1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
|
/*************************************************************************/
/* geometry.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "geometry.h"
#include "core/print_string.h"
#include "thirdparty/misc/clipper.hpp"
#include "thirdparty/misc/triangulator.h"
#define SCALE_FACTOR 100000.0 // Based on CMP_EPSILON.
// This implementation is very inefficient, commenting unless bugs happen. See the other one.
/*
bool Geometry::is_point_in_polygon(const Vector2 &p_point, const Vector<Vector2> &p_polygon) {
Vector<int> indices = Geometry::triangulate_polygon(p_polygon);
for (int j = 0; j + 3 <= indices.size(); j += 3) {
int i1 = indices[j], i2 = indices[j + 1], i3 = indices[j + 2];
if (Geometry::is_point_in_triangle(p_point, p_polygon[i1], p_polygon[i2], p_polygon[i3]))
return true;
}
return false;
}
*/
void Geometry::MeshData::optimize_vertices() {
Map<int, int> vtx_remap;
for (int i = 0; i < faces.size(); i++) {
for (int j = 0; j < faces[i].indices.size(); j++) {
int idx = faces[i].indices[j];
if (!vtx_remap.has(idx)) {
int ni = vtx_remap.size();
vtx_remap[idx] = ni;
}
faces.write[i].indices.write[j] = vtx_remap[idx];
}
}
for (int i = 0; i < edges.size(); i++) {
int a = edges[i].a;
int b = edges[i].b;
if (!vtx_remap.has(a)) {
int ni = vtx_remap.size();
vtx_remap[a] = ni;
}
if (!vtx_remap.has(b)) {
int ni = vtx_remap.size();
vtx_remap[b] = ni;
}
edges.write[i].a = vtx_remap[a];
edges.write[i].b = vtx_remap[b];
}
Vector<Vector3> new_vertices;
new_vertices.resize(vtx_remap.size());
for (int i = 0; i < vertices.size(); i++) {
if (vtx_remap.has(i))
new_vertices.write[vtx_remap[i]] = vertices[i];
}
vertices = new_vertices;
}
struct _FaceClassify {
struct _Link {
int face;
int edge;
void clear() {
face = -1;
edge = -1;
}
_Link() {
face = -1;
edge = -1;
}
};
bool valid;
int group;
_Link links[3];
Face3 face;
_FaceClassify() {
group = -1;
valid = false;
};
};
static bool _connect_faces(_FaceClassify *p_faces, int len, int p_group) {
// Connect faces, error will occur if an edge is shared between more than 2 faces.
// Clear connections.
bool error = false;
for (int i = 0; i < len; i++) {
for (int j = 0; j < 3; j++) {
p_faces[i].links[j].clear();
}
}
for (int i = 0; i < len; i++) {
if (p_faces[i].group != p_group)
continue;
for (int j = i + 1; j < len; j++) {
if (p_faces[j].group != p_group)
continue;
for (int k = 0; k < 3; k++) {
Vector3 vi1 = p_faces[i].face.vertex[k];
Vector3 vi2 = p_faces[i].face.vertex[(k + 1) % 3];
for (int l = 0; l < 3; l++) {
Vector3 vj2 = p_faces[j].face.vertex[l];
Vector3 vj1 = p_faces[j].face.vertex[(l + 1) % 3];
if (vi1.distance_to(vj1) < 0.00001 &&
vi2.distance_to(vj2) < 0.00001) {
if (p_faces[i].links[k].face != -1) {
ERR_PRINT("already linked\n");
error = true;
break;
}
if (p_faces[j].links[l].face != -1) {
ERR_PRINT("already linked\n");
error = true;
break;
}
p_faces[i].links[k].face = j;
p_faces[i].links[k].edge = l;
p_faces[j].links[l].face = i;
p_faces[j].links[l].edge = k;
}
}
if (error)
break;
}
if (error)
break;
}
if (error)
break;
}
for (int i = 0; i < len; i++) {
p_faces[i].valid = true;
for (int j = 0; j < 3; j++) {
if (p_faces[i].links[j].face == -1)
p_faces[i].valid = false;
}
}
return error;
}
static bool _group_face(_FaceClassify *p_faces, int len, int p_index, int p_group) {
if (p_faces[p_index].group >= 0)
return false;
p_faces[p_index].group = p_group;
for (int i = 0; i < 3; i++) {
ERR_FAIL_INDEX_V(p_faces[p_index].links[i].face, len, true);
_group_face(p_faces, len, p_faces[p_index].links[i].face, p_group);
}
return true;
}
PoolVector<PoolVector<Face3> > Geometry::separate_objects(PoolVector<Face3> p_array) {
PoolVector<PoolVector<Face3> > objects;
int len = p_array.size();
PoolVector<Face3>::Read r = p_array.read();
const Face3 *arrayptr = r.ptr();
PoolVector<_FaceClassify> fc;
fc.resize(len);
PoolVector<_FaceClassify>::Write fcw = fc.write();
_FaceClassify *_fcptr = fcw.ptr();
for (int i = 0; i < len; i++) {
_fcptr[i].face = arrayptr[i];
}
bool error = _connect_faces(_fcptr, len, -1);
ERR_FAIL_COND_V_MSG(error, PoolVector<PoolVector<Face3> >(), "Invalid geometry.");
// Group connected faces in separate objects.
int group = 0;
for (int i = 0; i < len; i++) {
if (!_fcptr[i].valid)
continue;
if (_group_face(_fcptr, len, i, group)) {
group++;
}
}
// Group connected faces in separate objects.
for (int i = 0; i < len; i++) {
_fcptr[i].face = arrayptr[i];
}
if (group >= 0) {
objects.resize(group);
PoolVector<PoolVector<Face3> >::Write obw = objects.write();
PoolVector<Face3> *group_faces = obw.ptr();
for (int i = 0; i < len; i++) {
if (!_fcptr[i].valid)
continue;
if (_fcptr[i].group >= 0 && _fcptr[i].group < group) {
group_faces[_fcptr[i].group].push_back(_fcptr[i].face);
}
}
}
return objects;
}
/*** GEOMETRY WRAPPER ***/
enum _CellFlags {
_CELL_SOLID = 1,
_CELL_EXTERIOR = 2,
_CELL_STEP_MASK = 0x1C,
_CELL_STEP_NONE = 0 << 2,
_CELL_STEP_Y_POS = 1 << 2,
_CELL_STEP_Y_NEG = 2 << 2,
_CELL_STEP_X_POS = 3 << 2,
_CELL_STEP_X_NEG = 4 << 2,
_CELL_STEP_Z_POS = 5 << 2,
_CELL_STEP_Z_NEG = 6 << 2,
_CELL_STEP_DONE = 7 << 2,
_CELL_PREV_MASK = 0xE0,
_CELL_PREV_NONE = 0 << 5,
_CELL_PREV_Y_POS = 1 << 5,
_CELL_PREV_Y_NEG = 2 << 5,
_CELL_PREV_X_POS = 3 << 5,
_CELL_PREV_X_NEG = 4 << 5,
_CELL_PREV_Z_POS = 5 << 5,
_CELL_PREV_Z_NEG = 6 << 5,
_CELL_PREV_FIRST = 7 << 5,
};
static inline void _plot_face(uint8_t ***p_cell_status, int x, int y, int z, int len_x, int len_y, int len_z, const Vector3 &voxelsize, const Face3 &p_face) {
AABB aabb(Vector3(x, y, z), Vector3(len_x, len_y, len_z));
aabb.position = aabb.position * voxelsize;
aabb.size = aabb.size * voxelsize;
if (!p_face.intersects_aabb(aabb))
return;
if (len_x == 1 && len_y == 1 && len_z == 1) {
p_cell_status[x][y][z] = _CELL_SOLID;
return;
}
int div_x = len_x > 1 ? 2 : 1;
int div_y = len_y > 1 ? 2 : 1;
int div_z = len_z > 1 ? 2 : 1;
#define _SPLIT(m_i, m_div, m_v, m_len_v, m_new_v, m_new_len_v) \
if (m_div == 1) { \
m_new_v = m_v; \
m_new_len_v = 1; \
} else if (m_i == 0) { \
m_new_v = m_v; \
m_new_len_v = m_len_v / 2; \
} else { \
m_new_v = m_v + m_len_v / 2; \
m_new_len_v = m_len_v - m_len_v / 2; \
}
int new_x;
int new_len_x;
int new_y;
int new_len_y;
int new_z;
int new_len_z;
for (int i = 0; i < div_x; i++) {
_SPLIT(i, div_x, x, len_x, new_x, new_len_x);
for (int j = 0; j < div_y; j++) {
_SPLIT(j, div_y, y, len_y, new_y, new_len_y);
for (int k = 0; k < div_z; k++) {
_SPLIT(k, div_z, z, len_z, new_z, new_len_z);
_plot_face(p_cell_status, new_x, new_y, new_z, new_len_x, new_len_y, new_len_z, voxelsize, p_face);
}
}
}
}
static inline void _mark_outside(uint8_t ***p_cell_status, int x, int y, int z, int len_x, int len_y, int len_z) {
if (p_cell_status[x][y][z] & 3)
return; // Nothing to do, already used and/or visited.
p_cell_status[x][y][z] = _CELL_PREV_FIRST;
while (true) {
uint8_t &c = p_cell_status[x][y][z];
if ((c & _CELL_STEP_MASK) == _CELL_STEP_NONE) {
// Haven't been in here, mark as outside.
p_cell_status[x][y][z] |= _CELL_EXTERIOR;
}
if ((c & _CELL_STEP_MASK) != _CELL_STEP_DONE) {
// If not done, increase step.
c += 1 << 2;
}
if ((c & _CELL_STEP_MASK) == _CELL_STEP_DONE) {
// Go back.
switch (c & _CELL_PREV_MASK) {
case _CELL_PREV_FIRST: {
return;
} break;
case _CELL_PREV_Y_POS: {
y++;
ERR_FAIL_COND(y >= len_y);
} break;
case _CELL_PREV_Y_NEG: {
y--;
ERR_FAIL_COND(y < 0);
} break;
case _CELL_PREV_X_POS: {
x++;
ERR_FAIL_COND(x >= len_x);
} break;
case _CELL_PREV_X_NEG: {
x--;
ERR_FAIL_COND(x < 0);
} break;
case _CELL_PREV_Z_POS: {
z++;
ERR_FAIL_COND(z >= len_z);
} break;
case _CELL_PREV_Z_NEG: {
z--;
ERR_FAIL_COND(z < 0);
} break;
default: {
ERR_FAIL();
}
}
continue;
}
int next_x = x, next_y = y, next_z = z;
uint8_t prev = 0;
switch (c & _CELL_STEP_MASK) {
case _CELL_STEP_Y_POS: {
next_y++;
prev = _CELL_PREV_Y_NEG;
} break;
case _CELL_STEP_Y_NEG: {
next_y--;
prev = _CELL_PREV_Y_POS;
} break;
case _CELL_STEP_X_POS: {
next_x++;
prev = _CELL_PREV_X_NEG;
} break;
case _CELL_STEP_X_NEG: {
next_x--;
prev = _CELL_PREV_X_POS;
} break;
case _CELL_STEP_Z_POS: {
next_z++;
prev = _CELL_PREV_Z_NEG;
} break;
case _CELL_STEP_Z_NEG: {
next_z--;
prev = _CELL_PREV_Z_POS;
} break;
default: ERR_FAIL();
}
if (next_x < 0 || next_x >= len_x)
continue;
if (next_y < 0 || next_y >= len_y)
continue;
if (next_z < 0 || next_z >= len_z)
continue;
if (p_cell_status[next_x][next_y][next_z] & 3)
continue;
x = next_x;
y = next_y;
z = next_z;
p_cell_status[x][y][z] |= prev;
}
}
static inline void _build_faces(uint8_t ***p_cell_status, int x, int y, int z, int len_x, int len_y, int len_z, PoolVector<Face3> &p_faces) {
ERR_FAIL_INDEX(x, len_x);
ERR_FAIL_INDEX(y, len_y);
ERR_FAIL_INDEX(z, len_z);
if (p_cell_status[x][y][z] & _CELL_EXTERIOR)
return;
#define vert(m_idx) Vector3(((m_idx)&4) >> 2, ((m_idx)&2) >> 1, (m_idx)&1)
static const uint8_t indices[6][4] = {
{ 7, 6, 4, 5 },
{ 7, 3, 2, 6 },
{ 7, 5, 1, 3 },
{ 0, 2, 3, 1 },
{ 0, 1, 5, 4 },
{ 0, 4, 6, 2 },
};
for (int i = 0; i < 6; i++) {
Vector3 face_points[4];
int disp_x = x + ((i % 3) == 0 ? ((i < 3) ? 1 : -1) : 0);
int disp_y = y + (((i - 1) % 3) == 0 ? ((i < 3) ? 1 : -1) : 0);
int disp_z = z + (((i - 2) % 3) == 0 ? ((i < 3) ? 1 : -1) : 0);
bool plot = false;
if (disp_x < 0 || disp_x >= len_x)
plot = true;
if (disp_y < 0 || disp_y >= len_y)
plot = true;
if (disp_z < 0 || disp_z >= len_z)
plot = true;
if (!plot && (p_cell_status[disp_x][disp_y][disp_z] & _CELL_EXTERIOR))
plot = true;
if (!plot)
continue;
for (int j = 0; j < 4; j++)
face_points[j] = vert(indices[i][j]) + Vector3(x, y, z);
p_faces.push_back(
Face3(
face_points[0],
face_points[1],
face_points[2]));
p_faces.push_back(
Face3(
face_points[2],
face_points[3],
face_points[0]));
}
}
PoolVector<Face3> Geometry::wrap_geometry(PoolVector<Face3> p_array, real_t *p_error) {
#define _MIN_SIZE 1.0
#define _MAX_LENGTH 20
int face_count = p_array.size();
PoolVector<Face3>::Read facesr = p_array.read();
const Face3 *faces = facesr.ptr();
AABB global_aabb;
for (int i = 0; i < face_count; i++) {
if (i == 0) {
global_aabb = faces[i].get_aabb();
} else {
global_aabb.merge_with(faces[i].get_aabb());
}
}
global_aabb.grow_by(0.01); // Avoid numerical error.
// Determine amount of cells in grid axis.
int div_x, div_y, div_z;
if (global_aabb.size.x / _MIN_SIZE < _MAX_LENGTH)
div_x = (int)(global_aabb.size.x / _MIN_SIZE) + 1;
else
div_x = _MAX_LENGTH;
if (global_aabb.size.y / _MIN_SIZE < _MAX_LENGTH)
div_y = (int)(global_aabb.size.y / _MIN_SIZE) + 1;
else
div_y = _MAX_LENGTH;
if (global_aabb.size.z / _MIN_SIZE < _MAX_LENGTH)
div_z = (int)(global_aabb.size.z / _MIN_SIZE) + 1;
else
div_z = _MAX_LENGTH;
Vector3 voxelsize = global_aabb.size;
voxelsize.x /= div_x;
voxelsize.y /= div_y;
voxelsize.z /= div_z;
// Create and initialize cells to zero.
uint8_t ***cell_status = memnew_arr(uint8_t **, div_x);
for (int i = 0; i < div_x; i++) {
cell_status[i] = memnew_arr(uint8_t *, div_y);
for (int j = 0; j < div_y; j++) {
cell_status[i][j] = memnew_arr(uint8_t, div_z);
for (int k = 0; k < div_z; k++) {
cell_status[i][j][k] = 0;
}
}
}
// Plot faces into cells.
for (int i = 0; i < face_count; i++) {
Face3 f = faces[i];
for (int j = 0; j < 3; j++) {
f.vertex[j] -= global_aabb.position;
}
_plot_face(cell_status, 0, 0, 0, div_x, div_y, div_z, voxelsize, f);
}
// Determine which cells connect to the outside by traversing the outside and recursively flood-fill marking.
for (int i = 0; i < div_x; i++) {
for (int j = 0; j < div_y; j++) {
_mark_outside(cell_status, i, j, 0, div_x, div_y, div_z);
_mark_outside(cell_status, i, j, div_z - 1, div_x, div_y, div_z);
}
}
for (int i = 0; i < div_z; i++) {
for (int j = 0; j < div_y; j++) {
_mark_outside(cell_status, 0, j, i, div_x, div_y, div_z);
_mark_outside(cell_status, div_x - 1, j, i, div_x, div_y, div_z);
}
}
for (int i = 0; i < div_x; i++) {
for (int j = 0; j < div_z; j++) {
_mark_outside(cell_status, i, 0, j, div_x, div_y, div_z);
_mark_outside(cell_status, i, div_y - 1, j, div_x, div_y, div_z);
}
}
// Build faces for the inside-outside cell divisors.
PoolVector<Face3> wrapped_faces;
for (int i = 0; i < div_x; i++) {
for (int j = 0; j < div_y; j++) {
for (int k = 0; k < div_z; k++) {
_build_faces(cell_status, i, j, k, div_x, div_y, div_z, wrapped_faces);
}
}
}
// Transform face vertices to global coords.
int wrapped_faces_count = wrapped_faces.size();
PoolVector<Face3>::Write wrapped_facesw = wrapped_faces.write();
Face3 *wrapped_faces_ptr = wrapped_facesw.ptr();
for (int i = 0; i < wrapped_faces_count; i++) {
for (int j = 0; j < 3; j++) {
Vector3 &v = wrapped_faces_ptr[i].vertex[j];
v = v * voxelsize;
v += global_aabb.position;
}
}
// clean up grid
for (int i = 0; i < div_x; i++) {
for (int j = 0; j < div_y; j++) {
memdelete_arr(cell_status[i][j]);
}
memdelete_arr(cell_status[i]);
}
memdelete_arr(cell_status);
if (p_error)
*p_error = voxelsize.length();
return wrapped_faces;
}
Vector<Vector<Vector2> > Geometry::decompose_polygon_in_convex(Vector<Point2> polygon) {
Vector<Vector<Vector2> > decomp;
List<TriangulatorPoly> in_poly, out_poly;
TriangulatorPoly inp;
inp.Init(polygon.size());
for (int i = 0; i < polygon.size(); i++) {
inp.GetPoint(i) = polygon[i];
}
inp.SetOrientation(TRIANGULATOR_CCW);
in_poly.push_back(inp);
TriangulatorPartition tpart;
if (tpart.ConvexPartition_HM(&in_poly, &out_poly) == 0) { // Failed.
ERR_PRINT("Convex decomposing failed!");
return decomp;
}
decomp.resize(out_poly.size());
int idx = 0;
for (List<TriangulatorPoly>::Element *I = out_poly.front(); I; I = I->next()) {
TriangulatorPoly &tp = I->get();
decomp.write[idx].resize(tp.GetNumPoints());
for (int64_t i = 0; i < tp.GetNumPoints(); i++) {
decomp.write[idx].write[i] = tp.GetPoint(i);
}
idx++;
}
return decomp;
}
Geometry::MeshData Geometry::build_convex_mesh(const PoolVector<Plane> &p_planes) {
MeshData mesh;
#define SUBPLANE_SIZE 1024.0
real_t subplane_size = 1024.0; // Should compute this from the actual plane.
for (int i = 0; i < p_planes.size(); i++) {
Plane p = p_planes[i];
Vector3 ref = Vector3(0.0, 1.0, 0.0);
if (ABS(p.normal.dot(ref)) > 0.95)
ref = Vector3(0.0, 0.0, 1.0); // Change axis.
Vector3 right = p.normal.cross(ref).normalized();
Vector3 up = p.normal.cross(right).normalized();
Vector<Vector3> vertices;
Vector3 center = p.get_any_point();
// make a quad clockwise
vertices.push_back(center - up * subplane_size + right * subplane_size);
vertices.push_back(center - up * subplane_size - right * subplane_size);
vertices.push_back(center + up * subplane_size - right * subplane_size);
vertices.push_back(center + up * subplane_size + right * subplane_size);
for (int j = 0; j < p_planes.size(); j++) {
if (j == i)
continue;
Vector<Vector3> new_vertices;
Plane clip = p_planes[j];
if (clip.normal.dot(p.normal) > 0.95)
continue;
if (vertices.size() < 3)
break;
for (int k = 0; k < vertices.size(); k++) {
int k_n = (k + 1) % vertices.size();
Vector3 edge0_A = vertices[k];
Vector3 edge1_A = vertices[k_n];
real_t dist0 = clip.distance_to(edge0_A);
real_t dist1 = clip.distance_to(edge1_A);
if (dist0 <= 0) { // Behind plane.
new_vertices.push_back(vertices[k]);
}
// Check for different sides and non coplanar.
if ((dist0 * dist1) < 0) {
// Calculate intersection.
Vector3 rel = edge1_A - edge0_A;
real_t den = clip.normal.dot(rel);
if (Math::is_zero_approx(den))
continue; // Point too short.
real_t dist = -(clip.normal.dot(edge0_A) - clip.d) / den;
Vector3 inters = edge0_A + rel * dist;
new_vertices.push_back(inters);
}
}
vertices = new_vertices;
}
if (vertices.size() < 3)
continue;
// Result is a clockwise face.
MeshData::Face face;
// Add face indices.
for (int j = 0; j < vertices.size(); j++) {
int idx = -1;
for (int k = 0; k < mesh.vertices.size(); k++) {
if (mesh.vertices[k].distance_to(vertices[j]) < 0.001) {
idx = k;
break;
}
}
if (idx == -1) {
idx = mesh.vertices.size();
mesh.vertices.push_back(vertices[j]);
}
face.indices.push_back(idx);
}
face.plane = p;
mesh.faces.push_back(face);
// Add edge.
for (int j = 0; j < face.indices.size(); j++) {
int a = face.indices[j];
int b = face.indices[(j + 1) % face.indices.size()];
bool found = false;
for (int k = 0; k < mesh.edges.size(); k++) {
if (mesh.edges[k].a == a && mesh.edges[k].b == b) {
found = true;
break;
}
if (mesh.edges[k].b == a && mesh.edges[k].a == b) {
found = true;
break;
}
}
if (found)
continue;
MeshData::Edge edge;
edge.a = a;
edge.b = b;
mesh.edges.push_back(edge);
}
}
return mesh;
}
PoolVector<Plane> Geometry::build_box_planes(const Vector3 &p_extents) {
PoolVector<Plane> planes;
planes.push_back(Plane(Vector3(1, 0, 0), p_extents.x));
planes.push_back(Plane(Vector3(-1, 0, 0), p_extents.x));
planes.push_back(Plane(Vector3(0, 1, 0), p_extents.y));
planes.push_back(Plane(Vector3(0, -1, 0), p_extents.y));
planes.push_back(Plane(Vector3(0, 0, 1), p_extents.z));
planes.push_back(Plane(Vector3(0, 0, -1), p_extents.z));
return planes;
}
PoolVector<Plane> Geometry::build_cylinder_planes(real_t p_radius, real_t p_height, int p_sides, Vector3::Axis p_axis) {
PoolVector<Plane> planes;
for (int i = 0; i < p_sides; i++) {
Vector3 normal;
normal[(p_axis + 1) % 3] = Math::cos(i * (2.0 * Math_PI) / p_sides);
normal[(p_axis + 2) % 3] = Math::sin(i * (2.0 * Math_PI) / p_sides);
planes.push_back(Plane(normal, p_radius));
}
Vector3 axis;
axis[p_axis] = 1.0;
planes.push_back(Plane(axis, p_height * 0.5));
planes.push_back(Plane(-axis, p_height * 0.5));
return planes;
}
PoolVector<Plane> Geometry::build_sphere_planes(real_t p_radius, int p_lats, int p_lons, Vector3::Axis p_axis) {
PoolVector<Plane> planes;
Vector3 axis;
axis[p_axis] = 1.0;
Vector3 axis_neg;
axis_neg[(p_axis + 1) % 3] = 1.0;
axis_neg[(p_axis + 2) % 3] = 1.0;
axis_neg[p_axis] = -1.0;
for (int i = 0; i < p_lons; i++) {
Vector3 normal;
normal[(p_axis + 1) % 3] = Math::cos(i * (2.0 * Math_PI) / p_lons);
normal[(p_axis + 2) % 3] = Math::sin(i * (2.0 * Math_PI) / p_lons);
planes.push_back(Plane(normal, p_radius));
for (int j = 1; j <= p_lats; j++) {
// FIXME: This is stupid.
Vector3 angle = normal.linear_interpolate(axis, j / (real_t)p_lats).normalized();
Vector3 pos = angle * p_radius;
planes.push_back(Plane(pos, angle));
planes.push_back(Plane(pos * axis_neg, angle * axis_neg));
}
}
return planes;
}
PoolVector<Plane> Geometry::build_capsule_planes(real_t p_radius, real_t p_height, int p_sides, int p_lats, Vector3::Axis p_axis) {
PoolVector<Plane> planes;
Vector3 axis;
axis[p_axis] = 1.0;
Vector3 axis_neg;
axis_neg[(p_axis + 1) % 3] = 1.0;
axis_neg[(p_axis + 2) % 3] = 1.0;
axis_neg[p_axis] = -1.0;
for (int i = 0; i < p_sides; i++) {
Vector3 normal;
normal[(p_axis + 1) % 3] = Math::cos(i * (2.0 * Math_PI) / p_sides);
normal[(p_axis + 2) % 3] = Math::sin(i * (2.0 * Math_PI) / p_sides);
planes.push_back(Plane(normal, p_radius));
for (int j = 1; j <= p_lats; j++) {
Vector3 angle = normal.linear_interpolate(axis, j / (real_t)p_lats).normalized();
Vector3 pos = axis * p_height * 0.5 + angle * p_radius;
planes.push_back(Plane(pos, angle));
planes.push_back(Plane(pos * axis_neg, angle * axis_neg));
}
}
return planes;
}
struct _AtlasWorkRect {
Size2i s;
Point2i p;
int idx;
_FORCE_INLINE_ bool operator<(const _AtlasWorkRect &p_r) const { return s.width > p_r.s.width; };
};
struct _AtlasWorkRectResult {
Vector<_AtlasWorkRect> result;
int max_w;
int max_h;
};
void Geometry::make_atlas(const Vector<Size2i> &p_rects, Vector<Point2i> &r_result, Size2i &r_size) {
// Super simple, almost brute force scanline stacking fitter.
// It's pretty basic for now, but it tries to make sure that the aspect ratio of the
// resulting atlas is somehow square. This is necessary because video cards have limits.
// On texture size (usually 2048 or 4096), so the more square a texture, the more chances.
// It will work in every hardware.
// For example, it will prioritize a 1024x1024 atlas (works everywhere) instead of a
// 256x8192 atlas (won't work anywhere).
ERR_FAIL_COND(p_rects.size() == 0);
Vector<_AtlasWorkRect> wrects;
wrects.resize(p_rects.size());
for (int i = 0; i < p_rects.size(); i++) {
wrects.write[i].s = p_rects[i];
wrects.write[i].idx = i;
}
wrects.sort();
int widest = wrects[0].s.width;
Vector<_AtlasWorkRectResult> results;
for (int i = 0; i <= 12; i++) {
int w = 1 << i;
int max_h = 0;
int max_w = 0;
if (w < widest)
continue;
Vector<int> hmax;
hmax.resize(w);
for (int j = 0; j < w; j++)
hmax.write[j] = 0;
// Place them.
int ofs = 0;
int limit_h = 0;
for (int j = 0; j < wrects.size(); j++) {
if (ofs + wrects[j].s.width > w) {
ofs = 0;
}
int from_y = 0;
for (int k = 0; k < wrects[j].s.width; k++) {
if (hmax[ofs + k] > from_y)
from_y = hmax[ofs + k];
}
wrects.write[j].p.x = ofs;
wrects.write[j].p.y = from_y;
int end_h = from_y + wrects[j].s.height;
int end_w = ofs + wrects[j].s.width;
if (ofs == 0)
limit_h = end_h;
for (int k = 0; k < wrects[j].s.width; k++) {
hmax.write[ofs + k] = end_h;
}
if (end_h > max_h)
max_h = end_h;
if (end_w > max_w)
max_w = end_w;
if (ofs == 0 || end_h > limit_h) // While h limit not reached, keep stacking.
ofs += wrects[j].s.width;
}
_AtlasWorkRectResult result;
result.result = wrects;
result.max_h = max_h;
result.max_w = max_w;
results.push_back(result);
}
// Find the result with the best aspect ratio.
int best = -1;
real_t best_aspect = 1e20;
for (int i = 0; i < results.size(); i++) {
real_t h = next_power_of_2(results[i].max_h);
real_t w = next_power_of_2(results[i].max_w);
real_t aspect = h > w ? h / w : w / h;
if (aspect < best_aspect) {
best = i;
best_aspect = aspect;
}
}
r_result.resize(p_rects.size());
for (int i = 0; i < p_rects.size(); i++) {
r_result.write[results[best].result[i].idx] = results[best].result[i].p;
}
r_size = Size2(results[best].max_w, results[best].max_h);
}
Vector<Vector<Point2> > Geometry::_polypaths_do_operation(PolyBooleanOperation p_op, const Vector<Point2> &p_polypath_a, const Vector<Point2> &p_polypath_b, bool is_a_open) {
using namespace ClipperLib;
ClipType op = ctUnion;
switch (p_op) {
case OPERATION_UNION: op = ctUnion; break;
case OPERATION_DIFFERENCE: op = ctDifference; break;
case OPERATION_INTERSECTION: op = ctIntersection; break;
case OPERATION_XOR: op = ctXor; break;
}
Path path_a, path_b;
// Need to scale points (Clipper's requirement for robust computation).
for (int i = 0; i != p_polypath_a.size(); ++i) {
path_a << IntPoint(p_polypath_a[i].x * SCALE_FACTOR, p_polypath_a[i].y * SCALE_FACTOR);
}
for (int i = 0; i != p_polypath_b.size(); ++i) {
path_b << IntPoint(p_polypath_b[i].x * SCALE_FACTOR, p_polypath_b[i].y * SCALE_FACTOR);
}
Clipper clp;
clp.AddPath(path_a, ptSubject, !is_a_open); // Forward compatible with Clipper 10.0.0.
clp.AddPath(path_b, ptClip, true); // Polylines cannot be set as clip.
Paths paths;
if (is_a_open) {
PolyTree tree; // Needed to populate polylines.
clp.Execute(op, tree);
OpenPathsFromPolyTree(tree, paths);
} else {
clp.Execute(op, paths); // Works on closed polygons only.
}
// Have to scale points down now.
Vector<Vector<Point2> > polypaths;
for (Paths::size_type i = 0; i < paths.size(); ++i) {
Vector<Vector2> polypath;
const Path &scaled_path = paths[i];
for (Paths::size_type j = 0; j < scaled_path.size(); ++j) {
polypath.push_back(Point2(
static_cast<real_t>(scaled_path[j].X) / SCALE_FACTOR,
static_cast<real_t>(scaled_path[j].Y) / SCALE_FACTOR));
}
polypaths.push_back(polypath);
}
return polypaths;
}
Vector<Vector<Point2> > Geometry::_polypath_offset(const Vector<Point2> &p_polypath, real_t p_delta, PolyJoinType p_join_type, PolyEndType p_end_type) {
using namespace ClipperLib;
JoinType jt = jtSquare;
switch (p_join_type) {
case JOIN_SQUARE: jt = jtSquare; break;
case JOIN_ROUND: jt = jtRound; break;
case JOIN_MITER: jt = jtMiter; break;
}
EndType et = etClosedPolygon;
switch (p_end_type) {
case END_POLYGON: et = etClosedPolygon; break;
case END_JOINED: et = etClosedLine; break;
case END_BUTT: et = etOpenButt; break;
case END_SQUARE: et = etOpenSquare; break;
case END_ROUND: et = etOpenRound; break;
}
ClipperOffset co(2.0, 0.25 * SCALE_FACTOR); // Defaults from ClipperOffset.
Path path;
// Need to scale points (Clipper's requirement for robust computation).
for (int i = 0; i != p_polypath.size(); ++i) {
path << IntPoint(p_polypath[i].x * SCALE_FACTOR, p_polypath[i].y * SCALE_FACTOR);
}
co.AddPath(path, jt, et);
Paths paths;
co.Execute(paths, p_delta * SCALE_FACTOR); // Inflate/deflate.
// Have to scale points down now.
Vector<Vector<Point2> > polypaths;
for (Paths::size_type i = 0; i < paths.size(); ++i) {
Vector<Vector2> polypath;
const Path &scaled_path = paths[i];
for (Paths::size_type j = 0; j < scaled_path.size(); ++j) {
polypath.push_back(Point2(
static_cast<real_t>(scaled_path[j].X) / SCALE_FACTOR,
static_cast<real_t>(scaled_path[j].Y) / SCALE_FACTOR));
}
polypaths.push_back(polypath);
}
return polypaths;
}
Vector<Vector3> Geometry::compute_convex_mesh_points(const Plane *p_planes, int p_plane_count) {
Vector<Vector3> points;
// Iterate through every unique combination of any three planes.
for (int i = p_plane_count - 1; i >= 0; i--) {
for (int j = i - 1; j >= 0; j--) {
for (int k = j - 1; k >= 0; k--) {
// Find the point where these planes all cross over (if they
// do at all).
Vector3 convex_shape_point;
if (p_planes[i].intersect_3(p_planes[j], p_planes[k], &convex_shape_point)) {
// See if any *other* plane excludes this point because it's
// on the wrong side.
bool excluded = false;
for (int n = 0; n < p_plane_count; n++) {
if (n != i && n != j && n != k) {
real_t dp = p_planes[n].normal.dot(convex_shape_point);
if (dp - p_planes[n].d > CMP_EPSILON) {
excluded = true;
break;
}
}
}
// Only add the point if it passed all tests.
if (!excluded) {
points.push_back(convex_shape_point);
}
}
}
}
}
return points;
}
|