert to PositionError or re-panic
posError := *r.(*ast.PositionError)
err = &ParseError{
Position: posError.Position,
Message: posError.Message,
}
}
}()
lexer := NewLexer(src)
p := parser{lexer: lexer}
p.multiExprs = make(map[*ast.MultiExpr]Position, 3)
p.next() // initialize p.tok
// Parse into abstract syntax tree
astProg := p.program()
// Resolve variable scopes and types
prog = &Program{}
prog.ResolvedProgram = *resolver.Resolve(astProg, config.toResolverConfig())
// Compile to virtual machine code
prog.Compiled, err = compiler.Compile(&prog.ResolvedProgram)
return prog, err
}
// Program is the parsed and compiled representation of an entire AWK program.
type Program struct {
// These fields aren't intended to be used or modified directly,
// but are exported for the interpreter (Program itself needs to
// be exported in package "parser", otherwise these could live in
// "internal/ast".)
resolver.ResolvedProgram
Compiled *compiler.Program
}
// String returns an indented, pretty-printed version of the parsed
// program.
func (p *Program) String() string {
return p.ResolvedProgram.Program.String()
}
// Disassemble writes a human-readable form of the program's virtual machine
// instructions to writer.
func (p *Program) Disassemble(writer io.Writer) error {
return p.Compiled.Disassemble(writer)
}
// Parser state
type parser struct {
// Lexer instance and current token values
lexer *Lexer
pos Position // position of last token (tok)
tok Token // last lexed token
prevTok Token // previously lexed token
val string // string value of last token (or "")
// Parsing state
inAction bool // true if parsing an action (false in BEGIN or END)
funcName string // function name if parsing a func, else ""
loopDepth int // current loop depth (0 if not in any loops)
pendingGetlineLeft ast.Expr // saved expression to the left of |
// Variable tracking and resolving
multiExprs map[*ast.MultiExpr]Position // tracks comma-separated expressions
}
// Parse an entire AWK program.
func (p *parser) program() *ast.Program {
prog := &ast.Program{}
// Terminator "(SEMICOLON|NEWLINE) NEWLINE*" is required after each item
// with two exceptions where it is optional:
//
// 1. after the last item, or
// 2. when the previous item ended with a closing brace.
//
// NOTE: The second exception does not seem to be correct according to
// the POSIX grammar definition, but it is the common behaviour for the
// major AWK implementations.
needsTerminator := false
for p.tok != EOF {
if needsTerminator {
if !p.matches(NEWLINE, SEMICOLON) {
panic(p.errorf("expected ; or newline between items"))
}
p.next()
needsTerminator = false
}
p.optionalNewlines()
switch p.tok {
case EOF:
// End of file
case BEGIN:
p.next()
prog.Begin = append(prog.Begin, p.stmtsBrace())
case END:
p.next()
prog.End = append(prog.End, p.stmtsBrace())
case FUNCTION:
function := p.function()
prog.Functions = append(prog.Functions, function)
default:
p.inAction = true
// Allow empty pattern, normal pattern, or range pattern
pattern := []ast.Expr{}
if !p.matches(LBRACE, EOF) {
pattern = append(pattern, p.expr())
}
if !p.matches(LBRACE, EOF, NEWLINE, SEMICOLON) {
p.commaNewlines()
pattern = append(pattern, p.expr())
}
// Or an empty action (equivalent to { print $0 })
action := &ast.Action{pattern, nil}
if p.tok == LBRACE {
action.Stmts = p.stmtsBrace()
} else {
needsTerminator = true
}
prog.Actions = append(prog.Actions, action)
p.inAction = false
}
}
p.checkMultiExprs()
return prog
}
// Parse a list of statements.
func (p *parser) stmts() ast.Stmts {
switch p.tok {
case SEMICOLON:
// This is so things like this parse correctly:
// BEGIN { for (i=0; i<10; i++); print "x" }
p.next()
return nil
case LBRACE:
return p.stmtsBrace()
default:
return []ast.Stmt{p.stmt()}
}
}
// Parse a list of statements surrounded in {...} braces.
func (p *parser) stmtsBrace() ast.Stmts {
p.expect(LBRACE)
p.optionalNewlines()
ss := []ast.Stmt{}
for p.tok != RBRACE && p.tok != EOF {
if p.matches(SEMICOLON, NEWLINE) {
p.next()
continue
}
ss = append(ss, p.stmt())
}
p.expect(RBRACE)
if p.tok == SEMICOLON {
p.next()
}
return ss
}
// Parse a "simple" statement (eg: allowed in a for loop init clause).
func (p *parser) simpleStmt() ast.Stmt {
startPos := p.pos
switch p.tok {
case PRINT, PRINTF:
op := p.tok
p.next()
args := p.exprList(p.printExpr)
if len(args) == 1 {
// This allows parens around all the print args
if m, ok := args[0].(*ast.MultiExpr); ok {
args = m.Exprs
p.useMultiExpr(m)
}
}
redirect := ILLEGAL
var dest ast.Expr
if p.matches(GREATER, APPEND, PIPE) {
redirect = p.tok
p.next()
dest = p.expr()
}
if op == PRINT {
return &ast.PrintStmt{args, redirect, dest, startPos, p.pos}
} else {
if len(args) == 0 {
panic(p.errorf("expected printf args, got none"))
}
return &ast.PrintfStmt{args, redirect, dest, startPos, p.pos}
}
case DELETE:
p.next()
name, namePos := p.expectName()
var index []ast.Expr
if p.tok == LBRACKET {
p.next()
index = p.exprList(p.expr)
if len(index) == 0 {
panic(p.errorf("expected expression instead of ]"))
}
p.expect(RBRACKET)
}
return &ast.DeleteStmt{name, namePos, index, startPos, p.pos}
case IF, FOR, WHILE, DO, BREAK, CONTINUE, NEXT, NEXTFILE, EXIT, RETURN:
panic(p.errorf("expected print/printf, delete, or expression"))
default:
return &ast.ExprStmt{p.expr(), startPos, p.pos}
}
}
// Parse any top-level statement.
func (p *parser) stmt() ast.Stmt {
var s ast.Stmt
startPos := p.pos
switch p.tok {
case IF:
p.next()
p.expect(LPAREN)
cond := p.expr()
p.expect(RPAREN)
p.optionalNewlines()
bodyStart := p.pos
body := p.stmts()
p.optionalNewlines()
var elseBody ast.Stmts
if p.tok == ELSE {
p.next()
p.optionalNewlines()
elseBody = p.stmts()
}
s = &ast.IfStmt{cond, bodyStart, body, elseBody, startPos, p.pos}
case FOR:
// Parse for statement, either "for in" or C-like for loop.
//
// FOR LPAREN NAME IN NAME RPAREN NEWLINE* stmts |
// FOR LPAREN [simpleStmt] SEMICOLON NEWLINE*
// [expr] SEMICOLON NEWLINE*
// [simpleStmt] RPAREN NEWLINE* stmts
//
p.next()
p.expect(LPAREN)
var pre ast.Stmt
if p.tok != SEMICOLON {
pre = p.simpleStmt()
}
if pre != nil && p.tok == RPAREN {
// Match: for (var in array) body
p.next()
p.optionalNewlines()
exprStmt, ok := pre.(*ast.ExprStmt)
if !ok {
panic(p.errorf("expected 'for (var in array) ...'"))
}
inExpr, ok := exprStmt.Expr.(*ast.InExpr)
if !ok {
panic(p.errorf("expected 'for (var in array) ...'"))
}
if len(inExpr.Index) != 1 {
panic(p.errorf("expected 'for (var in array) ...'"))
}
varExpr, ok := inExpr.Index[0].(*ast.VarExpr)
if !ok {
panic(p.errorf("expected 'for (var in array) ...'"))
}
bodyStart := p.pos
body := p.loopStmts()
s = &ast.ForInStmt{
Var: varExpr.Name,
VarPos: varExpr.Pos,
Array: inExpr.Array,
ArrayPos: inExpr.ArrayPos,
BodyStart: bodyStart,
Body: body,
Start: startPos,
End: p.pos,
}
} else {
// Match: for ([pre]; [cond]; [post]) body
p.expect(SEMICOLON)
p.optionalNewlines()
var cond ast.Expr
if p.tok != SEMICOLON {
cond = p.expr()
}
p.expect(SEMICOLON)
p.optionalNewlines()
var post ast.Stmt
if p.tok != RPAREN {
post = p.simpleStmt()
}
p.expect(RPAREN)
p.optionalNewlines()
bodyStart := p.pos
body := p.loopStmts()
s = &ast.ForStmt{pre, cond, post, bodyStart, body, startPos, p.pos}
}
case WHILE:
p.next()
p.expect(LPAREN)
cond := p.expr()
p.expect(RPAREN)
p.optionalNewlines()
bodyStart := p.pos
body := p.loopStmts()
s = &ast.WhileStmt{cond, bodyStart, body, startPos, p.pos}
case DO:
p.next()
p.optionalNewlines()
body := p.loopStmts()
p.optionalNewlines()
p.expect(WHILE)
p.expect(LPAREN)
cond := p.expr()
p.expect(RPAREN)
s = &ast.DoWhileStmt{body, cond, startPos, p.pos}
case BREAK:
if p.loopDepth == 0 {
panic(p.errorf("break must be inside a loop body"))
}
p.next()
s = &ast.BreakStmt{startPos, p.pos}
case CONTINUE:
if p.loopDepth == 0 {
panic(p.errorf("continue must be inside a loop body"))
}
p.next()
s = &ast.ContinueStmt{startPos, p.pos}
case NEXT:
if !p.inAction && p.funcName == "" {
panic(p.errorf("next can't be inside BEGIN or END"))
}
p.next()
s = &ast.NextStmt{startPos, p.pos}
case NEXTFILE:
if !p.inAction && p.funcName == "" {
panic(p.errorf("nextfile can't be inside BEGIN or END"))
}
p.next()
s = &ast.NextfileStmt{startPos, p.pos}
case EXIT:
p.next()
var status ast.Expr
if !p.matches(NEWLINE, SEMICOLON, RBRACE) {
status = p.expr()
}
s = &ast.ExitStmt{status, startPos, p.pos}
case RETURN:
if p.funcName == "" {
panic(p.errorf("return must be inside a function"))
}
p.next()
var value ast.Expr
if !p.matches(NEWLINE, SEMICOLON, RBRACE) {
value = p.expr()
}
s = &ast.ReturnStmt{value, startPos, p.pos}
case LBRACE:
body := p.stmtsBrace()
s = &ast.BlockStmt{body, startPos, p.pos}
default:
s = p.simpleStmt()
}
// Ensure statements are separated by ; or newline
if !p.matches(NEWLINE, SEMICOLON, RBRACE) && p.prevTok != NEWLINE && p.prevTok != SEMICOLON && p.prevTok != RBRACE {
panic(p.errorf("expected ; or newline between statements"))
}
for p.matches(NEWLINE, SEMICOLON) {
p.next()
}
return s
}
// Same as stmts(), but tracks that we're in a loop (as break and
// continue can only occur inside a loop).
func (p *parser) loopStmts() ast.Stmts {
p.loopDepth++
ss := p.stmts()
p.loopDepth--
return ss
}
// Parse a function definition and body. As it goes, this resolves
// the local variable indexes and tracks which parameters are array
// parameters.
func (p *parser) function() *ast.Function {
if p.funcName != "" {
// Should never actually get here (FUNCTION token is only
// handled at the top level), but just in case.
panic(p.errorf("can't nest functions"))
}
p.next()
name, funcNamePos := p.expectName()
p.expect(LPAREN)
first := true
params := make([]string, 0, 7) // pre-allocate some to reduce allocations
locals := make(map[string]bool, 7)
for p.tok != RPAREN {
if !first {
p.commaNewlines()
}
first = false
param := p.val
if param == name {
panic(p.errorf("can't use function name as parameter name"))
}
if locals[param] {
panic(p.errorf("duplicate parameter name %q", param))
}
p.expect(NAME)
params = append(params, param)
locals[param] = true
}
p.expect(RPAREN)
p.optionalNewlines()
// Parse the body
p.funcName = name
body := p.stmtsBrace()
p.funcName = ""
return &ast.Function{name, params, body, funcNamePos}
}
// Parse expressions separated by commas: args to print[f] or user
// function call, or multi-dimensional index.
func (p *parser) exprList(parse func() ast.Expr) []ast.Expr {
exprs := []ast.Expr{}
first := true
for !p.matches(NEWLINE, SEMICOLON, RBRACE, RBRACKET, RPAREN, GREATER, PIPE, APPEND) {
if !first {
p.commaNewlines()
}
first = false
exprs = append(exprs, parse())
}
return exprs
}
// Here's where things get slightly interesting: only certain
// expression types are allowed in print/printf statements,
// presumably so `print a, b > "file"` is a file redirect instead of
// a greater-than comparison. So we kind of have two ways to recurse
// down here: expr(), which parses all expressions, and printExpr(),
// which skips PIPE GETLINE and GREATER expressions.
// Parse a single expression.
func (p *parser) expr() ast.Expr { return p._assign(p.getline) }
func (p *parser) printExpr() ast.Expr { return p._assign(p.printCond) }
// Parse an "expr | getline [lvalue]" expression:
//
// assign [PIPE GETLINE [lvalue]]
func (p *parser) getline() ast.Expr {
// NOTE: getline is special, see https://github.com/benhoyt/goawk/pull/216
p.pendingGetlineLeft = nil
left := p.cond()
if p.tok == PIPE {
p.pendingGetlineLeft = left
return p.cond()
}
return left
}
// Parse an = assignment expression:
//
// lvalue [assign_op assign]
//
// An lvalue is a variable name, an array[expr] index expression, or
// an $expr field expression.
func (p *parser) _assign(higher func() ast.Expr) ast.Expr {
leftPos := p.pos
expr := higher()
if p.matches(ASSIGN, ADD_ASSIGN, DIV_ASSIGN, MOD_ASSIGN, MUL_ASSIGN, POW_ASSIGN, SUB_ASSIGN) {
_, isNamedField := expr.(*ast.NamedFieldExpr)
if isNamedField {
panic(p.errorf("assigning @ expression not supported"))
}
op := p.tok
p.next()
right := p._assign(higher)
if !ast.IsLValue(expr) {
// Partial backtracking to allow expressions like "1 && x=1",
// which isn't really valid, as assignments are lower-precedence
// than binary operators, but onetrueawk, Gawk, and mawk all
// support this for logical, match and comparison operators. See
// issue #166.
binary, isBinary := expr.(*ast.BinaryExpr)
if isBinary && ast.IsLValue(binary.Right) {
switch binary.Op {
case AND, OR, MATCH, NOT_MATCH, EQUALS, NOT_EQUALS, LESS, LTE, GTE, GREATER:
assign := makeAssign(binary.Right, op, right)
return &ast.BinaryExpr{binary.Left, binary.Op, assign}
}
}
panic(ast.PosErrorf(leftPos, "expected lvalue before %s", op))
}
return makeAssign(expr, op, right)
}
return expr
}
func makeAssign(left ast.Expr, op Token, right ast.Expr) ast.Expr {
switch op {
case ASSIGN:
return &ast.AssignExpr{left, right}
case ADD_ASSIGN:
op = ADD
case DIV_ASSIGN:
op = DIV
case MOD_ASSIGN:
op = MOD
case MUL_ASSIGN:
op = MUL
case POW_ASSIGN:
op = POW
case SUB_ASSIGN:
op = SUB
}
return &ast.AugAssignExpr{left, op, right}
}
// Parse a ?: conditional expression:
//
// or [QUESTION NEWLINE* cond COLON NEWLINE* cond]
func (p *parser) cond() ast.Expr { return p._cond(p.or) }
func (p *parser) printCond() ast.Expr { return p._cond(p.printOr) }
func (p *parser) _cond(higher func() ast.Expr) ast.Expr {
expr := higher()
if p.tok == QUESTION {
p.next()
p.optionalNewlines()
t := p.expr()
p.expect(COLON)
p.optionalNewlines()
f := p.expr()
return &ast.CondExpr{expr, t, f}
}
return expr
}
// Parse an || or expression:
//
// and [OR NEWLINE* and] [OR NEWLINE* and] ...
func (p *parser) or() ast.Expr { return p.binaryLeft(p.and, true, OR) }
func (p *parser) printOr() ast.Expr { return p.binaryLeft(p.printAnd, true, OR) }
// Parse an && and expression:
//
// in [AND NEWLINE* in] [AND NEWLINE* in] ...
func (p *parser) and() ast.Expr { return p.binaryLeft(p.in, true, AND) }
func (p *parser) printAnd() ast.Expr { return p.binaryLeft(p.printIn, true, AND) }
// Parse an "in" expression:
//
// match [IN NAME] [IN NAME] ...
func (p *parser) in() ast.Expr { return p._in(p.match) }
func (p *parser) printIn() ast.Expr { return p._in(p.printMatch) }
func (p *parser) _in(higher func() ast.Expr) ast.Expr {
expr := higher()
for p.tok == IN {
p.next()
name, namePos := p.expectName()
expr = &ast.InExpr{[]ast.Expr{expr}, name, namePos}
}
return expr
}
// Parse a ~ match expression:
//
// compare [MATCH|NOT_MATCH compare]
func (p *parser) match() ast.Expr { return p._match(p.compare) }
func (p *parser) printMatch() ast.Expr { return p._match(p.printCompare) }
func (p *parser) _match(higher func() ast.Expr) ast.Expr {
expr := higher()
if p.matches(MATCH, NOT_MATCH) {
op := p.tok
p.next()
right := p.regexStr(higher) // Not match() as these aren't associative
return &ast.BinaryExpr{expr, op, right}
}
return expr
}
// Parse a comparison expression:
//
// concat [EQUALS|NOT_EQUALS|LESS|LTE|GREATER|GTE concat]
func (p *parser) compare() ast.Expr { return p._compare(EQUALS, NOT_EQUALS, LESS, LTE, GTE, GREATER) }
func (p *parser) printCompare() ast.Expr { return p._compare(EQUALS, NOT_EQUALS, LESS, LTE, GTE) }
func (p *parser) _compare(ops ...Token) ast.Expr {
expr := p.concat()
if p.matches(ops...) {
op := p.tok
p.next()
right := p.concat() // Not compare() as these aren't associative
return &ast.BinaryExpr{expr, op, right}
}
return expr
}
func (p *parser) concat() ast.Expr {
expr := p.add()
for p.matches(DOLLAR, AT, NOT, NAME, NUMBER, STRING, LPAREN, INCR, DECR) ||
p.tok >= FIRST_FUNC && p.tok <= LAST_FUNC {
right := p.add()
expr = &ast.BinaryExpr{expr, CONCAT, right}
}
return expr
}
func (p *parser) add() ast.Expr {
return p.binaryLeft(p.mul, false, ADD, SUB)
}
func (p *parser) mul() ast.Expr {
return p.binaryLeft(p.pow, false, MUL, DIV, MOD)
}
func (p *parser) pow() ast.Expr {
// Note that pow (expr ^ expr) is right-associative
expr := p.postIncr()
if p.tok == POW {
p.next()
right := p.pow()
return &ast.BinaryExpr{expr, POW, right}
}
return expr
}
func (p *parser) postIncr() ast.Expr {
expr := p.primary()
if (p.tok == INCR || p.tok == DECR) && ast.IsLValue(expr) {
op := p.tok
p.next()
return &ast.IncrExpr{expr, op, false}
}
return expr
}
func (p *parser) primary() ast.Expr {
if p.pendingGetlineLeft != nil {
p.expect(PIPE)
p.expect(GETLINE)
left := p.pendingGetlineLeft
p.pendingGetlineLeft = nil
target := p.optionalLValue()
return &ast.GetlineExpr{left, target, nil}
}
switch p.tok {
case NUMBER:
// AWK allows forms like "1.5e", but ParseFloat doesn't
s := strings.TrimRight(p.val, "eE")
n, _ := strconv.ParseFloat(s, 64)
p.next()
return &ast.NumExpr{n}
case STRING:
s := p.val
p.next()
return &ast.StrExpr{Value: s}
case DIV, DIV_ASSIGN:
// If we get to DIV or DIV_ASSIGN as a primary expression,
// it's actually a regex.
regex := p.nextRegex()
return &ast.RegExpr{regex}
case DOLLAR:
p.next()
var expr ast.Expr = &ast.FieldExpr{p.primary()}
// Post-increment operators have lower precedence than primary
// expressions by default, except for field expressions with
// post-increments (e.g., $$1++ = $($1++), NOT $($1)++).
if p.tok == INCR || p.tok == DECR {
op := p.tok
p.next()
expr = &ast.IncrExpr{expr, op, false}
}
return expr
case AT:
p.next()
return &ast.NamedFieldExpr{p.primary()}
case NOT, ADD, SUB:
op := p.tok
p.next()
return &ast.UnaryExpr{op, p.pow()}
case INCR, DECR:
op := p.tok
p.next()
exprPos := p.pos
expr := p.optionalLValue()
if expr == nil {
panic(ast.PosErrorf(exprPos, "expected lvalue after %s", op))
}
return &ast.IncrExpr{expr, op, true}
case NAME:
name, namePos := p.expectName()
if p.tok == LBRACKET {
// a[x] or a[x, y] array index expression
p.next()
index := p.exprList(p.expr)
if len(index) == 0 {
panic(p.errorf("expected expression instead of ]"))
}
p.expect(RBRACKET)
return &ast.IndexExpr{name, namePos, index}
} else if p.tok == LPAREN && !p.lexer.HadSpace() {
// Grammar requires no space between function name and
// left paren for user function calls, hence the funky
// lexer.HadSpace() method.
return p.userCall(name, namePos)
}
return &ast.VarExpr{name, namePos}
case LPAREN:
parenPos := p.pos
p.next()
exprs := p.exprList(p.expr)
switch len(exprs) {
case 0:
panic(p.errorf("expected expression, not %s", p.tok))
case 1:
p.expect(RPAREN)
return &ast.GroupingExpr{exprs[0]}
default:
// Multi-dimensional array "in" requires parens around index
p.expect(RPAREN)
if p.tok == IN {
p.next()
name, namePos := p.expectName()
return &ast.InExpr{exprs, name, namePos}
}
// MultiExpr is used as a pseudo-expression for print[f] parsing.
return p.multiExpr(exprs, parenPos)
}
case GETLINE:
p.next()
target := p.optionalLValue()
var file ast.Expr
if p.tok == LESS {
p.next()
file = p.primary()
}
return &ast.GetlineExpr{nil, target, file}
// Below is the parsing of all the builtin function calls. We
// could unify these but several of them have special handling
// (array/lvalue/regex params, optional arguments, and so on).
// Doing it this way means we can check more at parse time.
case F_SUB, F_GSUB:
op := p.tok
p.next()
p.expect(LPAREN)
regex := p.regexStr(p.expr)
p.commaNewlines()
repl := p.expr()
args := []ast.Expr{regex, repl}
if p.tok == COMMA {
p.commaNewlines()
inPos := p.pos
in := p.expr()
if !ast.IsLValue(in) {
panic(ast.PosErrorf(inPos, "3rd arg to sub/gsub must be lvalue"))
}
args = append(args, in)
}
p.expect(RPAREN)
return &ast.CallExpr{op, args}
case F_SPLIT:
p.next()
p.expect(LPAREN)
str := p.expr()
p.commaNewlines()
name, namePos := p.expectName()
args := []ast.Expr{str, &ast.VarExpr{name, namePos}}
if p.tok == COMMA {
p.commaNewlines()
args = append(args, p.regexStr(p.expr))
}
p.expect(RPAREN)
return &ast.CallExpr{F_SPLIT, args}
case F_MATCH:
p.next()
p.expect(LPAREN)
str := p.expr()
p.commaNewlines()
regex := p.regexStr(p.expr)
p.expect(RPAREN)
return &ast.CallExpr{F_MATCH, []ast.Expr{str, regex}}
case F_RAND:
p.next()
p.expect(LPAREN)
p.expect(RPAREN)
return &ast.CallExpr{F_RAND, nil}
case F_SRAND:
p.next()
p.expect(LPAREN)
var args []ast.Expr
if p.tok != RPAREN {
args = append(args, p.expr())
}
p.expect(RPAREN)
return &ast.CallExpr{F_SRAND, args}
case F_LENGTH:
p.next()
var args []ast.Expr
// AWK quirk: "length" is allowed to be called without parens
if p.tok == LPAREN {
p.next()
if p.tok != RPAREN {
args = append(args, p.expr())
}
p.expect(RPAREN)
}
return &ast.CallExpr{F_LENGTH, args}
case F_SUBSTR:
p.next()
p.expect(LPAREN)
str := p.expr()
p.commaNewlines()
start := p.expr()
args := []ast.Expr{str, start}
if p.tok == COMMA {
p.commaNewlines()
args = append(args, p.expr())
}
p.expect(RPAREN)
return &ast.CallExpr{F_SUBSTR, args}
case F_SPRINTF:
p.next()
p.expect(LPAREN)
args := []ast.Expr{p.expr()}
for p.tok == COMMA {
p.commaNewlines()
args = append(args, p.expr())
}
p.expect(RPAREN)
return &ast.CallExpr{F_SPRINTF, args}
case F_FFLUSH:
p.next()
p.expect(LPAREN)
var args []ast.Expr
if p.tok != RPAREN {
args = append(args, p.expr())
}
p.expect(RPAREN)
return &ast.CallExpr{F_FFLUSH, args}
case F_COS, F_SIN, F_EXP, F_LOG, F_SQRT, F_INT, F_TOLOWER, F_TOUPPER, F_SYSTEM, F_CLOSE:
// Simple 1-argument functions
op := p.tok
p.next()
p.expect(LPAREN)
arg := p.expr()
p.expect(RPAREN)
return &ast.CallExpr{op, []ast.Expr{arg}}
case F_ATAN2, F_INDEX:
// Simple 2-argument functions
op := p.tok
p.next()
p.expect(LPAREN)
arg1 := p.expr()
p.commaNewlines()
arg2 := p.expr()
p.expect(RPAREN)
return &ast.CallExpr{op, []ast.Expr{arg1, arg2}}
default:
panic(p.errorf("expected expression instead of %s", p.tok))
}
}
// Parse an optional lvalue
func (p *parser) optionalLValue() ast.Expr {
switch p.tok {
case NAME:
if p.lexer.PeekByte() == '(' {
// User function call, e.g., foo() not lvalue.
return nil
}
name, namePos := p.expectName()
if p.tok == LBRACKET {
// a[x] or a[x, y] array index expression
p.next()
index := p.exprList(p.expr)
if len(index) == 0 {
panic(p.errorf("expected expression instead of ]"))
}
p.expect(RBRACKET)
return &ast.IndexExpr{name, namePos, index}
}
return &ast.VarExpr{name, namePos}
case DOLLAR:
p.next()
return &ast.FieldExpr{p.primary()}
default:
return nil
}
}
// Parse /.../ regex or generic expression:
//
// REGEX | expr
func (p *parser) regexStr(parse func() ast.Expr) ast.Expr {
if p.matches(DIV, DIV_ASSIGN) {
regex := p.nextRegex()
return &ast.StrExpr{Value: regex, Regex: true}
}
return parse()
}
// Parse left-associative binary operator. Allow newlines after
// operator if allowNewline is true.
//
// parse [op parse] [op parse] ...
func (p *parser) binaryLeft(higher func() ast.Expr, allowNewline bool, ops ...Token) ast.Expr {
expr := higher()
for p.matches(ops...) {
op := p.tok
p.next()
if allowNewline {
p.optionalNewlines()
}
right := higher()
expr = &ast.BinaryExpr{expr, op, right}
}
return expr
}
// Parse comma followed by optional newlines:
//
// COMMA NEWLINE*
func (p *parser) commaNewlines() {
p.expect(COMMA)
p.optionalNewlines()
}
// Parse zero or more optional newlines:
//
// [NEWLINE] [NEWLINE] ...
func (p *parser) optionalNewlines() {
for p.tok == NEWLINE {
p.next()
}
}
// Parse next token into p.tok (and set p.pos and p.val).
func (p *parser) next() {
p.prevTok = p.tok
p.pos, p.tok, p.val = p.lexer.Scan()
if p.tok == ILLEGAL {
panic(p.errorf("%s", p.val))
}
}
// Parse next regex and return it (must only be called after DIV or
// DIV_ASSIGN token).
func (p *parser) nextRegex() string {
p.pos, p.tok, p.val = p.lexer.ScanRegex()
if p.tok == ILLEGAL {
panic(p.errorf("%s", p.val))
}
regex := p.val
_, err := regexp.Compile(compiler.AddRegexFlags(regex))
if err != nil {
panic(p.errorf("%v", err))
}
p.next()
return regex
}
// Ensure current token is tok, and parse next token into p.tok.
func (p *parser) expect(tok Token) {
if p.tok != tok {
panic(p.errorf("expected %s instead of %s", tok, p.tok))
}
p.next()
}
// Ensure current token is a name, parse it, and return name and position.
func (p *parser) expectName() (string, Position) {
name, pos := p.val, p.pos
p.expect(NAME)
return name, pos
}
// Return true iff current token matches one of the given operators,
// but don't parse next token.
func (p *parser) matches(operators ...Token) bool {
for _, operator := range operators {
if p.tok == operator {
return true
}
}
return false
}
// Format given string and args with Sprintf and return *ParseError
// with that message and the current position.
func (p *parser) errorf(format string, args ...interface{}) error {
return ast.PosErrorf(p.pos, format, args...)
}
// Parse call to a user-defined function (and record call site for
// resolving later).
func (p *parser) userCall(name string, pos Position) *ast.UserCallExpr {
p.expect(LPAREN)
args := []ast.Expr{}
i := 0
for !p.matches(NEWLINE, RPAREN) {
if i > 0 {
p.commaNewlines()
}
arg := p.expr()
args = append(args, arg)
i++
}
p.expect(RPAREN)
return &ast.UserCallExpr{name, args, pos}
}
// Record a "multi expression" (comma-separated pseudo-expression
// used to allow commas around print/printf arguments).
func (p *parser) multiExpr(exprs []ast.Expr, pos Position) ast.Expr {
expr := &ast.MultiExpr{exprs}
p.multiExprs[expr] = pos
return expr
}
// Mark the multi expression as used (by a print/printf statement).
func (p *parser) useMultiExpr(expr *ast.MultiExpr) {
delete(p.multiExprs, expr)
}
// Check that there are no unused multi expressions (syntax error).
func (p *parser) checkMultiExprs() {
if len(p.multiExprs) == 0 {
return
}
// Show error on first comma-separated expression
min := Position{1000000000, 1000000000}
for _, pos := range p.multiExprs {
if pos.Line < min.Line || pos.Line == min.Line && pos.Column < min.Column {
min = pos
}
}
panic(ast.PosErrorf(min, "unexpected comma-separated expression"))
}
|