1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
<?xml version="1.0" encoding="UTF-8" ?>
<class name="Transform2D" version="3.6" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../class.xsd">
<brief_description>
2D transformation (2×3 matrix).
</brief_description>
<description>
2×3 matrix (2 rows, 3 columns) used for 2D linear transformations. It can represent transformations such as translation, rotation, or scaling. It consists of three [Vector2] values: [member x], [member y], and the [member origin].
For more information, read the "Matrices and transforms" documentation article.
</description>
<tutorials>
<link title="Math tutorial index">$DOCS_URL/tutorials/math/index.html</link>
<link title="Matrices and transforms">$DOCS_URL/tutorials/math/matrices_and_transforms.html</link>
<link title="Matrix Transform Demo">https://godotengine.org/asset-library/asset/584</link>
<link title="2.5D Demo">https://godotengine.org/asset-library/asset/583</link>
</tutorials>
<methods>
<method name="Transform2D">
<return type="Transform2D" />
<argument index="0" name="from" type="Transform" />
<description>
Constructs the transform from a 3D [Transform].
</description>
</method>
<method name="Transform2D">
<return type="Transform2D" />
<argument index="0" name="x_axis" type="Vector2" />
<argument index="1" name="y_axis" type="Vector2" />
<argument index="2" name="origin" type="Vector2" />
<description>
Constructs the transform from 3 [Vector2] values representing [member x], [member y], and the [member origin] (the three column vectors).
</description>
</method>
<method name="Transform2D">
<return type="Transform2D" />
<argument index="0" name="rotation" type="float" />
<argument index="1" name="position" type="Vector2" />
<description>
Constructs the transform from a given angle (in radians) and position.
</description>
</method>
<method name="affine_inverse">
<return type="Transform2D" />
<description>
Returns the inverse of the transform, under the assumption that the transformation is composed of rotation, scaling and translation.
</description>
</method>
<method name="basis_xform">
<return type="Vector2" />
<argument index="0" name="v" type="Vector2" />
<description>
Returns a vector transformed (multiplied) by the basis matrix.
This method does not account for translation (the origin vector).
</description>
</method>
<method name="basis_xform_inv">
<return type="Vector2" />
<argument index="0" name="v" type="Vector2" />
<description>
Returns a vector transformed (multiplied) by the inverse basis matrix.
This method does not account for translation (the origin vector).
</description>
</method>
<method name="determinant">
<return type="float" />
<description>
Returns the determinant of the basis matrix. If the basis is uniformly scaled, then its determinant equals the square of the scale factor.
A negative determinant means the basis was flipped, so one part of the scale is negative. A zero determinant means the basis isn't invertible, and is usually considered invalid.
</description>
</method>
<method name="get_origin">
<return type="Vector2" />
<description>
Returns the transform's origin (translation).
</description>
</method>
<method name="get_rotation">
<return type="float" />
<description>
Returns the transform's rotation (in radians).
</description>
</method>
<method name="get_scale">
<return type="Vector2" />
<description>
Returns the scale.
</description>
</method>
<method name="interpolate_with">
<return type="Transform2D" />
<argument index="0" name="transform" type="Transform2D" />
<argument index="1" name="weight" type="float" />
<description>
Returns a transform interpolated between this transform and another by a given [code]weight[/code] (on the range of 0.0 to 1.0).
</description>
</method>
<method name="inverse">
<return type="Transform2D" />
<description>
Returns the inverse of the transform, under the assumption that the transformation is composed of rotation and translation (no scaling, use [method affine_inverse] for transforms with scaling).
</description>
</method>
<method name="is_equal_approx">
<return type="bool" />
<argument index="0" name="transform" type="Transform2D" />
<description>
Returns [code]true[/code] if this transform and [code]transform[/code] are approximately equal, by calling [code]is_equal_approx[/code] on each component.
</description>
</method>
<method name="orthonormalized">
<return type="Transform2D" />
<description>
Returns the transform with the basis orthogonal (90 degrees), and normalized axis vectors (scale of 1 or -1).
</description>
</method>
<method name="rotated">
<return type="Transform2D" />
<argument index="0" name="angle" type="float" />
<description>
Returns a copy of the transform rotated by the given [code]angle[/code] (in radians), using matrix multiplication.
</description>
</method>
<method name="scaled">
<return type="Transform2D" />
<argument index="0" name="scale" type="Vector2" />
<description>
Returns a copy of the transform scaled by the given [code]scale[/code] factor, using matrix multiplication.
[b]Note:[/b] Negative X scales in 2D are not decomposable from the transformation matrix. Due to the way scale is represented with transformation matrices in Godot, negative scales on the X axis will be changed to negative scales on the Y axis and a rotation of 180 degrees when decomposed.
</description>
</method>
<method name="translated">
<return type="Transform2D" />
<argument index="0" name="offset" type="Vector2" />
<description>
Returns a copy of the transform translated by the given [code]offset[/code], relative to the transform's basis vectors.
Unlike [method rotated] and [method scaled], this does not use matrix multiplication.
</description>
</method>
<method name="xform">
<return type="Variant" />
<argument index="0" name="v" type="Variant" />
<description>
Transforms the given [Vector2], [Rect2], or [PoolVector2Array] by this transform.
</description>
</method>
<method name="xform_inv">
<return type="Variant" />
<argument index="0" name="v" type="Variant" />
<description>
Inverse-transforms the given [Vector2], [Rect2], or [PoolVector2Array] by this transform, under the assumption that the transformation is composed of rotation and translation (no scaling). Equivalent to calling [code]inverse().xform(v)[/code] on this transform. For affine transformations (e.g. with scaling) see [method affine_inverse] method.
</description>
</method>
</methods>
<members>
<member name="origin" type="Vector2" setter="" getter="" default="Vector2( 0, 0 )">
The origin vector (column 2, the third column). Equivalent to array index [code]2[/code]. The origin vector represents translation.
</member>
<member name="x" type="Vector2" setter="" getter="" default="Vector2( 1, 0 )">
The basis matrix's X vector (column 0). Equivalent to array index [code]0[/code].
</member>
<member name="y" type="Vector2" setter="" getter="" default="Vector2( 0, 1 )">
The basis matrix's Y vector (column 1). Equivalent to array index [code]1[/code].
</member>
</members>
<constants>
<constant name="IDENTITY" value="Transform2D( 1, 0, 0, 1, 0, 0 )">
The identity [Transform2D] with no translation, rotation or scaling applied. When applied to other data structures, [constant IDENTITY] performs no transformation.
</constant>
<constant name="FLIP_X" value="Transform2D( -1, 0, 0, 1, 0, 0 )">
The [Transform2D] that will flip something along the X axis.
</constant>
<constant name="FLIP_Y" value="Transform2D( 1, 0, 0, -1, 0, 0 )">
The [Transform2D] that will flip something along the Y axis.
</constant>
</constants>
</class>
|