1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
/**************************************************************************/
/* transform.h */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#ifndef TRANSFORM_H
#define TRANSFORM_H
#include "core/math/aabb.h"
#include "core/math/basis.h"
#include "core/math/plane.h"
#include "core/pool_vector.h"
class _NO_DISCARD_CLASS_ Transform {
public:
Basis basis;
Vector3 origin;
void invert();
Transform inverse() const;
void affine_invert();
Transform affine_inverse() const;
Transform rotated(const Vector3 &p_axis, real_t p_angle) const;
void rotate(const Vector3 &p_axis, real_t p_angle);
void rotate_basis(const Vector3 &p_axis, real_t p_angle);
void set_look_at(const Vector3 &p_eye, const Vector3 &p_target, const Vector3 &p_up);
Transform looking_at(const Vector3 &p_target, const Vector3 &p_up) const;
void scale(const Vector3 &p_scale);
Transform scaled(const Vector3 &p_scale) const;
void scale_basis(const Vector3 &p_scale);
void translate(real_t p_tx, real_t p_ty, real_t p_tz);
void translate(const Vector3 &p_translation);
Transform translated(const Vector3 &p_translation) const;
const Basis &get_basis() const { return basis; }
void set_basis(const Basis &p_basis) { basis = p_basis; }
const Vector3 &get_origin() const { return origin; }
void set_origin(const Vector3 &p_origin) { origin = p_origin; }
void orthonormalize();
Transform orthonormalized() const;
bool is_equal_approx(const Transform &p_transform) const;
bool operator==(const Transform &p_transform) const;
bool operator!=(const Transform &p_transform) const;
_FORCE_INLINE_ Vector3 xform(const Vector3 &p_vector) const;
_FORCE_INLINE_ AABB xform(const AABB &p_aabb) const;
_FORCE_INLINE_ PoolVector<Vector3> xform(const PoolVector<Vector3> &p_array) const;
// NOTE: These are UNSAFE with non-uniform scaling, and will produce incorrect results.
// They use the transpose.
// For safe inverse transforms, xform by the affine_inverse.
_FORCE_INLINE_ Vector3 xform_inv(const Vector3 &p_vector) const;
_FORCE_INLINE_ AABB xform_inv(const AABB &p_aabb) const;
_FORCE_INLINE_ PoolVector<Vector3> xform_inv(const PoolVector<Vector3> &p_array) const;
// Safe with non-uniform scaling (uses affine_inverse).
_FORCE_INLINE_ Plane xform(const Plane &p_plane) const;
_FORCE_INLINE_ Plane xform_inv(const Plane &p_plane) const;
// These fast versions use precomputed affine inverse, and should be used in bottleneck areas where
// multiple planes are to be transformed.
_FORCE_INLINE_ Plane xform_fast(const Plane &p_plane, const Basis &p_basis_inverse_transpose) const;
static _FORCE_INLINE_ Plane xform_inv_fast(const Plane &p_plane, const Transform &p_inverse, const Basis &p_basis_transpose);
void operator*=(const Transform &p_transform);
Transform operator*(const Transform &p_transform) const;
Transform interpolate_with(const Transform &p_transform, real_t p_c) const;
_FORCE_INLINE_ Transform inverse_xform(const Transform &t) const {
Vector3 v = t.origin - origin;
return Transform(basis.transpose_xform(t.basis),
basis.xform(v));
}
void set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz, real_t tx, real_t ty, real_t tz) {
basis.set(xx, xy, xz, yx, yy, yz, zx, zy, zz);
origin.x = tx;
origin.y = ty;
origin.z = tz;
}
operator String() const;
Transform(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz, real_t ox, real_t oy, real_t oz);
Transform(const Basis &p_basis, const Vector3 &p_origin = Vector3());
Transform() {}
};
_FORCE_INLINE_ Vector3 Transform::xform(const Vector3 &p_vector) const {
return Vector3(
basis[0].dot(p_vector) + origin.x,
basis[1].dot(p_vector) + origin.y,
basis[2].dot(p_vector) + origin.z);
}
_FORCE_INLINE_ Vector3 Transform::xform_inv(const Vector3 &p_vector) const {
Vector3 v = p_vector - origin;
return Vector3(
(basis.elements[0][0] * v.x) + (basis.elements[1][0] * v.y) + (basis.elements[2][0] * v.z),
(basis.elements[0][1] * v.x) + (basis.elements[1][1] * v.y) + (basis.elements[2][1] * v.z),
(basis.elements[0][2] * v.x) + (basis.elements[1][2] * v.y) + (basis.elements[2][2] * v.z));
}
// Neither the plane regular xform or xform_inv are particularly efficient,
// as they do a basis inverse. For xforming a large number
// of planes it is better to pre-calculate the inverse transpose basis once
// and reuse it for each plane, by using the 'fast' version of the functions.
_FORCE_INLINE_ Plane Transform::xform(const Plane &p_plane) const {
Basis b = basis.inverse();
b.transpose();
return xform_fast(p_plane, b);
}
_FORCE_INLINE_ Plane Transform::xform_inv(const Plane &p_plane) const {
Transform inv = affine_inverse();
Basis basis_transpose = basis.transposed();
return xform_inv_fast(p_plane, inv, basis_transpose);
}
_FORCE_INLINE_ AABB Transform::xform(const AABB &p_aabb) const {
/* http://dev.theomader.com/transform-bounding-boxes/ */
Vector3 min = p_aabb.position;
Vector3 max = p_aabb.position + p_aabb.size;
Vector3 tmin, tmax;
for (int i = 0; i < 3; i++) {
tmin[i] = tmax[i] = origin[i];
for (int j = 0; j < 3; j++) {
real_t e = basis[i][j] * min[j];
real_t f = basis[i][j] * max[j];
if (e < f) {
tmin[i] += e;
tmax[i] += f;
} else {
tmin[i] += f;
tmax[i] += e;
}
}
}
AABB r_aabb;
r_aabb.position = tmin;
r_aabb.size = tmax - tmin;
return r_aabb;
}
_FORCE_INLINE_ AABB Transform::xform_inv(const AABB &p_aabb) const {
/* define vertices */
Vector3 vertices[8] = {
Vector3(p_aabb.position.x + p_aabb.size.x, p_aabb.position.y + p_aabb.size.y, p_aabb.position.z + p_aabb.size.z),
Vector3(p_aabb.position.x + p_aabb.size.x, p_aabb.position.y + p_aabb.size.y, p_aabb.position.z),
Vector3(p_aabb.position.x + p_aabb.size.x, p_aabb.position.y, p_aabb.position.z + p_aabb.size.z),
Vector3(p_aabb.position.x + p_aabb.size.x, p_aabb.position.y, p_aabb.position.z),
Vector3(p_aabb.position.x, p_aabb.position.y + p_aabb.size.y, p_aabb.position.z + p_aabb.size.z),
Vector3(p_aabb.position.x, p_aabb.position.y + p_aabb.size.y, p_aabb.position.z),
Vector3(p_aabb.position.x, p_aabb.position.y, p_aabb.position.z + p_aabb.size.z),
Vector3(p_aabb.position.x, p_aabb.position.y, p_aabb.position.z)
};
AABB ret;
ret.position = xform_inv(vertices[0]);
for (int i = 1; i < 8; i++) {
ret.expand_to(xform_inv(vertices[i]));
}
return ret;
}
PoolVector<Vector3> Transform::xform(const PoolVector<Vector3> &p_array) const {
PoolVector<Vector3> array;
array.resize(p_array.size());
PoolVector<Vector3>::Read r = p_array.read();
PoolVector<Vector3>::Write w = array.write();
for (int i = 0; i < p_array.size(); ++i) {
w[i] = xform(r[i]);
}
return array;
}
PoolVector<Vector3> Transform::xform_inv(const PoolVector<Vector3> &p_array) const {
PoolVector<Vector3> array;
array.resize(p_array.size());
PoolVector<Vector3>::Read r = p_array.read();
PoolVector<Vector3>::Write w = array.write();
for (int i = 0; i < p_array.size(); ++i) {
w[i] = xform_inv(r[i]);
}
return array;
}
_FORCE_INLINE_ Plane Transform::xform_fast(const Plane &p_plane, const Basis &p_basis_inverse_transpose) const {
// Transform a single point on the plane.
Vector3 point = p_plane.normal * p_plane.d;
point = xform(point);
// Use inverse transpose for correct normals with non-uniform scaling.
Vector3 normal = p_basis_inverse_transpose.xform(p_plane.normal);
normal.normalize();
real_t d = normal.dot(point);
return Plane(normal, d);
}
_FORCE_INLINE_ Plane Transform::xform_inv_fast(const Plane &p_plane, const Transform &p_inverse, const Basis &p_basis_transpose) {
// Transform a single point on the plane.
Vector3 point = p_plane.normal * p_plane.d;
point = p_inverse.xform(point);
// Note that instead of precalculating the transpose, an alternative
// would be to use the transpose for the basis transform.
// However that would be less SIMD friendly (requiring a swizzle).
// So the cost is one extra precalced value in the calling code.
// This is probably worth it, as this could be used in bottleneck areas. And
// where it is not a bottleneck, the non-fast method is fine.
// Use transpose for correct normals with non-uniform scaling.
Vector3 normal = p_basis_transpose.xform(p_plane.normal);
normal.normalize();
real_t d = normal.dot(point);
return Plane(normal, d);
}
#endif // TRANSFORM_H
|