1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<HTML>
<HEAD>
<TITLE>GOCR-documentation</TITLE>
<META NAME="description" CONTENT="GOCR-documentation">
<META NAME="keywords" CONTENT="ocr">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<META NAME="Generator" CONTENT="Joerg">
</HEAD>
<BODY >
<H1 ALIGN="CENTER">GOCR-documentation</H1>
<P ALIGN="CENTER"><STRONG>Jörg Schulenburg</STRONG></P>
<P ALIGN="CENTER"><STRONG>Magdeburg, June 3, 2002</STRONG></P>
<H3>Abstract:</H3>
<DIV>
In this documentation I describe some ideas for my OCR-program.
It contains algorithms and examples and gives you
an impression of what the program can (or could) do.
</DIV>
<P>
<P>
<BR><HR>
<!--Table of Child-Links-->
<A NAME="CHILD_LINKS"></A>
<UL>
<LI><A HREF="#SEC1">Introduction</A>
<LI><A HREF="#SEC2">Segmentation of textual regions / Layout analysis</A>
<LI><A HREF="#SEC3">Line detection</A>
<LI><A HREF="#SEC4">Cluster detection</A>
<LI><A HREF="#SEC5">Engines</A>
<LI><A HREF="#SEC6">Remove pixels</A>
<LI><A HREF="#SEC7">Add pixels</A>
<LI><A HREF="#SEC8">Similarity analyzer</A>
<LI><A HREF="#SEC9">Overlapping characters</A>
<LI><A HREF="#SEC10">Black/White, Gray and Colors</A>
<LI><A HREF="#SEC11">Pictures on scanned pages</A>
<LI><A HREF="#SEC12">Tools</A>
<LI><A HREF="#SEC13">glossary</A>
<LI><A HREF="#SEC14">More information?</A>
<LI><A HREF="#SEC15">About this document</A>
</UL>
<!--End of Table of Child-Links-->
<H1><A NAME="SEC1"> Introduction</A>
</H1>
First I have to say that I am not a expert in pattern recognition
or similar things. My knowledge is based mostly on experiments with my
program.
Therefore do not worry about stupid algorithms I put in this document.
In this documentation I describe some ideas for my OCR-program.
The examples give you an impression of how the program handles
your images.
If you have comments regarding contents or spelling please
write to the author.
<H1><A NAME="SEC2">Segmentation of textual regions / Layout analysis</A></H1>
This is implemented as a recursive division in two parts.
<UL>
<LI>look for the thickest horizontal or vertical gap through the box</LI>
<LI>if the gap is less than five times longer than thick do not divide </LI>
<LI>do the same with the two new parts</LI>
</UL>
I know that this algorithm is not as good as you wish,
but I do not know a better one.
<P>
It would be very helpful to know about a function which is able to
decide whether the box represents a single text line or a more complex object.
<H1><A NAME="SEC3">Line detection</A></H1>
<P>
Line detection is very importand for good recognition.
For example it is difficult to distinguish between lowercase letter <B>p</B>
and uppercase letter <B>P</B> without having a baseline (same total height).
The lowercase version of <B>p</B> has a depht (the lower end is below the
baseline) and therefore its easy to distinguish from the uppercase version
if the baseline is known. The line detection is responsible for finding the
baseline of every text line.
<P>
Lines of characters are detected by looking for interline spaces.
These are characterized by a large number of non-black pixels in a
row. Image rotation (skewing) presents a problem, therefore the program
first looks only at the left half of the image. When a line is
found, the left half of the right side is scanned, because lines
are often short. The variation in height gives an indication of
the rotation angle. Using this angle, a second run detects lines
more accurately. Line detection may fail if there is dust on the
image.
<P>
In version v0.2.3 this behaviour is slightly changed.
To detect the rotation angle, the line through the most
characters is detected.
<H1><A NAME="SEC4">Cluster detection</A></H1>
A cluster is a group of pixels which are connected with each other.
The simplest way to detect a cluster is to look for a pixel.
If you find one, look to the neighbouring pixels. This can be done recursively.
<P>
This method needs a lot of stack space if a cluster is very large,
and can cause problems with the memory.
<P>
Do you remember the algorithm for leaving a maze?
Go along the right (or left) wall. This seems to be a good approach
for detecting clusters without recursion.
The following picture shows a trace of the maze algorithm.
<P>
<TABLE WIDTH="680">
<TR><TD>
<PRE>
first 35 steps next 36 steps
..@@@@@..@@@@<.. ..v<<<<..v<<<@.. * = starting point
..@@@@@@@@@.@^<. ..>>v@^<<<@.@@@. >^<v = go right,up,left,down
....@@@@@...@@^. ....v@@@@...@@@. @ = black pixel
....@@@@....@@^. ....v@@@....@@@.
....@@@.....@@^. ....v@@.....@@@.
....@@@.....@@^. ....v@@.....@@@.
...@@@@.....@@^. ...v<@@.....@@@.
...@@@......@@^. ...v@@......@@@.
...@@@......@@^. ...v@@......@@@.
...@@@.....@@@^. ...v@@.....@@@@.
...@@@.....@@>^. ...v@@.....@@@@.
...@@@.....@@^.. ...v@@.....@@@..
..@@@@.....@@^.. ..v<@@.....@@@..
..@@@@....@@@^.. ..v@@@....@@@@..
*>>>>>>>>>>>>^<< @@@@@@@@@@@@@@@@
</PRE></TD></TR>
</TABLE>
<P>
The minimum and maximum coordinates can be used to create a box around the
cluster. But does this algorithm work with diagonally connected pixels?
<H1><A NAME="SEC5">Engines</A></H1>
GOCR is able to work with different recognition engines.
Since version 0.37 engines have to return a probability value together
with the recognized character or a table of values to a table of characters.
If the probability value is 100, the engine is 100% sure to have found the
right character otherwise the value is less. This gives GOCR the possibility
to compare results of different engines or in case of a not recognized character
to inform the user or another
application (spell checker) which characters probably could be there.
<H2>Base-Engine</H2>
The base engine (src/ocrX.c) is the original engine used in the first implementation
of GOCR by Jörg. The idea was to get a fast and acceptable result
without learning theoretical background. Later it should be replaced or completed
by a better engine.
The base engine is a rule based engine.
The engine was written without theoretical
background and is improved by try and error method but is is still far from
perfect. The algorithm is very tolerant to size and form af characters
(omnifont).
How does the engine identify a character? For the explanation look at the
following pattern.
<P>
<TABLE WIDTH="680">
<TR><TD>
<PRE>
vvvv vv- white regions
......@@...... <- crossing one line
......@@......
.....@@@@.....
.....@@@@.....
.....@@@@.....
....@..@@@.... <- white hole / crossing two lines
....@..@@@.... <- crossing two lines
....@..@@@....
...@....@@@...
...@....@@@...
...@....@@@...
..@@@@@@@@@@.. <- horizontal line near center
..@......@@@..
..@......@@@..
.@........@@@. v- increasing width of pattern
.@........@@@. v
.@........@@@. v
@@@......@@@@@
^^^-- gap
</PRE></TD></TR>
</TABLE>
<P>
In the future the program
should detect edges, vertices, gaps, angles and so on.
This is called feature extraction (as far as I know).
With such data the engine could make a cluster analysis.
But this is a difficult task, if the scanned image is noisy.
<H2>Database-Engine</H2>
The database engine (src/database.c) was the second engine added to GOCR.
It was primary written to give users a simple tool to recognize
special language-specific characters. The program generates a list
(text file db.lst of image filenames and character codes)
and image samples (pnm-files) in a database path (./db/).
The database can be created by hand or extern programs or by GOCR itself
using option (-m 130). In the last case GOCR prompts the user
for not recognized characters. If he enters the character the pattern
is saved in the database path as pnm-file and its file name is added
to the database list (db.lst) together with the text string the pattern
should be replaced by.
For recognition GOCR first loads the database into memory (option -m 2).
The main algorithm compares not recognized characters with stored images
and calculates a distance value. If the distance value is small enough,
the character is treated as recognized.
<H1><A NAME="SEC6">Remove pixels</A></H1>
The following picture shows an <I>n</I> which has additional pixels at the
bottom. Therefore it can not be detected as <I>n</I>. What can be done?
<UL>
<LI>classify horizontal (<TT>=</TT>) and vertical (<TT>I</TT>) pixels by
comparing the distance between the next vertical and next horizontal white
pixels (.)
</LI>
<LI>measure mean thickness of vertical and horizontal clusters
</LI>
<LI>erase unusually thin horizontal pixels at the bottom line
</LI>
</UL>
<P>
<TABLE WIDTH="680">
<TR><TD>
<PRE>
..@@@@@..@@@@@.. ..==III..===II.. dx=16 dy=15
..@@@@@@@@@.@@@. ..==III====.III. thickness 2 to 3
....@@@@@...@@@. ....III==...III.
....@@@@....@@@. ....III=....III.
....@@@.....@@@. ....III.....III.
....@@@.....@@@. ....III.....III.
...@@@@.....@@@. ...IIII.....III.
...@@@......@@@. ...III......III.
...@@@......@@@. ...III......III.
...@@@.....@@@@. ...III.....IIII.
...@@@.....@@@@. ...III.....IIII.
...@@@.....@@@.. ...III.....III..
..@@@@.....@@@.. ..IIII.....III..
..@@@@....@@@@.. ..IIII....IIII..
@@@@@@@@@@@@@@@@ ================
^^^
this causes the problem
</PRE></TD></TR>
</TABLE>
<P>
A better way is to find serifs (horizontal lines glued on the lower end
of vertical lines) which touch together (v0.2.5).
<P>
The next picture shows blind pixels which are caused by dust on the paper.
The upper right dots are not connected with the rest of the character.
This can be detected via fill-algorithms. Currently the program
assumes that dots near the upper end of a character are ``i''-dots
or diaereses (umlaut dots).
<P>
<TABLE WIDTH="680">
<TR><TD>
<PRE>
..........................O... ..........................O...
..........................O... ..........................O...
.............................. ..............................
.............................. ..............................
..........@@@.......@@@@...... ..........@@@.......@@@@......
..@@@@..@@@@@@@...@@@@@@@..... ..@@@@..@@@@@@@...@@@@@@@.....
@@@@@@@@@@@@@@@@.@@@@@@@@@.... @@@@@@@@@@@@@@@@.@@@@@@@@@....
..@@@@@@....@@@@@@.....@@@@... ..@@@@@@....@@@@@@.....@@@@...
..@@@@.......@@@@......@@@@... ..@@@@.......@@@@......@@@@...
..@@@@.......@@@.......@@@@... ..@@@@.......@@@.......@@@@...
..@@@@.......@@@.......@@@@... ..@@@@.......@@@.......@@@@...
..@@@@.......@@@.......@@@@... ..@@@@.......@@@.......@@@@...
..@@@@.......@@@@......@@@@... ..@@@@.......@@@@......@@@@...
..@@@@.......@@@.......@@@@... ..@@@@.......@@@.......@@@@...
..@@@@.......@@@@......@@@@... ..@@@@.......@@@@......@@@@...
..@@@@.......@@@.......@@@@... ..@@@@.......@@@.......@@@@...
..@@@@.......@@@.......@@@@... ..@@@@.......@@@.......@@@@...
..@@@@.......@@@.......@@@@... ..@@@@.......@@@.......@@@@...
..@@@@.......@@@.......@@@@... ..@@@@.......@@@.......@@@@...
..@@@@.......@@@.......@@@@... ..@@@@.......@@@.......@@@@...
..@@@@.......@@@@......@@@@... ..@@@@.......@@@@......@@@@...
..@@@@......@@@@@......@@@@@.. ..@@@@......@@@@@......@@@@@..
@@@@@@@@..@@@@@@@@@..@@@@@@@@@ @@@@@@@@..@@@@@@@@@..@@@@@@@@@
</PRE></TD></TR>
</TABLE>
<H1><A NAME="SEC7">
Add pixels</A>
</H1>
The following picture shows an <I>m</I>. The legs are only barely connected.
How do we handle this?
<UL>
<LI>if the engine has failed, a filter is switched on and the engine
starts over
</LI>
<LI>the 2x2 filter sets pixels to (<I>O</I>) near barely connected pixels
</LI>
</UL>
<P>
<TABLE WIDTH="680">
<TR><TD>
<PRE>
vv vv
@@@.@@@..@@@... @@@.@@@..@@@...
.@@.@@@@.@@@@..< .@@O@@@@O@@@@.. filter: .@ => O@ @. => @O
.@@@..@@@..@@..< .@@@..@@@..@@.. @. => @. .@ => .@
.@@@..@@@..@@@. .@@@..@@@..@@@.
.@@@..@@@..@@@. .@@@..@@@..@@@.
.@@@..@@@..@@@. .@@@..@@@..@@@.
.@@@..@@@..@@@. .@@@..@@@..@@@.
.@@@..@@@..@@@. .@@@..@@@..@@@.
.@@@..@@@..@@@. .@@@..@@@..@@@.
.@@@..@@@..@@@. .@@@..@@@..@@@.
.@@@..@@@..@@@. .@@@..@@@..@@@.
.@@@..@@@..@@@. .@@@..@@@..@@@.
.@@@..@@@..@@@. .@@@..@@@..@@@.
@@@@@.@@@@.@@@@ @@@@@.@@@@.@@@@
</PRE></TD></TR>
</TABLE>
<H1><A NAME="SEC8">
Similarity analyzer</A>
</H1>
Some characters are a little bit noisy. These characters can be identified by
comparison with other, already recognized characters. This can be done
via a good distance function. May be
the distance function in the actual version of GOCR is not very good.
Feel free to send me your ideas, but be sure it does not waste my time.
<H1><A NAME="SEC9">
Overlapping characters</A>
</H1>
The following picture shows an overlapping <I>ru</I>.
How do we handle this?
<UL>
<LI>look for 3 weak connections (sum over y is small, start in the middle)
</LI>
<LI>test if the right and left part can be detected by the engine
</LI>
<LI>correction of surrounding box
</LI>
</UL>
<P>
<TABLE WIDTH="680">
<TR><TD>
<PRE>
....@@...@@@@@@@@@@....@@@@@@@.. ....@@...@@@@@@@@@@....@@@@@@@..
..@@@@..@@@@@..@@@@......@@@@@.. ..@@@@..@@@@@..@@@@......@@@@@..
@@@@@@@@@@@@@.,.@@@.......@@@@.. @@@@@@@@@@@@@...@@@.......@@@@..
..@@@@@@..@@@...@@@.......@@@@.. ..@@@@@@..@@@...@@@.......@@@@..
...@@@@.......,.@@@@......@@@@.. ...@@@@.........@@@@......@@@@..
...@@@@.........@@@@......@@@@.. ...@@@@.........@@@@......@@@@..
...@@@@.......,.@@@.......@@@@.. ...@@@@.........@@@.......@@@@..
...@@@@.........@@@.......@@@@.. ...@@@@.........@@@.......@@@@..
...@@@........,.@@@@......@@@@.. ...@@@..........@@@@......@@@@..
...@@@..........@@@@......@@@@.. ...@@@..........@@@@......@@@@..
...@@@........,.@@@@......@@@@.. ...@@@..........@@@@......@@@@..
...@@@..........@@@.......@@@@.. ...@@@..........@@@.......@@@@..
...@@@........,.@@@@......@@@@.. ...@@@..........@@@@......@@@@..
...@@@..........@@@@......@@@@.. ...@@@..........@@@@......@@@@..
...@@@........,.@@@@......@@@@.. ...@@@..........@@@@......@@@@..
...@@@..........@@@@@...@@@@@@@. ...@@@..........@@@@@...@@@@@@@.
..@@@@@.......,..@@@@@@@@@.@@@@@ ..@@@@@..........@@@@@@@@@.@@@@@
@@@@@@@@@.........@@@@@@@..@@@.. @@@@@@@@@.........@@@@@@@..@@@..
..............,....@@@.......... ...................@@@..........
^^^
213 weak vertical lines
</PRE></TD></TR>
</TABLE>
<P>
Of course the situation is more difficult with slanted characters.
<P>
The following example shows, how to deal with larger clusters.
To get a fast program a first test should select the possible positions of
division. That can be done by following upper and lower bows to a crease or a break. Than try to break on all detected creases, start at most
important one (not implemented yet v0.2.4).
<P>
<TABLE WIDTH="766">
<TR><TD>
<PRE>
>>>>vvv<<<<< >>vv<<<< >>>vvv<<<<
......@@@@@@@..................@@.........@@@@@@@..........@@@@@@@.....
....@@@@@@@@@@@...............@@@.......@@@@@@@@@@@......@@@@@@@@@@@...
...@@@@@@@@@@@@@.............@@@@......@@@@@@@@@@@@@....@@@@@@@@@@@@@..
..@@@@.......@@@@...........@@@@@.....@@@@.......@@@@..@@@@.......@@@@.
..@@@........@@@@..........@@@@@@@....@@@........@@@@@@@@@........@@@@.
.@@@@..........@@.........@@@@@@@@...@@@@..........@@@@@@@.........@@@@
.@@@.....................@@@@.@@@@...@@@..............@@...........@@@@
.@@@....................@@@@@.@@@@...@@@...........................@@@@
@@@...@@@@@@@...........@@@@..@@@...@@@...@@@@@@...................@@@.
@@@@.@@@@@@@@@@........@@@@...@@@@..@@@@.@@@@@@@@@@...............@@@@.
@@@@@@@@@@@@@@@.......@@@@....@@@@..@@@@@@@@@@@@@@@...............@@@..
@@@@@@@.....@@@@@.....@@@.....@@@@..@@@@@@......@@@@@............@@@@..
@@@@.........@@@@...@@@@......@@@@..@@@@@........@@@@...........@@@....
@@@@..........@@@@.@@@@.......@@@@..@@@@..........@@@..........@@@@....
@@@@..........@@@@@@@@@.......@@@@.@@@@@..........@@@.........@@@@.....
@@@@..........@@@@@@@@@@@@@@@@@@@@@@@@@@..........@@@@.......@@@@......
@@@@..........@@@@@@@@@@@@@@@@@@@@@@@@@@..........@@@@......@@@........
.@@@..........@@@@@@@@@@@@@@@@@@@@@@.@@@..........@@@@....@@@@@........
.@@@@........@@@@.............@@@@...@@@@........@@@@....@@@@..........
..@@@@.......@@@@.............@@@@....@@@@.......@@@@...@@@@...........
..@@@@@....@@@@@..............@@@@.....@@@@....@@@@@...@@@@@@..........
....@@@@@@@@@@@...............@@@@......@@@@@@@@@@@...@@@@@@@@@@@@@@@@@
.....@@@@@@@@@................@@@@........@@@@@@@@....@@@@@@@@@@@@@@@@@
........@@@@...................@@..........@@@@@........@@@@@@@..@.@@@.
>>>>^ ^<<>>^ ^<<<<< >>>^<<< ^^ ^
>,< show the path of the detection algorithm
</PRE></TD></TR>
</TABLE>
<P>
The latest version of GOCR may use different algorithms.
You have to look at the sources learn more.
<H1><A NAME="SEC10">
Black/White, Gray and Colors</A>
</H1>
For simplicity colored images are converted to gray internally.
That means a red text on green background will not be detected.
You should use your own filter for this purpose.
<P>
If the original image is gray, a critical value is calculated to
extract characters from the background. This can fail, if images are
on the scanned page or tha scan is bad (dark edges or borders).
It is difficult to overcome this problem because graylevels are mostly
restricted to the 8 bit limit (16 bit would help to overcome this problem).
<P>
Black/White images are internally converted to gray with two levels (0 and
255).
<P>
The lowest 4 bits are not used, because they are used by internal functions
(this can be changed in future).
<P>
After calculation of the threshold value (otsu.c) the brightness of
every pixel is recalculated to a new internal threshold value
of 160 (128+32).
This is a bit above the middle of the 8 bit range. The idea is to
make the live easier for the other routines. Pixels which does not sure
belong to the white or black ones get a value near the threshold value.
Some routines can use this bit of more information to ignore outriders.
Second point is, that this is necessary for using lowest for bits
without destroying image informations.
<H1><A NAME="SEC11">Pictures on scanned pages</A>
</H1>
At first all objects on the scanned page are detected.
Objects are clusters of black pixels.
Pictures are detected if they are larger than 4 times the mean size of
all objects. This rule is very simple and can fail some times.
But it works fast and mostly the result is ok.
<H1><A NAME="SEC12">Tools</A></H1>
<P>
<DL COMPACT>
<DT>pbmclean:</DT>
<DD>This program is written by Angus Duggan and Jef Poskanzer.
It cleans up ``snow'' on bitmap images.
</DD>
<DT>pnmtools:</DT>
<DD>This tools are used to convert different image-formats to
easy readable PNM (PBM,PGM,PPM) format.
GOCR uses the popen-routine to call this programs if the
suffix of the filename matches to a list in pnm.c.
This will fail if pnmtools are missing.
</DD>
</DL>
<H1><A NAME="SEC12b">related projects (to learn from)</A></H1>
<P>
<DL COMPACT>
<DT>unpaper:</DT> <!-- Dec05 JS -->
<DD> <a href="http://unpaper.berlios.de/">unpaper</a> -
post-processing scanned and photocopied book pages,
written by Jens Gulden 2005, GPL
</DD>
</DL>
<H1><A NAME="SEC13">glossary</A> </H1> <DL COMPACT>
<DT>font series:</DT> <DD>bold, condensed</DD>
<DT>font shape: </DT> <DD>normal, italic, slanted, sc... </DD>
<DT>points:</DT>
<DD>length unit used for font size, 1/72 inch,
but I do not know its exact relation to the font size (height?
totalheight? width? 10pt and 300dpi results in 40 pixel heigh font?)
</DD>
<DT>sans serif:</DT>
<DD>font without the (often thin) lines on the ends
of the character
</DD>
<DT>descewing:</DT>
<DD>compensation of (slightly) rotated text
</DD>
</DL>
<H1><A NAME="SEC14"> More information?</A> </H1>
<DL COMPACT>
<DT>·</DT>
<DD>see "/usr/share/doc/package/tetex/texmf/.../fntguide.dvi"
in the documentation of the tetex package
</DD>
<DT>·</DT>
<DD>the fonts-HOWTO file is helpfully too
("www.faqs.org/faqs/fonts-faq/")
</DD>
<DT>RTF:</DT>
<DD> RichTextFormat - does someone have a good documontation?
</DD>
</DL>
<H1><A NAME="SEC15"> About this document</A> </H1>
This Document was originaly written in LaTeX.
In May 2002 Joerg has convertet it to HTML. The reason is, that
you can read it now directly and you does not need to have LaTeX and
Ghostscript installed on your computer to read it.
As a side effect you do not need tetex package to build the gocr.rpm-package.
A good viewer to read this document is lynx, links or w3m.
<BR>
<HR>
<ADDRESS> jNOschulen-at-gSmPAMx.de (remove NO+S+PAM) </ADDRESS>
</BODY>
</HTML>
<!---
%
% -----------------------------------------------------------------
% # v
% # v mark connected points via fifo-stack
% ### *<< and 3bit direction code per pixel,
% # # ^ ^ should be better for overlapping letters
% ### ^<<
% --------------------- point connections ----------------------
% searching next nearest point
% /----\
% | |
% ^ | ## |
% | | ## |
% | | | |
% | \--/ |
% \------/
%-------------------------------------------------------------
%
--->
|