1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
/*************************************************************************/
/* vector2.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "vector2.h"
real_t Vector2::angle() const {
return Math::atan2(y, x);
}
real_t Vector2::length() const {
return Math::sqrt(x * x + y * y);
}
real_t Vector2::length_squared() const {
return x * x + y * y;
}
void Vector2::normalize() {
real_t l = x * x + y * y;
if (l != 0) {
l = Math::sqrt(l);
x /= l;
y /= l;
}
}
Vector2 Vector2::normalized() const {
Vector2 v = *this;
v.normalize();
return v;
}
bool Vector2::is_normalized() const {
// use length_squared() instead of length() to avoid sqrt(), makes it more stringent.
return Math::is_equal_approx(length_squared(), 1.0, UNIT_EPSILON);
}
real_t Vector2::distance_to(const Vector2 &p_vector2) const {
return Math::sqrt((x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y));
}
real_t Vector2::distance_squared_to(const Vector2 &p_vector2) const {
return (x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y);
}
real_t Vector2::angle_to(const Vector2 &p_vector2) const {
return Math::atan2(cross(p_vector2), dot(p_vector2));
}
real_t Vector2::angle_to_point(const Vector2 &p_vector2) const {
return Math::atan2(y - p_vector2.y, x - p_vector2.x);
}
real_t Vector2::dot(const Vector2 &p_other) const {
return x * p_other.x + y * p_other.y;
}
real_t Vector2::cross(const Vector2 &p_other) const {
return x * p_other.y - y * p_other.x;
}
Vector2 Vector2::sign() const {
return Vector2(SGN(x), SGN(y));
}
Vector2 Vector2::floor() const {
return Vector2(Math::floor(x), Math::floor(y));
}
Vector2 Vector2::ceil() const {
return Vector2(Math::ceil(x), Math::ceil(y));
}
Vector2 Vector2::round() const {
return Vector2(Math::round(x), Math::round(y));
}
Vector2 Vector2::rotated(real_t p_by) const {
Vector2 v;
v.set_rotation(angle() + p_by);
v *= length();
return v;
}
Vector2 Vector2::posmod(const real_t p_mod) const {
return Vector2(Math::fposmod(x, p_mod), Math::fposmod(y, p_mod));
}
Vector2 Vector2::posmodv(const Vector2 &p_modv) const {
return Vector2(Math::fposmod(x, p_modv.x), Math::fposmod(y, p_modv.y));
}
Vector2 Vector2::project(const Vector2 &p_b) const {
return p_b * (dot(p_b) / p_b.length_squared());
}
Vector2 Vector2::snapped(const Vector2 &p_by) const {
return Vector2(
Math::stepify(x, p_by.x),
Math::stepify(y, p_by.y));
}
Vector2 Vector2::clamped(real_t p_len) const {
real_t l = length();
Vector2 v = *this;
if (l > 0 && p_len < l) {
v /= l;
v *= p_len;
}
return v;
}
Vector2 Vector2::cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_t) const {
Vector2 p0 = p_pre_a;
Vector2 p1 = *this;
Vector2 p2 = p_b;
Vector2 p3 = p_post_b;
real_t t = p_t;
real_t t2 = t * t;
real_t t3 = t2 * t;
Vector2 out;
out = 0.5 * ((p1 * 2.0) +
(-p0 + p2) * t +
(2.0 * p0 - 5.0 * p1 + 4 * p2 - p3) * t2 +
(-p0 + 3.0 * p1 - 3.0 * p2 + p3) * t3);
return out;
}
Vector2 Vector2::move_toward(const Vector2 &p_to, const real_t p_delta) const {
Vector2 v = *this;
Vector2 vd = p_to - v;
real_t len = vd.length();
return len <= p_delta || len < CMP_EPSILON ? p_to : v + vd / len * p_delta;
}
// slide returns the component of the vector along the given plane, specified by its normal vector.
Vector2 Vector2::slide(const Vector2 &p_normal) const {
#ifdef MATH_CHECKS
ERR_FAIL_COND_V_MSG(!p_normal.is_normalized(), Vector2(), "The normal Vector2 must be normalized.");
#endif
return *this - p_normal * this->dot(p_normal);
}
Vector2 Vector2::bounce(const Vector2 &p_normal) const {
return -reflect(p_normal);
}
Vector2 Vector2::reflect(const Vector2 &p_normal) const {
#ifdef MATH_CHECKS
ERR_FAIL_COND_V_MSG(!p_normal.is_normalized(), Vector2(), "The normal Vector2 must be normalized.");
#endif
return 2.0 * p_normal * this->dot(p_normal) - *this;
}
bool Vector2::is_equal_approx(const Vector2 &p_v) const {
return Math::is_equal_approx(x, p_v.x) && Math::is_equal_approx(y, p_v.y);
}
/* Vector2i */
Vector2i Vector2i::operator+(const Vector2i &p_v) const {
return Vector2i(x + p_v.x, y + p_v.y);
}
void Vector2i::operator+=(const Vector2i &p_v) {
x += p_v.x;
y += p_v.y;
}
Vector2i Vector2i::operator-(const Vector2i &p_v) const {
return Vector2i(x - p_v.x, y - p_v.y);
}
void Vector2i::operator-=(const Vector2i &p_v) {
x -= p_v.x;
y -= p_v.y;
}
Vector2i Vector2i::operator*(const Vector2i &p_v1) const {
return Vector2i(x * p_v1.x, y * p_v1.y);
};
Vector2i Vector2i::operator*(const int &rvalue) const {
return Vector2i(x * rvalue, y * rvalue);
};
void Vector2i::operator*=(const int &rvalue) {
x *= rvalue;
y *= rvalue;
};
Vector2i Vector2i::operator/(const Vector2i &p_v1) const {
return Vector2i(x / p_v1.x, y / p_v1.y);
};
Vector2i Vector2i::operator/(const int &rvalue) const {
return Vector2i(x / rvalue, y / rvalue);
};
void Vector2i::operator/=(const int &rvalue) {
x /= rvalue;
y /= rvalue;
};
Vector2i Vector2i::operator-() const {
return Vector2i(-x, -y);
}
bool Vector2i::operator==(const Vector2i &p_vec2) const {
return x == p_vec2.x && y == p_vec2.y;
}
bool Vector2i::operator!=(const Vector2i &p_vec2) const {
return x != p_vec2.x || y != p_vec2.y;
}
|