1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
|
/**************************************************************************/
/* vertex_cache_optimizer.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "vertex_cache_optimizer.h"
#include "core/math/geometry.h"
#include "core/math/math_funcs.h"
// Precalculate the tables.
void VertexCacheOptimizer::init() {
for (int i = 0; i < Constants::CACHE_SCORE_TABLE_SIZE; i++) {
float score = 0;
if (i < 3) {
// This vertex was used in the last triangle,
// so it has a fixed score, which ever of the three
// it's in. Otherwise, you can get very different
// answers depending on whether you add
// the triangle 1,2,3 or 3,1,2 - which is silly.
score = Constants::LAST_TRI_SCORE;
} else {
// Points for being high in the cache.
const float scaler = 1.0f / (Constants::CACHE_FUNCTION_LENGTH - 3);
score = 1.0f - (i - 3) * scaler;
score = Math::pow(score, Constants::CACHE_DECAY_POWER);
}
_cache_position_score[i] = (SCORE_TYPE)(Constants::SCORE_SCALING * score);
}
for (int i = 1; i < Constants::VALENCE_SCORE_TABLE_SIZE; i++) {
// Bonus points for having a low number of tris still to
// use the vert, so we get rid of lone verts quickly.
float valence_boost = Math::pow(i, -Constants::VALENCE_BOOST_POWER);
float score = Constants::VALENCE_BOOST_SCALE * valence_boost;
_valence_score[i] = (SCORE_TYPE)(Constants::SCORE_SCALING * score);
}
}
VertexCacheOptimizer::SCORE_TYPE VertexCacheOptimizer::find_vertex_score(int p_num_active_tris, int p_cache_position) {
if (p_num_active_tris == 0) {
// No triangles need this vertex!
return 0;
}
SCORE_TYPE score = 0;
if (p_cache_position < 0) {
// Vertex is not in LRU cache - no score.
} else {
score = _cache_position_score[p_cache_position];
}
if (p_num_active_tris < Constants::VALENCE_SCORE_TABLE_SIZE) {
score += _valence_score[p_num_active_tris];
}
return score;
}
VertexCacheOptimizer::VERTEX_INDEX_TYPE *VertexCacheOptimizer::_reorder_indices(VERTEX_INDEX_TYPE *r_dest_indices, const VERTEX_INDEX_TYPE *p_source_indices, int p_num_triangles, int p_num_vertices) {
ADJACENCY_TYPE *num_active_tris = (ADJACENCY_TYPE *)memalloc(sizeof(ADJACENCY_TYPE) * p_num_vertices);
memset(num_active_tris, 0, sizeof(ADJACENCY_TYPE) * p_num_vertices);
// First scan over the vertex data, count the total number of
// occurrances of each vertex.
for (int i = 0; i < 3 * p_num_triangles; i++) {
if (num_active_tris[p_source_indices[i]] == Constants::MAX_ADJACENCY) {
// Unsupported mesh,
// vertex shared by too many triangles.
memfree(num_active_tris);
return nullptr;
}
num_active_tris[p_source_indices[i]]++;
}
// Allocate the rest of the arrays.
ARRAY_INDEX_TYPE *offsets = (ARRAY_INDEX_TYPE *)memalloc(sizeof(ARRAY_INDEX_TYPE) * p_num_vertices);
SCORE_TYPE *last_score = (SCORE_TYPE *)memalloc(sizeof(SCORE_TYPE) * p_num_vertices);
CACHE_POS_TYPE *cache_tag = (CACHE_POS_TYPE *)memalloc(sizeof(CACHE_POS_TYPE) * p_num_vertices);
uint8_t *triangle_added = (uint8_t *)memalloc((p_num_triangles + 7) / 8);
SCORE_TYPE *triangle_score = (SCORE_TYPE *)memalloc(sizeof(SCORE_TYPE) * p_num_triangles);
TRIANGLE_INDEX_TYPE *triangle_indices = (TRIANGLE_INDEX_TYPE *)memalloc(sizeof(TRIANGLE_INDEX_TYPE) * 3 * p_num_triangles);
memset(triangle_added, 0, sizeof(uint8_t) * ((p_num_triangles + 7) / 8));
memset(triangle_score, 0, sizeof(SCORE_TYPE) * p_num_triangles);
memset(triangle_indices, 0, sizeof(TRIANGLE_INDEX_TYPE) * 3 * p_num_triangles);
// Count the triangle array offset for each vertex,
// initialize the rest of the data.
int sum = 0;
for (int i = 0; i < p_num_vertices; i++) {
offsets[i] = sum;
sum += num_active_tris[i];
num_active_tris[i] = 0;
cache_tag[i] = -1;
}
// Fill the vertex data structures with indices to the triangles
// using each vertex.
for (int i = 0; i < p_num_triangles; i++) {
for (int j = 0; j < 3; j++) {
int v = p_source_indices[3 * i + j];
triangle_indices[offsets[v] + num_active_tris[v]] = i;
num_active_tris[v]++;
}
}
// Initialize the score for all vertices.
for (int i = 0; i < p_num_vertices; i++) {
last_score[i] = find_vertex_score(num_active_tris[i], cache_tag[i]);
for (int j = 0; j < num_active_tris[i]; j++) {
triangle_score[triangle_indices[offsets[i] + j]] += last_score[i];
}
}
// Find the best triangle.
int best_triangle = -1;
int best_score = -1;
for (int i = 0; i < p_num_triangles; i++) {
if (triangle_score[i] > best_score) {
best_score = triangle_score[i];
best_triangle = i;
}
}
// Allocate the output array.
TRIANGLE_INDEX_TYPE *out_triangles = (TRIANGLE_INDEX_TYPE *)memalloc(sizeof(TRIANGLE_INDEX_TYPE) * p_num_triangles);
int out_pos = 0;
// Initialize the cache.
int cache[Constants::VERTEX_CACHE_SIZE + 3];
for (int i = 0; i < Constants::VERTEX_CACHE_SIZE + 3; i++) {
cache[i] = -1;
}
int scan_pos = 0;
// Output the currently best triangle, as long as there
// are triangles left to output.
while (best_triangle >= 0) {
// Mark the triangle as added.
set_added(triangle_added, best_triangle);
// Output this triangle.
out_triangles[out_pos++] = best_triangle;
for (int i = 0; i < 3; i++) {
// Update this vertex.
int v = p_source_indices[3 * best_triangle + i];
// Check the current cache position, if it
// is in the cache.
int endpos = cache_tag[v];
if (endpos < 0) {
endpos = Constants::VERTEX_CACHE_SIZE + i;
}
if (endpos > i) {
// Move all cache entries from the previous position
// in the cache to the new target position (i) one
// step backwards.
for (int j = endpos; j > i; j--) {
cache[j] = cache[j - 1];
// If this cache slot contains a real
// vertex, update its cache tag.
if (cache[j] >= 0) {
cache_tag[cache[j]]++;
}
}
// Insert the current vertex into its new target
// slot.
cache[i] = v;
cache_tag[v] = i;
}
// Find the current triangle in the list of active
// triangles and remove it (moving the last
// triangle in the list to the slot of this triangle).
for (int j = 0; j < num_active_tris[v]; j++) {
if (triangle_indices[offsets[v] + j] == best_triangle) {
triangle_indices[offsets[v] + j] = triangle_indices[offsets[v] + num_active_tris[v] - 1];
break;
}
}
// Shorten the list.
num_active_tris[v]--;
}
// Update the scores of all triangles in the cache.
for (int i = 0; i < Constants::VERTEX_CACHE_SIZE + 3; i++) {
int v = cache[i];
if (v < 0) {
break;
}
// This vertex has been pushed outside of the
// actual cache.
if (i >= Constants::VERTEX_CACHE_SIZE) {
cache_tag[v] = -1;
cache[i] = -1;
}
SCORE_TYPE newScore = find_vertex_score(num_active_tris[v], cache_tag[v]);
SCORE_TYPE diff = newScore - last_score[v];
for (int j = 0; j < num_active_tris[v]; j++) {
triangle_score[triangle_indices[offsets[v] + j]] += diff;
}
last_score[v] = newScore;
}
// Find the best triangle referenced by vertices in the cache.
best_triangle = -1;
best_score = -1;
for (int i = 0; i < Constants::VERTEX_CACHE_SIZE; i++) {
if (cache[i] < 0) {
break;
}
int v = cache[i];
for (int j = 0; j < num_active_tris[v]; j++) {
int t = triangle_indices[offsets[v] + j];
if (triangle_score[t] > best_score) {
best_triangle = t;
best_score = triangle_score[t];
}
}
}
// If no active triangle was found at all, continue
// scanning the whole list of triangles.
if (best_triangle < 0) {
for (; scan_pos < p_num_triangles; scan_pos++) {
if (!is_added(triangle_added, scan_pos)) {
best_triangle = scan_pos;
break;
}
}
}
}
// Convert the triangle index array into a full triangle list.
out_pos = 0;
for (int i = 0; i < p_num_triangles; i++) {
int t = out_triangles[i];
for (int j = 0; j < 3; j++) {
int v = p_source_indices[3 * t + j];
r_dest_indices[out_pos++] = v;
}
}
// Clean up.
memfree(triangle_indices);
memfree(offsets);
memfree(last_score);
memfree(num_active_tris);
memfree(cache_tag);
memfree(triangle_added);
memfree(triangle_score);
memfree(out_triangles);
return r_dest_indices;
}
bool VertexCacheOptimizer::reorder_indices_pool(PoolVector<int> &r_indices, uint32_t p_num_triangles, uint32_t p_num_verts) {
LocalVector<int> temp;
temp = r_indices;
if (reorder_indices(temp, p_num_triangles, p_num_verts)) {
r_indices = temp;
return true;
}
return false;
}
bool VertexCacheOptimizer::reorder_indices(LocalVector<int> &r_indices, uint32_t p_num_triangles, uint32_t p_num_verts) {
// If the mesh contains invalid indices, abort.
ERR_FAIL_COND_V(!Geometry::verify_indices(r_indices.ptr(), r_indices.size(), p_num_verts), false);
LocalVector<int> temp;
temp.resize(r_indices.size());
if (_reorder_indices((VERTEX_INDEX_TYPE *)temp.ptr(), (VERTEX_INDEX_TYPE *)r_indices.ptr(), p_num_triangles, p_num_verts)) {
#if 0
uint32_t show = MIN(r_indices.size(), 16);
for (uint32_t n = 0; n < show; n++) {
print_line(itos(n) + " : " + itos(r_indices[n]) + " to " + itos(temp[n]));
}
#endif
r_indices = temp;
return true;
}
return false;
}
|