1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
|
/* Copyright (c) 2011-2012 Xiph.Org Foundation, Mozilla Corporation
Written by Jean-Marc Valin and Timothy B. Terriberry */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#define OPUS_PI (3.14159265F)
#define OPUS_COSF(_x) ((float)cos(_x))
#define OPUS_SINF(_x) ((float)sin(_x))
static void *check_alloc(void *_ptr){
if(_ptr==NULL){
fprintf(stderr,"Out of memory.\n");
exit(EXIT_FAILURE);
}
return _ptr;
}
static void *opus_malloc(size_t _size){
return check_alloc(malloc(_size));
}
static void *opus_realloc(void *_ptr,size_t _size){
return check_alloc(realloc(_ptr,_size));
}
static size_t read_pcm16(float **_samples,FILE *_fin,int _nchannels){
unsigned char buf[1024];
float *samples;
size_t nsamples;
size_t csamples;
size_t xi;
size_t nread;
samples=NULL;
nsamples=csamples=0;
for(;;){
nread=fread(buf,2*_nchannels,1024/(2*_nchannels),_fin);
if(nread<=0)break;
if(nsamples+nread>csamples){
do csamples=csamples<<1|1;
while(nsamples+nread>csamples);
samples=(float *)opus_realloc(samples,
_nchannels*csamples*sizeof(*samples));
}
for(xi=0;xi<nread;xi++){
int ci;
for(ci=0;ci<_nchannels;ci++){
int s;
s=buf[2*(xi*_nchannels+ci)+1]<<8|buf[2*(xi*_nchannels+ci)];
s=((s&0xFFFF)^0x8000)-0x8000;
samples[(nsamples+xi)*_nchannels+ci]=s;
}
}
nsamples+=nread;
}
*_samples=(float *)opus_realloc(samples,
_nchannels*nsamples*sizeof(*samples));
return nsamples;
}
static void band_energy(float *_out,float *_ps,const int *_bands,int _nbands,
const float *_in,int _nchannels,size_t _nframes,int _window_sz,
int _step,int _downsample){
float *window;
float *x;
float *c;
float *s;
size_t xi;
int xj;
int ps_sz;
window=(float *)opus_malloc((3+_nchannels)*_window_sz*sizeof(*window));
c=window+_window_sz;
s=c+_window_sz;
x=s+_window_sz;
ps_sz=_window_sz/2;
for(xj=0;xj<_window_sz;xj++){
window[xj]=0.5F-0.5F*OPUS_COSF((2*OPUS_PI/(_window_sz-1))*xj);
}
for(xj=0;xj<_window_sz;xj++){
c[xj]=OPUS_COSF((2*OPUS_PI/_window_sz)*xj);
}
for(xj=0;xj<_window_sz;xj++){
s[xj]=OPUS_SINF((2*OPUS_PI/_window_sz)*xj);
}
for(xi=0;xi<_nframes;xi++){
int ci;
int xk;
int bi;
for(ci=0;ci<_nchannels;ci++){
for(xk=0;xk<_window_sz;xk++){
x[ci*_window_sz+xk]=window[xk]*_in[(xi*_step+xk)*_nchannels+ci];
}
}
for(bi=xj=0;bi<_nbands;bi++){
float p[2]={0};
for(;xj<_bands[bi+1];xj++){
for(ci=0;ci<_nchannels;ci++){
float re;
float im;
int ti;
ti=0;
re=im=0;
for(xk=0;xk<_window_sz;xk++){
re+=c[ti]*x[ci*_window_sz+xk];
im-=s[ti]*x[ci*_window_sz+xk];
ti+=xj;
if(ti>=_window_sz)ti-=_window_sz;
}
re*=_downsample;
im*=_downsample;
_ps[(xi*ps_sz+xj)*_nchannels+ci]=re*re+im*im+100000;
p[ci]+=_ps[(xi*ps_sz+xj)*_nchannels+ci];
}
}
if(_out){
_out[(xi*_nbands+bi)*_nchannels]=p[0]/(_bands[bi+1]-_bands[bi]);
if(_nchannels==2){
_out[(xi*_nbands+bi)*_nchannels+1]=p[1]/(_bands[bi+1]-_bands[bi]);
}
}
}
}
free(window);
}
#define NBANDS (21)
#define NFREQS (240)
/*Bands on which we compute the pseudo-NMR (Bark-derived
CELT bands).*/
static const int BANDS[NBANDS+1]={
0,2,4,6,8,10,12,14,16,20,24,28,32,40,48,56,68,80,96,120,156,200
};
#define TEST_WIN_SIZE (480)
#define TEST_WIN_STEP (120)
int main(int _argc,const char **_argv){
FILE *fin1;
FILE *fin2;
float *x;
float *y;
float *xb;
float *X;
float *Y;
double err;
float Q;
size_t xlength;
size_t ylength;
size_t nframes;
size_t xi;
int ci;
int xj;
int bi;
int nchannels;
unsigned rate;
int downsample;
int ybands;
int yfreqs;
int max_compare;
if(_argc<3||_argc>6){
fprintf(stderr,"Usage: %s [-s] [-r rate2] <file1.sw> <file2.sw>\n",
_argv[0]);
return EXIT_FAILURE;
}
nchannels=1;
if(strcmp(_argv[1],"-s")==0){
nchannels=2;
_argv++;
}
rate=48000;
ybands=NBANDS;
yfreqs=NFREQS;
downsample=1;
if(strcmp(_argv[1],"-r")==0){
rate=atoi(_argv[2]);
if(rate!=8000&&rate!=12000&&rate!=16000&&rate!=24000&&rate!=48000){
fprintf(stderr,
"Sampling rate must be 8000, 12000, 16000, 24000, or 48000\n");
return EXIT_FAILURE;
}
downsample=48000/rate;
switch(rate){
case 8000:ybands=13;break;
case 12000:ybands=15;break;
case 16000:ybands=17;break;
case 24000:ybands=19;break;
}
yfreqs=NFREQS/downsample;
_argv+=2;
}
fin1=fopen(_argv[1],"rb");
if(fin1==NULL){
fprintf(stderr,"Error opening '%s'.\n",_argv[1]);
return EXIT_FAILURE;
}
fin2=fopen(_argv[2],"rb");
if(fin2==NULL){
fprintf(stderr,"Error opening '%s'.\n",_argv[2]);
fclose(fin1);
return EXIT_FAILURE;
}
/*Read in the data and allocate scratch space.*/
xlength=read_pcm16(&x,fin1,2);
if(nchannels==1){
for(xi=0;xi<xlength;xi++)x[xi]=.5*(x[2*xi]+x[2*xi+1]);
}
fclose(fin1);
ylength=read_pcm16(&y,fin2,nchannels);
fclose(fin2);
if(xlength!=ylength*downsample){
fprintf(stderr,"Sample counts do not match (%lu!=%lu).\n",
(unsigned long)xlength,(unsigned long)ylength*downsample);
return EXIT_FAILURE;
}
if(xlength<TEST_WIN_SIZE){
fprintf(stderr,"Insufficient sample data (%lu<%i).\n",
(unsigned long)xlength,TEST_WIN_SIZE);
return EXIT_FAILURE;
}
nframes=(xlength-TEST_WIN_SIZE+TEST_WIN_STEP)/TEST_WIN_STEP;
xb=(float *)opus_malloc(nframes*NBANDS*nchannels*sizeof(*xb));
X=(float *)opus_malloc(nframes*NFREQS*nchannels*sizeof(*X));
Y=(float *)opus_malloc(nframes*yfreqs*nchannels*sizeof(*Y));
/*Compute the per-band spectral energy of the original signal
and the error.*/
band_energy(xb,X,BANDS,NBANDS,x,nchannels,nframes,
TEST_WIN_SIZE,TEST_WIN_STEP,1);
free(x);
band_energy(NULL,Y,BANDS,ybands,y,nchannels,nframes,
TEST_WIN_SIZE/downsample,TEST_WIN_STEP/downsample,downsample);
free(y);
for(xi=0;xi<nframes;xi++){
/*Frequency masking (low to high): 10 dB/Bark slope.*/
for(bi=1;bi<NBANDS;bi++){
for(ci=0;ci<nchannels;ci++){
xb[(xi*NBANDS+bi)*nchannels+ci]+=
0.1F*xb[(xi*NBANDS+bi-1)*nchannels+ci];
}
}
/*Frequency masking (high to low): 15 dB/Bark slope.*/
for(bi=NBANDS-1;bi-->0;){
for(ci=0;ci<nchannels;ci++){
xb[(xi*NBANDS+bi)*nchannels+ci]+=
0.03F*xb[(xi*NBANDS+bi+1)*nchannels+ci];
}
}
if(xi>0){
/*Temporal masking: -3 dB/2.5ms slope.*/
for(bi=0;bi<NBANDS;bi++){
for(ci=0;ci<nchannels;ci++){
xb[(xi*NBANDS+bi)*nchannels+ci]+=
0.5F*xb[((xi-1)*NBANDS+bi)*nchannels+ci];
}
}
}
/* Allowing some cross-talk */
if(nchannels==2){
for(bi=0;bi<NBANDS;bi++){
float l,r;
l=xb[(xi*NBANDS+bi)*nchannels+0];
r=xb[(xi*NBANDS+bi)*nchannels+1];
xb[(xi*NBANDS+bi)*nchannels+0]+=0.01F*r;
xb[(xi*NBANDS+bi)*nchannels+1]+=0.01F*l;
}
}
/* Apply masking */
for(bi=0;bi<ybands;bi++){
for(xj=BANDS[bi];xj<BANDS[bi+1];xj++){
for(ci=0;ci<nchannels;ci++){
X[(xi*NFREQS+xj)*nchannels+ci]+=
0.1F*xb[(xi*NBANDS+bi)*nchannels+ci];
Y[(xi*yfreqs+xj)*nchannels+ci]+=
0.1F*xb[(xi*NBANDS+bi)*nchannels+ci];
}
}
}
}
/* Average of consecutive frames to make comparison slightly less sensitive */
for(bi=0;bi<ybands;bi++){
for(xj=BANDS[bi];xj<BANDS[bi+1];xj++){
for(ci=0;ci<nchannels;ci++){
float xtmp;
float ytmp;
xtmp = X[xj*nchannels+ci];
ytmp = Y[xj*nchannels+ci];
for(xi=1;xi<nframes;xi++){
float xtmp2;
float ytmp2;
xtmp2 = X[(xi*NFREQS+xj)*nchannels+ci];
ytmp2 = Y[(xi*yfreqs+xj)*nchannels+ci];
X[(xi*NFREQS+xj)*nchannels+ci] += xtmp;
Y[(xi*yfreqs+xj)*nchannels+ci] += ytmp;
xtmp = xtmp2;
ytmp = ytmp2;
}
}
}
}
/*If working at a lower sampling rate, don't take into account the last
300 Hz to allow for different transition bands.
For 12 kHz, we don't skip anything, because the last band already skips
400 Hz.*/
if(rate==48000)max_compare=BANDS[NBANDS];
else if(rate==12000)max_compare=BANDS[ybands];
else max_compare=BANDS[ybands]-3;
err=0;
for(xi=0;xi<nframes;xi++){
double Ef;
Ef=0;
for(bi=0;bi<ybands;bi++){
double Eb;
Eb=0;
for(xj=BANDS[bi];xj<BANDS[bi+1]&&xj<max_compare;xj++){
for(ci=0;ci<nchannels;ci++){
float re;
float im;
re=Y[(xi*yfreqs+xj)*nchannels+ci]/X[(xi*NFREQS+xj)*nchannels+ci];
im=re-log(re)-1;
/*Make comparison less sensitive around the SILK/CELT cross-over to
allow for mode freedom in the filters.*/
if(xj>=79&&xj<=81)im*=0.1F;
if(xj==80)im*=0.1F;
Eb+=im;
}
}
Eb /= (BANDS[bi+1]-BANDS[bi])*nchannels;
Ef += Eb*Eb;
}
/*Using a fixed normalization value means we're willing to accept slightly
lower quality for lower sampling rates.*/
Ef/=NBANDS;
Ef*=Ef;
err+=Ef*Ef;
}
err=pow(err/nframes,1.0/16);
Q=100*(1-0.5*log(1+err)/log(1.13));
if(Q<0){
fprintf(stderr,"Test vector FAILS\n");
fprintf(stderr,"Internal weighted error is %f\n",err);
return EXIT_FAILURE;
}
else{
fprintf(stderr,"Test vector PASSES\n");
fprintf(stderr,
"Opus quality metric: %.1f %% (internal weighted error is %f)\n",Q,err);
return EXIT_SUCCESS;
}
}
|