1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
|
/*
This is a Optical-Character-Recognition program
Copyright (C) 2000-2010 Joerg Schulenburg
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
Joerg.Schulenburg@physik.uni-magdeburg.de */
/* Filter by tree, filter by number methods added by
* William Webber, william@williamwebber.com. */
#include "pgm2asc.h"
#include <assert.h>
#include <string.h>
/*
* Defining this causes assert() calls to be turned off runtime.
*
* This is normally taken care of by make.
*/
/* #define NDEBUG */
// ------------------ (&~7)-pixmap-functions ------------------------
/* test if pixel marked?
* Returns: 0 if not marked, least 3 bits if marked.
*/
int marked (pix * p, int x, int y) {
if (x < 0 || y < 0 || x >= p->x || y >= p->y)
return 0;
return (pixel_atp(p, x, y) & 7);
}
#define Nfilt3 6 /* number of 3x3 filter */
/*
* Filters to correct possible scanning or image errors.
*
* Each of these filters represents a 3x3 pixel area.
* 0 represents a white or background pixel, 1 a black or
* foreground pixel, and 2 represents a pixel of either value.
* Note that this differs from the meaning of pixel values in
* the image, where a high value means "white" (background),
* and a low value means "black" (foreground).
*
* These filters are applied to the 3x3 environment of a pixel
* to be retrieved from the image, centered around that pixel
* (that is, the to-be-retrieved pixel corresponds with the
* the fifth position of the filter).
* If the filter matches that pixel environment, then
* the returned value of the pixel is inverted (black->white
* or white->black).
*
* So, for instance, the second filter below matches this
* pattern:
*
* 000
* X0X
* 000
*
* and "fills in" the middle (retrieved) pixel to rejoin a line
* that may have been broken by a scanning or image error.
*/
const char filt3[Nfilt3][9]={
{0,0,0, 0,0,1, 1,0,0}, /* (-1,-1) (0,-1) (1,-1) (-1,0) (0,0) ... */
{0,0,0, 1,0,1, 0,0,0},
{1,0,0, 0,0,1, 0,0,0},
{1,1,0, 0,1,0, 2,1,1},
{0,0,1, 0,0,0, 2,1,0},
{0,1,0, 0,0,0, 1,2,0}
};
/* 2=ignore_pixel, 0=white_background, 1=black_pixel */
/*
* Filter by matrix uses the above matrix of filters directly. Pixel
* environments to be filtered are compared pixel by pixel against
* these filters.
*
* Filter by number converts these filters into integer representations
* and stores them in a table. Pixel environments are similarly
* converted to integers, and looked up in the table.
*
* Filter by tree converts these filters into a binary tree. Pixel
* environments are matched by traversing the tree.
*
* A typical performance ratio for these three methods is 20:9:7
* respectively (i.e., the tree method takes around 35% of the
* time of the matrix method).
*/
#define FILTER_BY_MATRIX 0
#define FILTER_BY_NUMBER 1
#define FILTER_BY_TREE 2
#define FILTER_METHOD FILTER_BY_TREE
/*
* Defining FILTER_CHECKED causes filter results from either the tree
* or the number method to be checked against results of the other
* two methods to ensure correctness. This is for bug checking purposes
* only.
*/
/* #define FILTER_CHECKED */
/*
* Defining FILTER_STATISTICS causes statistics to be kept on how many
* times the filters are tried, how many times a filter matches, and
* of these matches how many flip a black pixel to white, and how many
* the reverse. These statistics are printed to stderr at the end of
* the program run. Currently, statistics are only kept if the tree
* filter method is being used.
*/
/* #define FILTER_STATISTICS */
#ifdef FILTER_STATISTICS
static int filter_tries = 0;
static int filter_matches = 0;
static int filter_blackened = 0;
static int filter_whitened = 0;
#endif
#ifdef FILTER_STATISTICS
void print_filter_stats() {
fprintf(stderr, "\n# Error filter statistics: tries %d, matches %d, "
"blackened %d, whitened %d\n",
filter_tries, filter_matches, filter_blackened, filter_whitened);
}
#endif
#if FILTER_METHOD == FILTER_BY_MATRIX || defined(FILTER_CHECKED)
/*
* Filter the pixel at (x,y) by directly applying the matrix.
*/
int pixel_filter_by_matrix(pix * p, int x, int y) {
int i;
static char c33[9];
memset(c33, 0, sizeof(c33));
/* copy environment of a point (only highest bit)
bbg: FASTER now. It has 4 ifs less at least, 8 at most. */
if (x > 0) { c33[3] = pixel_atp(p,x-1, y )>>7;
if (y > 0) c33[0] = pixel_atp(p,x-1,y-1)>>7;
if (y+1 < p->y) c33[6] = pixel_atp(p,x-1,y+1)>>7;
}
if (x+1 < p->x) { c33[5] = pixel_atp(p,x+1, y )>>7;
if (y > 0) c33[2] = pixel_atp(p,x+1,y-1)>>7;
if (y+1 < p->y) c33[8] = pixel_atp(p,x+1,y+1)>>7;
}
if (y > 0) c33[1] = pixel_atp(p, x ,y-1)>>7;
c33[4] = pixel_atp(p, x , y )>>7;
if (y+1 < p->y) c33[7] = pixel_atp(p, x ,y+1)>>7;
/* do filtering */
for (i = 0; i < Nfilt3; i++)
if( ( (filt3[i][0]>>1) || c33[0]!=(1 & filt3[i][0]) )
&& ( (filt3[i][1]>>1) || c33[1]!=(1 & filt3[i][1]) )
&& ( (filt3[i][2]>>1) || c33[2]!=(1 & filt3[i][2]) )
&& ( (filt3[i][3]>>1) || c33[3]!=(1 & filt3[i][3]) )
&& ( (filt3[i][4]>>1) || c33[4]!=(1 & filt3[i][4]) )
&& ( (filt3[i][5]>>1) || c33[5]!=(1 & filt3[i][5]) )
&& ( (filt3[i][6]>>1) || c33[6]!=(1 & filt3[i][6]) )
&& ( (filt3[i][7]>>1) || c33[7]!=(1 & filt3[i][7]) )
&& ( (filt3[i][8]>>1) || c33[8]!=(1 & filt3[i][8]) ) ) {
return ((filt3[i][4])?OCR_JOB->cfg.cs:0);
}
return pixel_atp(p, x, y) & ~7;
}
#endif
#if FILTER_METHOD == FILTER_BY_NUMBER || defined(FILTER_CHECKED)
#define NUM_TABLE_SIZE 512 /* max value of 9-bit value */
/*
* Recursively generates entries in the number table for a matrix filter.
*
* gen_num_filt is the number representation of the matrix filter.
* This generation is handled recursively because this is the easiest
* way to handle 2 (either value) entries in the filter, which lead
* to 2 distinct entries in the number table (one for each alternate
* value).
*/
void rec_generate_number_table(char * num_table, const char * filter,
int i, unsigned short gen_num_filt) {
if (i == 9) {
/* Invert the value of the number representation, to reflect the
* fact that the "white" is 0 in the filter, 1 (high) in the image. */
gen_num_filt = ~gen_num_filt;
gen_num_filt &= 0x01ff;
assert(gen_num_filt < NUM_TABLE_SIZE);
num_table[gen_num_filt] = 1;
} else {
if (filter[i] == 0 || filter[i] == 2)
rec_generate_number_table(num_table, filter, i + 1, gen_num_filt);
if (filter[i] == 1 || filter[i] == 2) {
gen_num_filt |= (1 << (8 - i));
rec_generate_number_table(num_table, filter, i + 1, gen_num_filt);
}
}
}
/*
* Filter the pixel at (x, y) using a number table.
*
* Each filter can be converted into a 9-bit representation, where
* filters containing 2 (either value) pixels are converted into
* a separate numerical representation for each pixel, where position
* i in the filter corresponds to bit i in the number. Each resulting
* numerical representation N is represented as a 1 value in the Nth
* position of a lookup table. A pixel's environment is converted in
* the same way to a numeric representation P, and that environment
* matches a filter if num_table[P] == 1.
*/
int pixel_filter_by_number(pix * p, int x, int y) {
unsigned short val = 0;
static char num_table[NUM_TABLE_SIZE];
static int num_table_generated = 0;
if (!num_table_generated) {
int f;
memset(num_table, 0, sizeof(num_table));
for (f = 0; f < Nfilt3; f++)
rec_generate_number_table(num_table, filt3[f], 0, 0);
num_table_generated = 1;
}
/* calculate a numeric value for the 3x3 square around the pixel. */
if (x > 0) { val |= (pixel_atp(p,x-1, y )>>7) << (8 - 3);
if (y > 0) val |= (pixel_atp(p,x-1,y-1)>>7) << (8 - 0);
if (y+1 < p->y) val |= (pixel_atp(p,x-1,y+1)>>7) << (8 - 6);
}
if (x+1 < p->x) { val |= (pixel_atp(p,x+1, y )>>7) << (8 - 5);
if (y > 0) val |= (pixel_atp(p,x+1,y-1)>>7) << (8 - 2);
if (y+1 < p->y) val |= (pixel_atp(p,x+1,y+1)>>7) << (8 - 8);
}
if (y > 0) val |= (pixel_atp(p, x ,y-1)>>7) << (8 - 1);
val |= (pixel_atp(p, x , y )>>7) << (8 - 4);
if (y+1 < p->y) val |= (pixel_atp(p, x ,y+1)>>7) << (8 - 7);
assert(val < NUM_TABLE_SIZE);
if (num_table[val])
return (val & (1 << 4)) ? 0 : OCR_JOB->cfg.cs;
else
return pixel_atp(p, x, y) & ~7;
}
#endif
#if FILTER_METHOD == FILTER_BY_TREE || defined(FILTER_CHECKED)
#define TREE_ARRAY_SIZE 1024
/* 1+ number of nodes in a complete binary tree of height 10 */
/*
* Recursively generate a tree representation of a filter.
*/
void rec_generate_tree(char * tree, const char * filter, int i, int n) {
assert(i >= 0 && i <= 9);
assert(n < TREE_ARRAY_SIZE);
if (i == 9) {
if (filter[4] == 0)
tree[n] = 2;
else
tree[n] = 1;
return;
}
/* first iteration has n == -1, does not set any values of the tree,
just to find whether to start to the left or the right */
if (n != -1)
tree[n] = 1;
if (filter[i] == 0)
rec_generate_tree(tree, filter, i + 1, n * 2 + 2);
else if (filter[i] == 1)
rec_generate_tree(tree, filter, i + 1, n * 2 + 3);
else {
rec_generate_tree(tree, filter, i + 1, n * 2 + 2);
rec_generate_tree(tree, filter, i + 1, n * 2 + 3);
}
}
/*
* Filter the pixel at (x, y) using the tree method.
*
* Each filter is represented by a single branch of a binary
* tree, except for filters contain "either value" entries, which
* bifurcate at that point in the branch. Each white pixel in the filter
* is a left branch in the tree, each black pixel a right branch. The
* final node of a branch indicates whether this filter turns a white
* pixel black, or a black one white.
*
* We match a pixel's environment against this tree by similarly
* using the pixels in that environment to traverse the tree. If
* we run out of nodes before getting to the end of a branch, then
* the environment doesn't match against any of the filters represented
* by the tree. Otherwise, we return the value specified by the
* final node.
*
* Since the total tree size, even including missing nodes, is small
* (2 ^ 10), we can use a standard array representation of a binary
* tree, where for the node tree[n], the left child is tree[2n + 2],
* and the right tree[2n + 3]. The only information we want
* from a non-leaf node is whether it exists (that is, is part of
* a filter-representing branch). We represent this with the value
* 1 at the node's slot in the array, the contrary by 0. For the
* leaf node, 0 again represents non-existence, 1 that the filter
* represented by this branch turns a black pixel white, and 2 a
* white pixel black.
*/
int pixel_filter_by_tree(pix * p, int x, int y) {
static char tree[TREE_ARRAY_SIZE];
static int tree_generated = 0;
int n;
int pixel_val = pixel_atp(p, x, y) & ~7;
#ifdef FILTER_STATISTICS
static int registered_filter_stats = 0;
if (!registered_filter_stats) {
atexit(print_filter_stats);
registered_filter_stats = 1;
}
filter_tries++;
#endif /* FILTER_STATISTICS */
if (!tree_generated) {
int f;
memset(tree, 0, sizeof(tree));
for (f = 0; f < Nfilt3; f++) {
const char * filter = filt3[f];
rec_generate_tree(tree, filter, 0, -1);
}
tree_generated = 1;
}
n = -1;
/* Note that for the image, low is black, high is white, whereas
* for the filter, 0 is white, 1 is black. For the image, then,
* high (white) means go left, low (black) means go right. */
#define IS_BLACK(_dx,_dy) !(pixel_atp(p, x + (_dx), y + (_dy)) >> 7)
#define IS_WHITE(_dx,_dy) (pixel_atp(p, x + (_dx), y + (_dy)) >> 7)
#define GO_LEFT n = n * 2 + 2
#define GO_RIGHT n = n * 2 + 3
#define CHECK_NO_MATCH if (tree[n] == 0) return pixel_val
/* Top row */
if (y == 0) {
/* top 3 pixels off edge == black == right
n = 2 * (2 * (2 * -1 + 3) + 3) + 3 = 13 */
n = 13;
} else {
if (x == 0 || IS_BLACK(-1, -1))
GO_RIGHT;
else
GO_LEFT;
if (IS_WHITE(0, -1))
GO_LEFT;
else
GO_RIGHT;
CHECK_NO_MATCH;
if (x + 1 == p->x || IS_BLACK(+1, -1))
GO_RIGHT;
else
GO_LEFT;
CHECK_NO_MATCH;
}
/* Second row */
if (x == 0 || IS_BLACK(-1, 0))
GO_RIGHT;
else
GO_LEFT;
CHECK_NO_MATCH;
if (IS_WHITE(0, 0))
GO_LEFT;
else
GO_RIGHT;
CHECK_NO_MATCH;
if (x + 1 == p->x || IS_BLACK(+1, 0))
GO_RIGHT;
else
GO_LEFT;
CHECK_NO_MATCH;
/* bottom row */
if (y + 1 == p->y) {
/* bottom 3 pixels off edge == black == right
n' = 2 * (2 * (2n + 3) + 3) + 3
= 2 * (4n + 9) + 3
= 8n + 21 */
n = 8 * n + 21;
} else {
if (x == 0 || IS_BLACK(-1, +1))
GO_RIGHT;
else
GO_LEFT;
CHECK_NO_MATCH;
if (IS_WHITE(0, 1))
GO_LEFT;
else
GO_RIGHT;
CHECK_NO_MATCH;
if (x + 1 == p->x || IS_BLACK(+1, +1))
GO_RIGHT;
else
GO_LEFT;
}
assert(n < TREE_ARRAY_SIZE);
assert(tree[n] == 0 || tree[n] == 1 || tree[n] == 2);
CHECK_NO_MATCH;
#ifdef FILTER_STATISTICS
filter_matches++;
#endif
if (tree[n] == 1) {
#ifdef FILTER_STATISTICS
if (pixel_atp(p, x, y) < OCR_JOB->cfg.cs)
filter_whitened++;
#endif
return OCR_JOB->cfg.cs;
} else {
#ifdef FILTER_STATISTICS
if (pixel_atp(p, x, y) >= OCR_JOB->cfg.cs)
filter_blackened++;
#endif
return 0;
}
}
#endif /* FILTER_METHOD == FILTER_BY_TREE */
/*
* This simple filter attempts to correct "fax"-like scan errors.
*/
int pixel_faxfilter(pix *p, int x, int y) {
int r; // filter
r = pixel_atp(p,x,y)&~7;
/* {2,2,2, 2,0,1, 2,1,0} */
if ((r&128) && (~pixel_atp(p,x+1, y )&128)
&& (~pixel_atp(p, x ,y+1)&128)
&& ( pixel_atp(p,x+1,y+1)&128))
r = 64; /* faxfilter */
else
/* {2,2,2, 1,0,2, 0,1,2} */
if ((r&128) && (~pixel_atp(p,x-1, y )&128)
&& (~pixel_atp(p, x ,y+1)&128)
&& ( pixel_atp(p,x-1,y+1)&128))
r = 64; /* faxfilter */
return r & ~7;
}
#ifdef FILTER_CHECKED
/*
* Print out the 3x3 environment of a pixel as a 9-bit binary.
*
* For debugging purposes only.
*/
void print_pixel_env(FILE * out, pix * p, int x, int y) {
int x0, y0;
for (y0 = y - 1; y0 < y + 2; y0++) {
for (x0 = x - 1; x0 < x + 2; x0++) {
if (x0 < 0 || x0 >= p->x || y0 < 0 || y0 >= p->y)
fputc('?', out);
else if (pixel_atp(p, x0, y0) >> 7)
fputc('0', out);
else
fputc('1', out);
}
}
}
#endif
/* this function is heavily used
* test if pixel was set, remove low bits (marks) --- later with error-correction
* result depends on n_run, if n_run>0 filter are used
* Returns: pixel-color (without marks)
*/
int getpixel(pix *p, int x, int y){
job_t *job=OCR_JOB; /* fixme */
if ( x < 0 || y < 0 || x >= p->x || y >= p->y )
return 255 & ~7;
/* filter will be used only once later, when vectorization replaces pixel
* processing
*/
if (job->tmp.n_run > 0) { /* use the filters (correction of errors) */
#if FILTER_METHOD == FILTER_BY_NUMBER
int pix = pixel_filter_by_number(p, x, y);
#ifdef FILTER_CHECKED
int pix2 = pixel_filter_by_matrix(p, x, y);
if (pix != pix2) {
fprintf(stderr,
"# BUG: pixel_filter: by number: %d; by matrix: %d, "
"by atp %d; env: ", pix, pix2, pixel_atp(p, x, y) & ~7);
print_pixel_env(stderr, p, x, y);
fputc('\n', stderr);
}
#endif /* FILTER_CHECKED */
return pix;
#elif FILTER_METHOD == FILTER_BY_MATRIX
return pixel_filter_by_matrix(p, x, y);
#elif FILTER_METHOD == FILTER_BY_TREE
int pix = pixel_filter_by_tree(p, x, y);
#ifdef FILTER_CHECKED
int pix2 = pixel_filter_by_matrix(p, x, y);
int pix3 = pixel_filter_by_number(p, x, y);
if (pix != pix2 || pix != pix3) {
fprintf(stderr,
"# BUG: pixel_filter: tree: %d; matrix: %d, "
"number: %d, atp %d; env: ", pix, pix2, pix3,
pixel_atp(p, x, y) & ~7);
print_pixel_env(stderr, p, x, y);
fputc('\n', stderr);
}
#endif /* FILTER_CHECKED */
return pix;
#else
#error FILTER_METHOD not defined
#endif /* FILTER_BY_NUMBER */
}
return (pixel_atp(p,x,y) & ~7);
}
/* modify pixel, test if out of range */
void put(pix * p, int x, int y, int ia, int io) {
if (x < p->x && x >= 0 && y >= 0 && y < p->y)
pixel_atp(p, x, y) = (pixel_atp(p, x, y) & ia) | io;
}
|