File: sample.gby

package info (click to toggle)
goby 1.0-2
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 1,344 kB
  • ctags: 318
  • sloc: lisp: 2,090; makefile: 72; sh: 54
file content (118 lines) | stat: -rw-r--r-- 2,543 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

[]A default format
[-]
	[*] The 1st line should be blank as top margin.
	[*] The 2nd line is a title.
		[*] If necessary, you can write a title on multiple lines.
		[*] Centering is "C-c;c".
	[*] Insert a bar below the title.
		[*] To insert a bar, type "C-c;-".
	[*] Write items below the bar.
		[*] To insert a TAB character, type the "TAB" key or "C-i".
	[*] C-l is a page separator.
		[*] To insert C-l, type "C-qC-l".

	[*] You should create a presentation material
	  on WYSIWYG manner.
		[*] Don't edit the source file directly.

	[*] To go to the View mode, type "C-c;v".
	[*] To move to a next page, type "SPC".


[]Aqua life
[-]

[][image "lionfish.jpg" 400/1024]  [image "squilla.jpg" 400/1024]

	[*] Lionfish (left)
	[*] Squilla (right)



[]Fermat
[-]
	[*] Pytagoras's theorem
		When the hypotenuse of a right triangle is z,
		and its two sides are x and y, then
		    x 2 + y 2 = z 2
		There are infinite integer solutions for x, y and z.

	[*] Fermat's last theorem
		When an integer n >= 3,
		    x n + y n = z n
		has no non-zero integer solutions for x, y and z.

	[*] Fermat's little theorem
		If p is a prime and a is an integer, then
		    a p = a (mod p)
[properties]
((goby-math
  (839 840 . t)
  (866 867 . t)
  (872 873 . t)
  (886 887 . t)
  (887 889 raise 0.6)
  (889 893 . t)
  (893 895 raise 0.6)
  (895 899 . t)
  (899 901 raise 0.6)
  (945 949 . t)
  (954 955 . t)
  (1003 1009 . t)
  (1017 1018 . t)
  (1018 1020 raise 0.6)
  (1020 1024 . t)
  (1024 1026 raise 0.6)
  (1026 1030 . t)
  (1030 1032 raise 0.6)
  (1073 1077 . t)
  (1082 1083 . t)
  (1120 1121 . t)
  (1137 1138 . t)
  (1165 1166 . t)
  (1166 1168 raise 0.6)
  (1168 1172 . t)
  (1178 1179 . t))
 (839 840 100 5 2)
 (866 867 100 4 2)
 (872 873 100 4 2)
 (886 887 100 4 2)
 (887 888 100 2 2)
 (888 889 100 2 2)
 (890 891 100 4 2)
 (892 893 100 4 2)
 (893 894 100 2 2)
 (894 895 100 2 2)
 (896 897 100 4 2)
 (898 899 100 4 2)
 (899 900 100 2 2)
 (900 901 100 2 2)
 (945 947 100 4 2)
 (948 949 100 4 2)
 (954 955 100 4 2)
 (1003 1004 100 4 2)
 (1005 1007 100 4 2)
 (1008 1009 100 4 2)
 (1017 1018 100 4 2)
 (1018 1019 100 2 2)
 (1019 1020 100 2 2)
 (1021 1022 100 4 2)
 (1023 1024 100 4 2)
 (1024 1025 100 2 2)
 (1025 1026 100 2 2)
 (1027 1028 100 4 2)
 (1029 1030 100 4 2)
 (1030 1031 100 2 2)
 (1031 1032 100 2 2)
 (1073 1075 100 4 2)
 (1076 1077 100 4 2)
 (1082 1083 100 4 2)
 (1120 1121 100 4 2)
 (1137 1138 100 4 2)
 (1165 1166 100 4 2)
 (1166 1167 100 2 2)
 (1167 1168 100 2 2)
 (1169 1170 100 4 2)
 (1171 1172 100 4 2)
 (1178 1179 100 4 2))