File: %40GDScript.xml

package info (click to toggle)
godot 3.6%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 270,588 kB
  • sloc: cpp: 971,579; ansic: 617,953; xml: 80,302; asm: 17,498; cs: 14,559; python: 11,744; java: 9,681; javascript: 4,654; pascal: 1,176; sh: 896; objc: 529; makefile: 176
file content (1245 lines) | stat: -rw-r--r-- 55,490 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
<?xml version="1.0" encoding="UTF-8" ?>
<class name="@GDScript" version="3.6" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../../../doc/class.xsd">
	<brief_description>
		Built-in GDScript functions.
	</brief_description>
	<description>
		List of core built-in GDScript functions. Math functions and other utilities. Everything else is provided by objects. (Keywords: builtin, built in, global functions.)
	</description>
	<tutorials>
	</tutorials>
	<methods>
		<method name="Color8">
			<return type="Color" />
			<argument index="0" name="r8" type="int" />
			<argument index="1" name="g8" type="int" />
			<argument index="2" name="b8" type="int" />
			<argument index="3" name="a8" type="int" default="255" />
			<description>
				Returns a color constructed from integer red, green, blue, and alpha channels. Each channel should have 8 bits of information ranging from 0 to 255.
				[code]r8[/code] red channel
				[code]g8[/code] green channel
				[code]b8[/code] blue channel
				[code]a8[/code] alpha channel
				[codeblock]
				red = Color8(255, 0, 0)
				[/codeblock]
			</description>
		</method>
		<method name="ColorN">
			<return type="Color" />
			<argument index="0" name="name" type="String" />
			<argument index="1" name="alpha" type="float" default="1.0" />
			<description>
				Returns a color according to the standardized [code]name[/code] with [code]alpha[/code] ranging from 0 to 1.
				[codeblock]
				red = ColorN("red", 1)
				[/codeblock]
				Supported color names are the same as the constants defined in [Color].
			</description>
		</method>
		<method name="abs">
			<return type="float" />
			<argument index="0" name="s" type="float" />
			<description>
				Returns the absolute value of parameter [code]s[/code] (i.e. positive value).
				[codeblock]
				a = abs(-1) # a is 1
				[/codeblock]
			</description>
		</method>
		<method name="acos">
			<return type="float" />
			<argument index="0" name="s" type="float" />
			<description>
				Returns the arc cosine of [code]s[/code] in radians. Use to get the angle of cosine [code]s[/code]. [code]s[/code] will be clamped between [code]-1.0[/code] and [code]1.0[/code] (inclusive), in order to prevent [method acos] from returning [constant NAN].
				[codeblock]
				# c is 0.523599 or 30 degrees if converted with rad2deg(s)
				c = acos(0.866025)
				[/codeblock]
			</description>
		</method>
		<method name="asin">
			<return type="float" />
			<argument index="0" name="s" type="float" />
			<description>
				Returns the arc sine of [code]s[/code] in radians. Use to get the angle of sine [code]s[/code]. [code]s[/code] will be clamped between [code]-1.0[/code] and [code]1.0[/code] (inclusive), in order to prevent [method asin] from returning [constant NAN].
				[codeblock]
				# s is 0.523599 or 30 degrees if converted with rad2deg(s)
				s = asin(0.5)
				[/codeblock]
			</description>
		</method>
		<method name="assert">
			<return type="void" />
			<argument index="0" name="condition" type="bool" />
			<argument index="1" name="message" type="String" default="&quot;&quot;" />
			<description>
				Asserts that the [code]condition[/code] is [code]true[/code]. If the [code]condition[/code] is [code]false[/code], an error is generated. When running from the editor, the running project will also be paused until you resume it. This can be used as a stronger form of [method push_error] for reporting errors to project developers or add-on users.
				[b]Note:[/b] For performance reasons, the code inside [method assert] is only executed in debug builds or when running the project from the editor. Don't include code that has side effects in an [method assert] call. Otherwise, the project will behave differently when exported in release mode.
				The optional [code]message[/code] argument, if given, is shown in addition to the generic "Assertion failed" message. You can use this to provide additional details about why the assertion failed.
				[codeblock]
				# Imagine we always want speed to be between 0 and 20.
				var speed = -10
				assert(speed &lt; 20) # True, the program will continue
				assert(speed &gt;= 0) # False, the program will stop
				assert(speed &gt;= 0 and speed &lt; 20) # You can also combine the two conditional statements in one check
				assert(speed &lt; 20, "speed = %f, but the speed limit is 20" % speed) # Show a message with clarifying details
				[/codeblock]
			</description>
		</method>
		<method name="atan">
			<return type="float" />
			<argument index="0" name="s" type="float" />
			<description>
				Returns the arc tangent of [code]s[/code] in radians. Use it to get the angle from an angle's tangent in trigonometry: [code]atan(tan(angle)) == angle[/code].
				The method cannot know in which quadrant the angle should fall. See [method atan2] if you have both [code]y[/code] and [code]x[/code].
				[codeblock]
				a = atan(0.5) # a is 0.463648
				[/codeblock]
			</description>
		</method>
		<method name="atan2">
			<return type="float" />
			<argument index="0" name="y" type="float" />
			<argument index="1" name="x" type="float" />
			<description>
				Returns the arc tangent of [code]y/x[/code] in radians. Use to get the angle of tangent [code]y/x[/code]. To compute the value, the method takes into account the sign of both arguments in order to determine the quadrant.
				Important note: The Y coordinate comes first, by convention.
				[codeblock]
				a = atan2(0, -1) # a is 3.141593
				[/codeblock]
			</description>
		</method>
		<method name="bytes2var">
			<return type="Variant" />
			<argument index="0" name="bytes" type="PoolByteArray" />
			<argument index="1" name="allow_objects" type="bool" default="false" />
			<description>
				Decodes a byte array back to a value. When [code]allow_objects[/code] is [code]true[/code] decoding objects is allowed.
				[b]WARNING:[/b] Deserialized object can contain code which gets executed. Do not use this option if the serialized object comes from untrusted sources to avoid potential security threats (remote code execution).
			</description>
		</method>
		<method name="cartesian2polar">
			<return type="Vector2" />
			<argument index="0" name="x" type="float" />
			<argument index="1" name="y" type="float" />
			<description>
				Converts a 2D point expressed in the cartesian coordinate system (X and Y axis) to the polar coordinate system (a distance from the origin and an angle).
			</description>
		</method>
		<method name="ceil">
			<return type="float" />
			<argument index="0" name="s" type="float" />
			<description>
				Rounds [code]s[/code] upward (towards positive infinity), returning the smallest whole number that is not less than [code]s[/code].
				[codeblock]
				a = ceil(1.45)  # a is 2.0
				a = ceil(1.001) # a is 2.0
				[/codeblock]
				See also [method floor], [method round], [method stepify], and [int].
			</description>
		</method>
		<method name="char">
			<return type="String" />
			<argument index="0" name="code" type="int" />
			<description>
				Returns a character as a String of the given Unicode code point (which is compatible with ASCII code).
				[codeblock]
				a = char(65)      # a is "A"
				a = char(65 + 32) # a is "a"
				a = char(8364)    # a is "€"
				[/codeblock]
				This is the inverse of [method ord].
			</description>
		</method>
		<method name="clamp">
			<return type="float" />
			<argument index="0" name="value" type="float" />
			<argument index="1" name="min" type="float" />
			<argument index="2" name="max" type="float" />
			<description>
				Clamps [code]value[/code] and returns a value not less than [code]min[/code] and not more than [code]max[/code].
				[codeblock]
				a = clamp(1000, 1, 20) # a is 20
				a = clamp(-10, 1, 20)  # a is 1
				a = clamp(15, 1, 20)   # a is 15
				[/codeblock]
			</description>
		</method>
		<method name="convert">
			<return type="Variant" />
			<argument index="0" name="what" type="Variant" />
			<argument index="1" name="type" type="int" />
			<description>
				Converts from a type to another in the best way possible. The [code]type[/code] parameter uses the [enum Variant.Type] values.
				[codeblock]
				a = Vector2(1, 0)
				# Prints 1
				print(a.length())
				a = convert(a, TYPE_STRING)
				# Prints 6 as "(1, 0)" is 6 characters
				print(a.length())
				[/codeblock]
			</description>
		</method>
		<method name="cos">
			<return type="float" />
			<argument index="0" name="s" type="float" />
			<description>
				Returns the cosine of angle [code]s[/code] in radians.
				[codeblock]
				a = cos(TAU) # a is 1.0
				a = cos(PI)  # a is -1.0
				[/codeblock]
			</description>
		</method>
		<method name="cosh">
			<return type="float" />
			<argument index="0" name="s" type="float" />
			<description>
				Returns the hyperbolic cosine of [code]s[/code] in radians.
				[codeblock]
				print(cosh(1)) # Prints 1.543081
				[/codeblock]
			</description>
		</method>
		<method name="db2linear">
			<return type="float" />
			<argument index="0" name="db" type="float" />
			<description>
				Converts from decibels to linear energy (audio).
			</description>
		</method>
		<method name="decimals">
			<return type="int" />
			<argument index="0" name="step" type="float" />
			<description>
				Deprecated alias for [method step_decimals].
			</description>
		</method>
		<method name="dectime">
			<return type="float" />
			<argument index="0" name="value" type="float" />
			<argument index="1" name="amount" type="float" />
			<argument index="2" name="step" type="float" />
			<description>
				[b]Note:[/b] [code]dectime[/code] has been deprecated and will be removed in Godot 4.0, please use [method move_toward] instead.
				Returns the result of [code]value[/code] decreased by [code]step[/code] * [code]amount[/code].
				[codeblock]
				a = dectime(60, 10, 0.1)) # a is 59.0
				[/codeblock]
			</description>
		</method>
		<method name="deep_equal">
			<return type="bool" />
			<argument index="0" name="a" type="Variant" />
			<argument index="1" name="b" type="Variant" />
			<description>
				Compares two values by checking their actual contents, recursing into any [Array] or [Dictionary] up to its deepest level.
				This compares to [code]==[/code] in a number of ways:
				- For [code]null[/code], [code]int[/code], [code]float[/code], [code]String[/code], [code]Object[/code] and [code]RID[/code] both [code]deep_equal[/code] and [code]==[/code] work the same.
				- For [code]Dictionary[/code], [code]==[/code] considers equality if, and only if, both variables point to the very same [code]Dictionary[/code], with no recursion or awareness of the contents at all.
				- For [code]Array[/code], [code]==[/code] considers equality if, and only if, each item in the first [code]Array[/code] is equal to its counterpart in the second [code]Array[/code], as told by [code]==[/code] itself. That implies that [code]==[/code] recurses into [code]Array[/code], but not into [code]Dictionary[/code].
				In short, whenever a [code]Dictionary[/code] is potentially involved, if you want a true content-aware comparison, you have to use [code]deep_equal[/code].
			</description>
		</method>
		<method name="deg2rad">
			<return type="float" />
			<argument index="0" name="deg" type="float" />
			<description>
				Converts an angle expressed in degrees to radians.
				[codeblock]
				r = deg2rad(180) # r is 3.141593
				[/codeblock]
			</description>
		</method>
		<method name="dict2inst">
			<return type="Object" />
			<argument index="0" name="dict" type="Dictionary" />
			<description>
				Converts a dictionary (previously created with [method inst2dict]) back to an instance. Useful for deserializing.
			</description>
		</method>
		<method name="ease">
			<return type="float" />
			<argument index="0" name="s" type="float" />
			<argument index="1" name="curve" type="float" />
			<description>
				Returns an "eased" value of [code]x[/code] based on an easing function defined with [code]curve[/code]. This easing function is based on an exponent. The [code]curve[/code] can be any floating-point number, with specific values leading to the following behaviors:
				[codeblock]
				- Lower than -1.0 (exclusive): Ease in-out
				- 1.0: Linear
				- Between -1.0 and 0.0 (exclusive): Ease out-in
				- 0.0: Constant
				- Between 0.0 to 1.0 (exclusive): Ease out
				- 1.0: Linear
				- Greater than 1.0 (exclusive): Ease in
				[/codeblock]
				[url=https://raw.githubusercontent.com/godotengine/godot-docs/3.6/img/ease_cheatsheet.png]ease() curve values cheatsheet[/url]
				See also [method smoothstep]. If you need to perform more advanced transitions, use [Tween] or [AnimationPlayer].
			</description>
		</method>
		<method name="exp">
			<return type="float" />
			<argument index="0" name="s" type="float" />
			<description>
				The natural exponential function. It raises the mathematical constant [b]e[/b] to the power of [code]s[/code] and returns it.
				[b]e[/b] has an approximate value of 2.71828, and can be obtained with [code]exp(1)[/code].
				For exponents to other bases use the method [method pow].
				[codeblock]
				a = exp(2) # Approximately 7.39
				[/codeblock]
			</description>
		</method>
		<method name="floor">
			<return type="float" />
			<argument index="0" name="s" type="float" />
			<description>
				Rounds [code]s[/code] downward (towards negative infinity), returning the largest whole number that is not more than [code]s[/code].
				[codeblock]
				a = floor(2.45)  # a is 2.0
				a = floor(2.99)  # a is 2.0
				a = floor(-2.99) # a is -3.0
				[/codeblock]
				See also [method ceil], [method round], [method stepify], and [int].
				[b]Note:[/b] This method returns a float. If you need an integer and [code]s[/code] is a non-negative number, you can use [code]int(s)[/code] directly.
			</description>
		</method>
		<method name="fmod">
			<return type="float" />
			<argument index="0" name="a" type="float" />
			<argument index="1" name="b" type="float" />
			<description>
				Returns the floating-point remainder of [code]a/b[/code], keeping the sign of [code]a[/code].
				[codeblock]
				r = fmod(7, 5.5) # r is 1.5
				[/codeblock]
				For the integer remainder operation, use the % operator.
			</description>
		</method>
		<method name="fposmod">
			<return type="float" />
			<argument index="0" name="a" type="float" />
			<argument index="1" name="b" type="float" />
			<description>
				Returns the floating-point modulus of [code]a/b[/code] that wraps equally in positive and negative.
				[codeblock]
				for i in 7:
				    var x = 0.5 * i - 1.5
				    print("%4.1f %4.1f %4.1f" % [x, fmod(x, 1.5), fposmod(x, 1.5)])
				[/codeblock]
				Produces:
				[codeblock]
				-1.5 -0.0  0.0
				-1.0 -1.0  0.5
				-0.5 -0.5  1.0
				 0.0  0.0  0.0
				 0.5  0.5  0.5
				 1.0  1.0  1.0
				 1.5  0.0  0.0
				[/codeblock]
			</description>
		</method>
		<method name="funcref">
			<return type="FuncRef" />
			<argument index="0" name="instance" type="Object" />
			<argument index="1" name="funcname" type="String" />
			<description>
				Returns a reference to the specified function [code]funcname[/code] in the [code]instance[/code] node. As functions aren't first-class objects in GDscript, use [code]funcref[/code] to store a [FuncRef] in a variable and call it later.
				[codeblock]
				func foo():
				    return("bar")

				a = funcref(self, "foo")
				print(a.call_func()) # Prints bar
				[/codeblock]
			</description>
		</method>
		<method name="get_stack">
			<return type="Array" />
			<description>
				Returns an array of dictionaries representing the current call stack. See also [method print_stack].
				[codeblock]
				func _ready():
				    foo()

				func foo():
				    bar()

				func bar():
				    print(get_stack())
				[/codeblock]
				would print
				[codeblock]
				[{function:bar, line:12, source:res://script.gd}, {function:foo, line:9, source:res://script.gd}, {function:_ready, line:6, source:res://script.gd}]
				[/codeblock]
				[b]Note:[/b] [method get_stack] only works if the running instance is connected to a debugging server (i.e. an editor instance). [method get_stack] will not work in projects exported in release mode, or in projects exported in debug mode if not connected to a debugging server.
			</description>
		</method>
		<method name="hash">
			<return type="int" />
			<argument index="0" name="var" type="Variant" />
			<description>
				Returns the integer hash of the variable passed.
				[codeblock]
				print(hash("a")) # Prints 177670
				[/codeblock]
			</description>
		</method>
		<method name="inst2dict">
			<return type="Dictionary" />
			<argument index="0" name="inst" type="Object" />
			<description>
				Returns the passed instance converted to a dictionary (useful for serializing).
				[codeblock]
				var foo = "bar"
				func _ready():
				    var d = inst2dict(self)
				    print(d.keys())
				    print(d.values())
				[/codeblock]
				Prints out:
				[codeblock]
				[@subpath, @path, foo]
				[, res://test.gd, bar]
				[/codeblock]
			</description>
		</method>
		<method name="instance_from_id">
			<return type="Object" />
			<argument index="0" name="instance_id" type="int" />
			<description>
				Returns the Object that corresponds to [code]instance_id[/code]. All Objects have a unique instance ID.
				[codeblock]
				var foo = "bar"
				func _ready():
				    var id = get_instance_id()
				    var inst = instance_from_id(id)
				    print(inst.foo) # Prints bar
				[/codeblock]
			</description>
		</method>
		<method name="inverse_lerp">
			<return type="float" />
			<argument index="0" name="from" type="float" />
			<argument index="1" name="to" type="float" />
			<argument index="2" name="weight" type="float" />
			<description>
				Returns an interpolation or extrapolation factor considering the range specified in [code]from[/code] and [code]to[/code], and the interpolated value specified in [code]weight[/code]. The returned value will be between [code]0.0[/code] and [code]1.0[/code] if [code]weight[/code] is between [code]from[/code] and [code]to[/code] (inclusive). If [code]weight[/code] is located outside this range, then an extrapolation factor will be returned (return value lower than [code]0.0[/code] or greater than [code]1.0[/code]). Use [method clamp] on the result of [method inverse_lerp] if this is not desired.
				[codeblock]
				# The interpolation ratio in the `lerp()` call below is 0.75.
				var middle = lerp(20, 30, 0.75)
				# `middle` is now 27.5.
				# Now, we pretend to have forgotten the original ratio and want to get it back.
				var ratio = inverse_lerp(20, 30, 27.5)
				# `ratio` is now 0.75.
				[/codeblock]
				See also [method lerp] which performs the reverse of this operation, and [method range_lerp] to map a continuous series of values to another.
			</description>
		</method>
		<method name="is_equal_approx">
			<return type="bool" />
			<argument index="0" name="a" type="float" />
			<argument index="1" name="b" type="float" />
			<description>
				Returns [code]true[/code] if [code]a[/code] and [code]b[/code] are approximately equal to each other.
				Here, approximately equal means that [code]a[/code] and [code]b[/code] are within a small internal epsilon of each other, which scales with the magnitude of the numbers.
				Infinity values of the same sign are considered equal.
			</description>
		</method>
		<method name="is_inf">
			<return type="bool" />
			<argument index="0" name="s" type="float" />
			<description>
				Returns whether [code]s[/code] is an infinity value (either positive infinity or negative infinity).
			</description>
		</method>
		<method name="is_instance_valid">
			<return type="bool" />
			<argument index="0" name="instance" type="Object" />
			<description>
				Returns whether [code]instance[/code] is a valid object (e.g. has not been deleted from memory).
			</description>
		</method>
		<method name="is_nan">
			<return type="bool" />
			<argument index="0" name="s" type="float" />
			<description>
				Returns whether [code]s[/code] is a NaN ("Not a Number" or invalid) value.
			</description>
		</method>
		<method name="is_zero_approx">
			<return type="bool" />
			<argument index="0" name="s" type="float" />
			<description>
				Returns [code]true[/code] if [code]s[/code] is zero or almost zero.
				This method is faster than using [method is_equal_approx] with one value as zero.
			</description>
		</method>
		<method name="len">
			<return type="int" />
			<argument index="0" name="var" type="Variant" />
			<description>
				Returns length of Variant [code]var[/code]. Length is the character count of String, element count of Array, size of Dictionary, etc.
				[b]Note:[/b] Generates a fatal error if Variant can not provide a length.
				[codeblock]
				a = [1, 2, 3, 4]
				len(a) # Returns 4
				[/codeblock]
			</description>
		</method>
		<method name="lerp">
			<return type="Variant" />
			<argument index="0" name="from" type="Variant" />
			<argument index="1" name="to" type="Variant" />
			<argument index="2" name="weight" type="float" />
			<description>
				Linearly interpolates between two values by the factor defined in [code]weight[/code]. To perform interpolation, [code]weight[/code] should be between [code]0.0[/code] and [code]1.0[/code] (inclusive). However, values outside this range are allowed and can be used to perform [i]extrapolation[/i]. Use [method clamp] on the result of [method lerp] if this is not desired.
				If the [code]from[/code] and [code]to[/code] arguments are of type [int] or [float], the return value is a [float].
				If both are of the same vector type ([Vector2], [Vector3] or [Color]), the return value will be of the same type ([code]lerp[/code] then calls the vector type's [code]linear_interpolate[/code] method).
				[codeblock]
				lerp(0, 4, 0.75) # Returns 3.0
				lerp(Vector2(1, 5), Vector2(3, 2), 0.5) # Returns Vector2(2, 3.5)
				[/codeblock]
				See also [method inverse_lerp] which performs the reverse of this operation. To perform eased interpolation with [method lerp], combine it with [method ease] or [method smoothstep]. See also [method range_lerp] to map a continuous series of values to another.
			</description>
		</method>
		<method name="lerp_angle">
			<return type="float" />
			<argument index="0" name="from" type="float" />
			<argument index="1" name="to" type="float" />
			<argument index="2" name="weight" type="float" />
			<description>
				Linearly interpolates between two angles (in radians) by a normalized value.
				Similar to [method lerp], but interpolates correctly when the angles wrap around [constant @GDScript.TAU]. To perform eased interpolation with [method lerp_angle], combine it with [method ease] or [method smoothstep].
				[codeblock]
				extends Sprite
				var elapsed = 0.0
				func _process(delta):
				    var min_angle = deg2rad(0.0)
				    var max_angle = deg2rad(90.0)
				    rotation = lerp_angle(min_angle, max_angle, elapsed)
				    elapsed += delta
				[/codeblock]
				[b]Note:[/b] This method lerps through the shortest path between [code]from[/code] and [code]to[/code]. However, when these two angles are approximately [code]PI + k * TAU[/code] apart for any integer [code]k[/code], it's not obvious which way they lerp due to floating-point precision errors. For example, [code]lerp_angle(0, PI, weight)[/code] lerps counter-clockwise, while [code]lerp_angle(0, PI + 5 * TAU, weight)[/code] lerps clockwise.
			</description>
		</method>
		<method name="linear2db">
			<return type="float" />
			<argument index="0" name="nrg" type="float" />
			<description>
				Converts from linear energy to decibels (audio). This can be used to implement volume sliders that behave as expected (since volume isn't linear). Example:
				[codeblock]
				# "Slider" refers to a node that inherits Range such as HSlider or VSlider.
				# Its range must be configured to go from 0 to 1.
				# Change the bus name if you'd like to change the volume of a specific bus only.
				AudioServer.set_bus_volume_db(AudioServer.get_bus_index("Master"), linear2db($Slider.value))
				[/codeblock]
			</description>
		</method>
		<method name="load">
			<return type="Resource" />
			<argument index="0" name="path" type="String" />
			<description>
				Loads a resource from the filesystem located at [code]path[/code]. The resource is loaded on the method call (unless it's referenced already elsewhere, e.g. in another script or in the scene), which might cause slight delay, especially when loading scenes. To avoid unnecessary delays when loading something multiple times, either store the resource in a variable or use [method preload].
				[b]Note:[/b] Resource paths can be obtained by right-clicking on a resource in the FileSystem dock and choosing "Copy Path" or by dragging the file from the FileSystem dock into the script.
				[codeblock]
				# Load a scene called main located in the root of the project directory and cache it in a variable.
				var main = load("res://main.tscn") # main will contain a PackedScene resource.
				[/codeblock]
				[b]Important:[/b] The path must be absolute, a local path will just return [code]null[/code].
				This method is a simplified version of [method ResourceLoader.load], which can be used for more advanced scenarios.
			</description>
		</method>
		<method name="log">
			<return type="float" />
			<argument index="0" name="s" type="float" />
			<description>
				Returns the [url=https://en.wikipedia.org/wiki/Natural_logarithm]natural logarithm[/url] of [code]s[/code] (base [url=https://en.wikipedia.org/wiki/E_(mathematical_constant)][i]e[/i][/url], with [i]e[/i] being approximately 2.71828). This is the amount of time needed to reach a certain level of continuous growth.
				[b]Note:[/b] This is not the same as the "log" function on most calculators, which uses a base 10 logarithm. To use base 10 logarithm, use [code]log(x) / log(10)[/code].
				[codeblock]
				log(10) # Returns 2.302585
				[/codeblock]
				[b]Note:[/b] The logarithm of [code]0[/code] returns [code]-inf[/code], while negative values return [code]-nan[/code].
			</description>
		</method>
		<method name="max">
			<return type="float" />
			<argument index="0" name="a" type="float" />
			<argument index="1" name="b" type="float" />
			<description>
				Returns the maximum of two values.
				[codeblock]
				max(1, 2) # Returns 2
				max(-3.99, -4) # Returns -3.99
				[/codeblock]
			</description>
		</method>
		<method name="min">
			<return type="float" />
			<argument index="0" name="a" type="float" />
			<argument index="1" name="b" type="float" />
			<description>
				Returns the minimum of two values.
				[codeblock]
				min(1, 2) # Returns 1
				min(-3.99, -4) # Returns -4
				[/codeblock]
			</description>
		</method>
		<method name="move_toward">
			<return type="float" />
			<argument index="0" name="from" type="float" />
			<argument index="1" name="to" type="float" />
			<argument index="2" name="delta" type="float" />
			<description>
				Moves [code]from[/code] toward [code]to[/code] by the [code]delta[/code] value.
				Use a negative [code]delta[/code] value to move away.
				[codeblock]
				move_toward(5, 10, 4) # Returns 9
				move_toward(10, 5, 4) # Returns 6
				move_toward(10, 5, -1.5) # Returns 11.5
				[/codeblock]
			</description>
		</method>
		<method name="nearest_po2">
			<return type="int" />
			<argument index="0" name="value" type="int" />
			<description>
				Returns the nearest equal or larger power of 2 for integer [code]value[/code].
				In other words, returns the smallest value [code]a[/code] where [code]a = pow(2, n)[/code] such that [code]value &lt;= a[/code] for some non-negative integer [code]n[/code].
				[codeblock]
				nearest_po2(3) # Returns 4
				nearest_po2(4) # Returns 4
				nearest_po2(5) # Returns 8

				nearest_po2(0) # Returns 0 (this may not be what you expect)
				nearest_po2(-1) # Returns 0 (this may not be what you expect)
				[/codeblock]
				[b]WARNING:[/b] Due to the way it is implemented, this function returns [code]0[/code] rather than [code]1[/code] for non-positive values of [code]value[/code] (in reality, 1 is the smallest integer power of 2).
			</description>
		</method>
		<method name="ord">
			<return type="int" />
			<argument index="0" name="char" type="String" />
			<description>
				Returns an integer representing the Unicode code point of the given Unicode character [code]char[/code].
				[codeblock]
				a = ord("A") # a is 65
				a = ord("a") # a is 97
				a = ord("€") # a is 8364
				[/codeblock]
				This is the inverse of [method char].
			</description>
		</method>
		<method name="parse_json">
			<return type="Variant" />
			<argument index="0" name="json" type="String" />
			<description>
				Parse JSON text to a Variant. (Use [method typeof] to check if the Variant's type is what you expect.)
				[b]Note:[/b] The JSON specification does not define integer or float types, but only a [i]number[/i] type. Therefore, parsing a JSON text will convert all numerical values to [float] types.
				[b]Note:[/b] JSON objects do not preserve key order like Godot dictionaries, thus, you should not rely on keys being in a certain order if a dictionary is constructed from JSON. In contrast, JSON arrays retain the order of their elements:
				[codeblock]
				var p = JSON.parse('["hello", "world", "!"]')
				if typeof(p.result) == TYPE_ARRAY:
				    print(p.result[0]) # Prints "hello"
				else:
				    push_error("Unexpected results.")
				[/codeblock]
				See also [JSON] for an alternative way to parse JSON text.
			</description>
		</method>
		<method name="polar2cartesian">
			<return type="Vector2" />
			<argument index="0" name="r" type="float" />
			<argument index="1" name="th" type="float" />
			<description>
				Converts a 2D point expressed in the polar coordinate system (a distance from the origin [code]r[/code] and an angle [code]th[/code]) to the cartesian coordinate system (X and Y axis).
			</description>
		</method>
		<method name="posmod">
			<return type="int" />
			<argument index="0" name="a" type="int" />
			<argument index="1" name="b" type="int" />
			<description>
				Returns the integer modulus of [code]a/b[/code] that wraps equally in positive and negative.
				[codeblock]
				for i in range(-3, 4):
				    print("%2d %2d %2d" % [i, i % 3, posmod(i, 3)])
				[/codeblock]
				Produces:
				[codeblock]
				-3  0  0
				-2 -2  1
				-1 -1  2
				 0  0  0
				 1  1  1
				 2  2  2
				 3  0  0
				[/codeblock]
			</description>
		</method>
		<method name="pow">
			<return type="float" />
			<argument index="0" name="base" type="float" />
			<argument index="1" name="exp" type="float" />
			<description>
				Returns the result of [code]base[/code] raised to the power of [code]exp[/code].
				[codeblock]
				pow(2, 5) # Returns 32.0
				[/codeblock]
			</description>
		</method>
		<method name="preload">
			<return type="Resource" />
			<argument index="0" name="path" type="String" />
			<description>
				Returns a [Resource] from the filesystem located at [code]path[/code]. The resource is loaded during script parsing, i.e. is loaded with the script and [method preload] effectively acts as a reference to that resource. Note that the method requires a constant path. If you want to load a resource from a dynamic/variable path, use [method load].
				[b]Note:[/b] Resource paths can be obtained by right clicking on a resource in the Assets Panel and choosing "Copy Path" or by dragging the file from the FileSystem dock into the script.
				[codeblock]
				# Instance a scene.
				var diamond = preload("res://diamond.tscn").instance()
				[/codeblock]
			</description>
		</method>
		<method name="print" qualifiers="vararg">
			<return type="void" />
			<description>
				Converts one or more arguments of any type to string in the best way possible and prints them to the console.
				[codeblock]
				a = [1, 2, 3]
				print("a", "=", a) # Prints a=[1, 2, 3]
				[/codeblock]
				[b]Note:[/b] Consider using [method push_error] and [method push_warning] to print error and warning messages instead of [method print]. This distinguishes them from print messages used for debugging purposes, while also displaying a stack trace when an error or warning is printed.
			</description>
		</method>
		<method name="print_debug" qualifiers="vararg">
			<return type="void" />
			<description>
				Like [method print], but includes the current stack frame when running with the debugger turned on.
				Output in the console would look something like this:
				[codeblock]
				Test print
				   At: res://test.gd:15:_process()
				[/codeblock]
			</description>
		</method>
		<method name="print_stack">
			<return type="void" />
			<description>
				Prints a stack trace at the current code location. See also [method get_stack].
				Output in the console would look something like this:
				[codeblock]
				Frame 0 - res://test.gd:16 in function '_process'
				[/codeblock]
				[b]Note:[/b] [method print_stack] only works if the running instance is connected to a debugging server (i.e. an editor instance). [method print_stack] will not work in projects exported in release mode, or in projects exported in debug mode if not connected to a debugging server.
			</description>
		</method>
		<method name="printerr" qualifiers="vararg">
			<return type="void" />
			<description>
				Prints one or more arguments to strings in the best way possible to standard error line.
				[codeblock]
				printerr("prints to stderr")
				[/codeblock]
			</description>
		</method>
		<method name="printraw" qualifiers="vararg">
			<return type="void" />
			<description>
				Prints one or more arguments to strings in the best way possible to console. No newline is added at the end.
				[codeblock]
				printraw("A")
				printraw("B")
				# Prints AB
				[/codeblock]
				[b]Note:[/b] Due to limitations with Godot's built-in console, this only prints to the terminal. If you need to print in the editor, use another method, such as [method print].
			</description>
		</method>
		<method name="prints" qualifiers="vararg">
			<return type="void" />
			<description>
				Prints one or more arguments to the console with a space between each argument.
				[codeblock]
				prints("A", "B", "C") # Prints A B C
				[/codeblock]
			</description>
		</method>
		<method name="printt" qualifiers="vararg">
			<return type="void" />
			<description>
				Prints one or more arguments to the console with a tab between each argument.
				[codeblock]
				printt("A", "B", "C") # Prints A       B       C
				[/codeblock]
			</description>
		</method>
		<method name="push_error">
			<return type="void" />
			<argument index="0" name="message" type="String" />
			<description>
				Pushes an error message to Godot's built-in debugger and to the OS terminal.
				[codeblock]
				push_error("test error") # Prints "test error" to debugger and terminal as error call
				[/codeblock]
				[b]Note:[/b] Errors printed this way will not pause project execution. To print an error message and pause project execution in debug builds, use [code]assert(false, "test error")[/code] instead.
			</description>
		</method>
		<method name="push_warning">
			<return type="void" />
			<argument index="0" name="message" type="String" />
			<description>
				Pushes a warning message to Godot's built-in debugger and to the OS terminal.
				[codeblock]
				push_warning("test warning") # Prints "test warning" to debugger and terminal as warning call
				[/codeblock]
			</description>
		</method>
		<method name="rad2deg">
			<return type="float" />
			<argument index="0" name="rad" type="float" />
			<description>
				Converts an angle expressed in radians to degrees.
				[codeblock]
				rad2deg(0.523599) # Returns 30.0
				[/codeblock]
			</description>
		</method>
		<method name="rand_range">
			<return type="float" />
			<argument index="0" name="from" type="float" />
			<argument index="1" name="to" type="float" />
			<description>
				Returns a random floating point value between [code]from[/code] and [code]to[/code] (both endpoints inclusive).
				[codeblock]
				prints(rand_range(0, 1), rand_range(0, 1)) # Prints e.g. 0.135591 0.405263
				[/codeblock]
				[b]Note:[/b] This is equivalent to [code]randf() * (to - from) + from[/code].
			</description>
		</method>
		<method name="rand_seed">
			<return type="Array" />
			<argument index="0" name="seed" type="int" />
			<description>
				Random from seed: pass a [code]seed[/code], and an array with both number and new seed is returned. "Seed" here refers to the internal state of the pseudo random number generator. The internal state of the current implementation is 64 bits.
			</description>
		</method>
		<method name="randf">
			<return type="float" />
			<description>
				Returns a random floating point value on the interval [code][0, 1][/code].
				[codeblock]
				randf() # Returns e.g. 0.375671
				[/codeblock]
			</description>
		</method>
		<method name="randi">
			<return type="int" />
			<description>
				Returns a random unsigned 32-bit integer. Use remainder to obtain a random value in the interval [code][0, N - 1][/code] (where N is smaller than 2^32).
				[codeblock]
				randi()           # Returns random integer between 0 and 2^32 - 1
				randi() % 20      # Returns random integer between 0 and 19
				randi() % 100     # Returns random integer between 0 and 99
				randi() % 100 + 1 # Returns random integer between 1 and 100
				[/codeblock]
			</description>
		</method>
		<method name="randomize">
			<return type="void" />
			<description>
				Randomizes the seed (or the internal state) of the random number generator. Current implementation reseeds using a number based on time.
				[codeblock]
				func _ready():
				    randomize()
				[/codeblock]
			</description>
		</method>
		<method name="range" qualifiers="vararg">
			<return type="Array" />
			<description>
				Returns an array with the given range. [method range] can be called in three ways:
				[code]range(n: int)[/code]: Starts from 0, increases by steps of 1, and stops [i]before[/i] [code]n[/code]. The argument [code]n[/code] is [b]exclusive[/b].
				[code]range(b: int, n: int)[/code]: Starts from [code]b[/code], increases by steps of 1, and stops [i]before[/i] [code]n[/code]. The arguments [code]b[/code] and [code]n[/code] are [b]inclusive[/b] and [b]exclusive[/b], respectively.
				[code]range(b: int, n: int, s: int)[/code]: Starts from [code]b[/code], increases/decreases by steps of [code]s[/code], and stops [i]before[/i] [code]n[/code]. The arguments [code]b[/code] and [code]n[/code] are [b]inclusive[/b] and [b]exclusive[/b], respectively. The argument [code]s[/code] [b]can[/b] be negative, but not [code]0[/code]. If [code]s[/code] is [code]0[/code], an error message is printed.
				[method range] converts all arguments to [int] before processing.
				[b]Note:[/b] Returns an empty array if no value meets the value constraint (e.g. [code]range(2, 5, -1)[/code] or [code]range(5, 5, 1)[/code]).
				Examples:
				[codeblock]
				print(range(4))        # Prints [0, 1, 2, 3]
				print(range(2, 5))     # Prints [2, 3, 4]
				print(range(0, 6, 2))  # Prints [0, 2, 4]
				print(range(4, 1, -1)) # Prints [4, 3, 2]
				[/codeblock]
				To iterate over an [Array] backwards, use:
				[codeblock]
				var array = [3, 6, 9]
				for i in range(array.size(), 0, -1):
				    print(array[i - 1])
				[/codeblock]
				Output:
				[codeblock]
				9
				6
				3
				[/codeblock]
			</description>
		</method>
		<method name="range_lerp">
			<return type="float" />
			<argument index="0" name="value" type="float" />
			<argument index="1" name="istart" type="float" />
			<argument index="2" name="istop" type="float" />
			<argument index="3" name="ostart" type="float" />
			<argument index="4" name="ostop" type="float" />
			<description>
				Maps a [code]value[/code] from range [code][istart, istop][/code] to [code][ostart, ostop][/code]. See also [method lerp] and [method inverse_lerp]. If [code]value[/code] is outside [code][istart, istop][/code], then the resulting value will also be outside [code][ostart, ostop][/code]. Use [method clamp] on the result of [method range_lerp] if this is not desired.
				[codeblock]
				range_lerp(75, 0, 100, -1, 1) # Returns 0.5
				[/codeblock]
				For complex use cases where you need multiple ranges, consider using [Curve] or [Gradient] instead.
			</description>
		</method>
		<method name="round">
			<return type="float" />
			<argument index="0" name="s" type="float" />
			<description>
				Rounds [code]s[/code] to the nearest whole number, with halfway cases rounded away from zero.
				[codeblock]
				a = round(2.49) # a is 2.0
				a = round(2.5)  # a is 3.0
				a = round(2.51) # a is 3.0
				[/codeblock]
				See also [method floor], [method ceil], [method stepify], and [int].
			</description>
		</method>
		<method name="seed">
			<return type="void" />
			<argument index="0" name="seed" type="int" />
			<description>
				Sets seed for the random number generator.
				[codeblock]
				my_seed = "Godot Rocks"
				seed(my_seed.hash())
				[/codeblock]
			</description>
		</method>
		<method name="sign">
			<return type="float" />
			<argument index="0" name="s" type="float" />
			<description>
				Returns the sign of [code]s[/code]: -1 or 1. Returns 0 if [code]s[/code] is 0.
				[codeblock]
				sign(-6) # Returns -1
				sign(0)  # Returns 0
				sign(6)  # Returns 1
				[/codeblock]
			</description>
		</method>
		<method name="sin">
			<return type="float" />
			<argument index="0" name="s" type="float" />
			<description>
				Returns the sine of angle [code]s[/code] in radians.
				[codeblock]
				sin(0.523599) # Returns 0.5
				[/codeblock]
			</description>
		</method>
		<method name="sinh">
			<return type="float" />
			<argument index="0" name="s" type="float" />
			<description>
				Returns the hyperbolic sine of [code]s[/code].
				[codeblock]
				a = log(2.0) # Returns 0.693147
				sinh(a) # Returns 0.75
				[/codeblock]
			</description>
		</method>
		<method name="smoothstep">
			<return type="float" />
			<argument index="0" name="from" type="float" />
			<argument index="1" name="to" type="float" />
			<argument index="2" name="s" type="float" />
			<description>
				Returns the result of smoothly interpolating the value of [code]s[/code] between [code]0[/code] and [code]1[/code], based on the where [code]s[/code] lies with respect to the edges [code]from[/code] and [code]to[/code].
				The return value is [code]0[/code] if [code]s &lt;= from[/code], and [code]1[/code] if [code]s &gt;= to[/code]. If [code]s[/code] lies between [code]from[/code] and [code]to[/code], the returned value follows an S-shaped curve that maps [code]s[/code] between [code]0[/code] and [code]1[/code].
				This S-shaped curve is the cubic Hermite interpolator, given by [code]f(y) = 3*y^2 - 2*y^3[/code] where [code]y = (x-from) / (to-from)[/code].
				[codeblock]
				smoothstep(0, 2, -5.0) # Returns 0.0
				smoothstep(0, 2, 0.5) # Returns 0.15625
				smoothstep(0, 2, 1.0) # Returns 0.5
				smoothstep(0, 2, 2.0) # Returns 1.0
				[/codeblock]
				Compared to [method ease] with a curve value of [code]-1.6521[/code], [method smoothstep] returns the smoothest possible curve with no sudden changes in the derivative. If you need to perform more advanced transitions, use [Tween] or [AnimationPlayer].
				[url=https://raw.githubusercontent.com/godotengine/godot-docs/3.6/img/smoothstep_ease_comparison.png]Comparison between smoothstep() and ease(x, -1.6521) return values[/url]
			</description>
		</method>
		<method name="sqrt">
			<return type="float" />
			<argument index="0" name="s" type="float" />
			<description>
				Returns the square root of [code]s[/code], where [code]s[/code] is a non-negative number.
				[codeblock]
				sqrt(9) # Returns 3
				[/codeblock]
				[b]Note:[/b] Negative values of [code]s[/code] return NaN. If you need negative inputs, use [code]System.Numerics.Complex[/code] in C#.
			</description>
		</method>
		<method name="step_decimals">
			<return type="int" />
			<argument index="0" name="step" type="float" />
			<description>
				Returns the position of the first non-zero digit, after the decimal point. Note that the maximum return value is 10, which is a design decision in the implementation.
				[codeblock]
				n = step_decimals(5)           # n is 0
				n = step_decimals(1.0005)      # n is 4
				n = step_decimals(0.000000005) # n is 9
				[/codeblock]
			</description>
		</method>
		<method name="stepify">
			<return type="float" />
			<argument index="0" name="s" type="float" />
			<argument index="1" name="step" type="float" />
			<description>
				Snaps float value [code]s[/code] to a given [code]step[/code]. This can also be used to round a floating point number to an arbitrary number of decimals.
				[codeblock]
				stepify(100, 32) # Returns 96.0
				stepify(3.14159, 0.01) # Returns 3.14
				[/codeblock]
				See also [method ceil], [method floor], [method round], and [int].
			</description>
		</method>
		<method name="str" qualifiers="vararg">
			<return type="String" />
			<description>
				Converts one or more arguments of any type to string in the best way possible.
				[codeblock]
				var a = [10, 20, 30]
				var b = str(a);
				len(a) # Returns 3
				len(b) # Returns 12
				[/codeblock]
			</description>
		</method>
		<method name="str2var">
			<return type="Variant" />
			<argument index="0" name="string" type="String" />
			<description>
				Converts a formatted string that was returned by [method var2str] to the original value.
				[codeblock]
				a = '{ "a": 1, "b": 2 }'
				b = str2var(a)
				print(b["a"]) # Prints 1
				[/codeblock]
			</description>
		</method>
		<method name="tan">
			<return type="float" />
			<argument index="0" name="s" type="float" />
			<description>
				Returns the tangent of angle [code]s[/code] in radians.
				[codeblock]
				tan(deg2rad(45)) # Returns 1
				[/codeblock]
			</description>
		</method>
		<method name="tanh">
			<return type="float" />
			<argument index="0" name="s" type="float" />
			<description>
				Returns the hyperbolic tangent of [code]s[/code].
				[codeblock]
				a = log(2.0) # a is 0.693147
				b = tanh(a)  # b is 0.6
				[/codeblock]
			</description>
		</method>
		<method name="to_json">
			<return type="String" />
			<argument index="0" name="var" type="Variant" />
			<description>
				Converts a [Variant] [code]var[/code] to JSON text and return the result. Useful for serializing data to store or send over the network.
				[codeblock]
				# Both numbers below are integers.
				a = { "a": 1, "b": 2 }
				b = to_json(a)
				print(b) # {"a":1, "b":2}
				# Both numbers above are floats, even if they display without any decimal places.
				[/codeblock]
				[b]Note:[/b] The JSON specification does not define integer or float types, but only a [i]number[/i] type. Therefore, converting a [Variant] to JSON text will convert all numerical values to [float] types.
				See also [JSON] for an alternative way to convert a [Variant] to JSON text.
			</description>
		</method>
		<method name="type_exists">
			<return type="bool" />
			<argument index="0" name="type" type="String" />
			<description>
				Returns whether the given class exists in [ClassDB].
				[codeblock]
				type_exists("Sprite") # Returns true
				type_exists("Variant") # Returns false
				[/codeblock]
			</description>
		</method>
		<method name="typeof">
			<return type="int" />
			<argument index="0" name="what" type="Variant" />
			<description>
				Returns the internal type of the given Variant object, using the [enum Variant.Type] values.
				[codeblock]
				p = parse_json('["a", "b", "c"]')
				if typeof(p) == TYPE_ARRAY:
				    print(p[0]) # Prints a
				else:
				    print("unexpected results")
				[/codeblock]
			</description>
		</method>
		<method name="validate_json">
			<return type="String" />
			<argument index="0" name="json" type="String" />
			<description>
				Checks that [code]json[/code] is valid JSON data. Returns an empty string if valid, or an error message otherwise.
				[codeblock]
				j = to_json([1, 2, 3])
				v = validate_json(j)
				if not v:
				    print("Valid JSON.")
				else:
				    push_error("Invalid JSON: " + v)
				[/codeblock]
			</description>
		</method>
		<method name="var2bytes">
			<return type="PoolByteArray" />
			<argument index="0" name="var" type="Variant" />
			<argument index="1" name="full_objects" type="bool" default="false" />
			<description>
				Encodes a variable value to a byte array. When [code]full_objects[/code] is [code]true[/code] encoding objects is allowed (and can potentially include code).
			</description>
		</method>
		<method name="var2str">
			<return type="String" />
			<argument index="0" name="var" type="Variant" />
			<description>
				Converts a Variant [code]var[/code] to a formatted string that can later be parsed using [method str2var].
				[codeblock]
				a = { "a": 1, "b": 2 }
				print(var2str(a))
				[/codeblock]
				prints
				[codeblock]
				{
				"a": 1,
				"b": 2
				}
				[/codeblock]
			</description>
		</method>
		<method name="weakref">
			<return type="WeakRef" />
			<argument index="0" name="obj" type="Object" />
			<description>
				Returns a weak reference to an object.
				A weak reference to an object is not enough to keep the object alive: when the only remaining references to a referent are weak references, garbage collection is free to destroy the referent and reuse its memory for something else. However, until the object is actually destroyed the weak reference may return the object even if there are no strong references to it.
			</description>
		</method>
		<method name="wrapf">
			<return type="float" />
			<argument index="0" name="value" type="float" />
			<argument index="1" name="min" type="float" />
			<argument index="2" name="max" type="float" />
			<description>
				Wraps float [code]value[/code] between [code]min[/code] and [code]max[/code].
				Usable for creating loop-alike behavior or infinite surfaces.
				[codeblock]
				# Infinite loop between 5.0 and 9.9
				value = wrapf(value + 0.1, 5.0, 10.0)
				[/codeblock]
				[codeblock]
				# Infinite rotation (in radians)
				angle = wrapf(angle + 0.1, 0.0, TAU)
				[/codeblock]
				[codeblock]
				# Infinite rotation (in radians)
				angle = wrapf(angle + 0.1, -PI, PI)
				[/codeblock]
				[b]Note:[/b] If [code]min[/code] is [code]0[/code], this is equivalent to [method fposmod], so prefer using that instead.
				[code]wrapf[/code] is more flexible than using the [method fposmod] approach by giving the user control over the minimum value.
			</description>
		</method>
		<method name="wrapi">
			<return type="int" />
			<argument index="0" name="value" type="int" />
			<argument index="1" name="min" type="int" />
			<argument index="2" name="max" type="int" />
			<description>
				Wraps integer [code]value[/code] between [code]min[/code] and [code]max[/code].
				Usable for creating loop-alike behavior or infinite surfaces.
				[codeblock]
				# Infinite loop between 5 and 9
				frame = wrapi(frame + 1, 5, 10)
				[/codeblock]
				[codeblock]
				# result is -2
				var result = wrapi(-6, -5, -1)
				[/codeblock]
				[b]Note:[/b] If [code]min[/code] is [code]0[/code], this is equivalent to [method posmod], so prefer using that instead.
				[code]wrapi[/code] is more flexible than using the [method posmod] approach by giving the user control over the minimum value.
			</description>
		</method>
		<method name="yield">
			<return type="GDScriptFunctionState" />
			<argument index="0" name="object" type="Object" default="null" />
			<argument index="1" name="signal" type="String" default="&quot;&quot;" />
			<description>
				Stops the function execution and returns the current suspended state to the calling function.
				From the caller, call [method GDScriptFunctionState.resume] on the state to resume execution. This invalidates the state. Within the resumed function, [code]yield()[/code] returns whatever was passed to the [code]resume()[/code] function call.
				If passed an object and a signal, the execution is resumed when the object emits the given signal. In this case, [code]yield()[/code] returns the argument passed to [code]emit_signal()[/code] if the signal takes only one argument, or an array containing all the arguments passed to [code]emit_signal()[/code] if the signal takes multiple arguments.
				You can also use [code]yield[/code] to wait for a function to finish:
				[codeblock]
				func _ready():
				    yield(countdown(), "completed") # waiting for the countdown() function to complete
				    print('Ready')

				func countdown():
				    yield(get_tree(), "idle_frame") # returns a GDScriptFunctionState object to _ready()
				    print(3)
				    yield(get_tree().create_timer(1.0), "timeout")
				    print(2)
				    yield(get_tree().create_timer(1.0), "timeout")
				    print(1)
				    yield(get_tree().create_timer(1.0), "timeout")

				# prints:
				# 3
				# 2
				# 1
				# Ready
				[/codeblock]
				When yielding on a function, the [code]completed[/code] signal will be emitted automatically when the function returns. It can, therefore, be used as the [code]signal[/code] parameter of the [code]yield[/code] method to resume.
				In order to yield on a function, the resulting function should also return a [code]GDScriptFunctionState[/code]. Notice [code]yield(get_tree(), "idle_frame")[/code] from the above example.
			</description>
		</method>
	</methods>
	<constants>
		<constant name="PI" value="3.141593">
			Constant that represents how many times the diameter of a circle fits around its perimeter. This is equivalent to [code]TAU / 2[/code].
		</constant>
		<constant name="TAU" value="6.283185">
			The circle constant, the circumference of the unit circle in radians. This is equivalent to [code]PI * 2[/code], or 360 degrees in rotations.
		</constant>
		<constant name="INF" value="inf">
			Positive floating-point infinity. This is the result of floating-point division when the divisor is [code]0.0[/code]. For negative infinity, use [code]-INF[/code]. Dividing by [code]-0.0[/code] will result in negative infinity if the numerator is positive, so dividing by [code]0.0[/code] is not the same as dividing by [code]-0.0[/code] (despite [code]0.0 == -0.0[/code] returning [code]true[/code]).
			[b]Note:[/b] Numeric infinity is only a concept with floating-point numbers, and has no equivalent for integers. Dividing an integer number by [code]0[/code] will not result in [constant INF] and will result in a run-time error instead.
		</constant>
		<constant name="NAN" value="nan">
			"Not a Number", an invalid floating-point value. [constant NAN] has special properties, including that it is not equal to itself ([code]NAN == NAN[/code] returns [code]false[/code]). It is output by some invalid operations, such as dividing floating-point [code]0.0[/code] by [code]0.0[/code].
			[b]Note:[/b] "Not a Number" is only a concept with floating-point numbers, and has no equivalent for integers. Dividing an integer [code]0[/code] by [code]0[/code] will not result in [constant NAN] and will result in a run-time error instead.
		</constant>
	</constants>
</class>