1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2018 Erwin Coumans http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
///This file was written by Erwin Coumans
#include "btMultiBodySphericalJointLimit.h"
#include "btMultiBody.h"
#include "btMultiBodyLinkCollider.h"
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
#include "LinearMath/btTransformUtil.h"
#include "BulletDynamics/ConstraintSolver/btGeneric6DofSpring2Constraint.h"
#include "LinearMath/btIDebugDraw.h"
btMultiBodySphericalJointLimit::btMultiBodySphericalJointLimit(btMultiBody* body, int link,
btScalar swingxRange,
btScalar swingyRange,
btScalar twistRange,
btScalar maxAppliedImpulse)
: btMultiBodyConstraint(body, body, link, body->getLink(link).m_parent, 3, true, MULTIBODY_CONSTRAINT_SPHERICAL_LIMIT),
m_desiredVelocity(0, 0, 0),
m_desiredPosition(0,0,0,1),
m_use_multi_dof_params(false),
m_kd(1., 1., 1.),
m_kp(0.2, 0.2, 0.2),
m_erp(1),
m_rhsClamp(SIMD_INFINITY),
m_maxAppliedImpulseMultiDof(maxAppliedImpulse, maxAppliedImpulse, maxAppliedImpulse),
m_pivotA(m_bodyA->getLink(link).m_eVector),
m_pivotB(m_bodyB->getLink(link).m_eVector),
m_swingxRange(swingxRange),
m_swingyRange(swingyRange),
m_twistRange(twistRange)
{
m_maxAppliedImpulse = maxAppliedImpulse;
}
void btMultiBodySphericalJointLimit::finalizeMultiDof()
{
allocateJacobiansMultiDof();
// note: we rely on the fact that data.m_jacobians are
// always initialized to zero by the Constraint ctor
int linkDoF = 0;
unsigned int offset = 6 + (m_bodyA->getLink(m_linkA).m_dofOffset + linkDoF);
// row 0: the lower bound
// row 0: the lower bound
jacobianA(0)[offset] = 1;
jacobianB(1)[offset] = -1;
m_numDofsFinalized = m_jacSizeBoth;
}
btMultiBodySphericalJointLimit::~btMultiBodySphericalJointLimit()
{
}
int btMultiBodySphericalJointLimit::getIslandIdA() const
{
if (this->m_linkA < 0)
{
btMultiBodyLinkCollider* col = m_bodyA->getBaseCollider();
if (col)
return col->getIslandTag();
}
else
{
if (m_bodyA->getLink(m_linkA).m_collider)
{
return m_bodyA->getLink(m_linkA).m_collider->getIslandTag();
}
}
return -1;
}
int btMultiBodySphericalJointLimit::getIslandIdB() const
{
if (m_linkB < 0)
{
btMultiBodyLinkCollider* col = m_bodyB->getBaseCollider();
if (col)
return col->getIslandTag();
}
else
{
if (m_bodyB->getLink(m_linkB).m_collider)
{
return m_bodyB->getLink(m_linkB).m_collider->getIslandTag();
}
}
return -1;
}
void btMultiBodySphericalJointLimit::createConstraintRows(btMultiBodyConstraintArray& constraintRows,
btMultiBodyJacobianData& data,
const btContactSolverInfo& infoGlobal)
{
// only positions need to be updated -- data.m_jacobians and force
// directions were set in the ctor and never change.
if (m_numDofsFinalized != m_jacSizeBoth)
{
finalizeMultiDof();
}
//don't crash
if (m_numDofsFinalized != m_jacSizeBoth)
return;
if (m_maxAppliedImpulse == 0.f)
return;
const btScalar posError = 0;
const btVector3 zero(0, 0, 0);
btVector3 axis[3] = { btVector3(1, 0, 0), btVector3(0, 1, 0), btVector3(0, 0, 1) };
btQuaternion currentQuat(m_bodyA->getJointPosMultiDof(m_linkA)[0],
m_bodyA->getJointPosMultiDof(m_linkA)[1],
m_bodyA->getJointPosMultiDof(m_linkA)[2],
m_bodyA->getJointPosMultiDof(m_linkA)[3]);
btQuaternion refQuat = m_desiredPosition;
btVector3 vTwist(0,0,1);
btVector3 vConeNoTwist = quatRotate(currentQuat, vTwist);
vConeNoTwist.normalize();
btQuaternion qABCone = shortestArcQuat(vTwist, vConeNoTwist);
qABCone.normalize();
btQuaternion qABTwist = qABCone.inverse() * currentQuat;
qABTwist.normalize();
btQuaternion desiredQuat = qABTwist;
btQuaternion relRot = currentQuat.inverse() * desiredQuat;
btVector3 angleDiff;
btGeneric6DofSpring2Constraint::matrixToEulerXYZ(btMatrix3x3(relRot), angleDiff);
btScalar limitRanges[3] = {m_swingxRange, m_swingyRange, m_twistRange};
/// twist axis/angle
btQuaternion qMinTwist = qABTwist;
btScalar twistAngle = qABTwist.getAngle();
if (twistAngle > SIMD_PI) // long way around. flip quat and recalculate.
{
qMinTwist = -(qABTwist);
twistAngle = qMinTwist.getAngle();
}
btVector3 vTwistAxis = btVector3(qMinTwist.x(), qMinTwist.y(), qMinTwist.z());
if (twistAngle > SIMD_EPSILON)
vTwistAxis.normalize();
if (vTwistAxis.dot(vTwist)<0)
twistAngle*=-1.;
angleDiff[2] = twistAngle;
for (int row = 0; row < getNumRows(); row++)
{
btScalar allowed = limitRanges[row];
btScalar damp = 1;
if((angleDiff[row]>-allowed)&&(angleDiff[row]<allowed))
{
angleDiff[row]=0;
damp=0;
} else
{
if (angleDiff[row]>allowed)
{
angleDiff[row]-=allowed;
}
if (angleDiff[row]<-allowed)
{
angleDiff[row]+=allowed;
}
}
int dof = row;
btScalar currentVelocity = m_bodyA->getJointVelMultiDof(m_linkA)[dof];
btScalar desiredVelocity = this->m_desiredVelocity[row];
double kd = m_use_multi_dof_params ? m_kd[row % 3] : m_kd[0];
btScalar velocityError = (desiredVelocity - currentVelocity) * kd;
btMatrix3x3 frameAworld;
frameAworld.setIdentity();
frameAworld = m_bodyA->localFrameToWorld(m_linkA, frameAworld);
btScalar posError = 0;
{
btAssert(m_bodyA->getLink(m_linkA).m_jointType == btMultibodyLink::eSpherical);
switch (m_bodyA->getLink(m_linkA).m_jointType)
{
case btMultibodyLink::eSpherical:
{
btVector3 constraintNormalAng = frameAworld.getColumn(row % 3);
double kp = m_use_multi_dof_params ? m_kp[row % 3] : m_kp[0];
posError = kp*angleDiff[row % 3];
double max_applied_impulse = m_use_multi_dof_params ? m_maxAppliedImpulseMultiDof[row % 3] : m_maxAppliedImpulse;
//should multiply by time step
//max_applied_impulse *= infoGlobal.m_timeStep
double min_applied_impulse = -max_applied_impulse;
if (posError>0)
max_applied_impulse=0;
else
min_applied_impulse=0;
if (btFabs(posError)>SIMD_EPSILON)
{
btMultiBodySolverConstraint& constraintRow = constraintRows.expandNonInitializing();
fillMultiBodyConstraint(constraintRow, data, 0, 0, constraintNormalAng,
zero, zero, zero,//pure angular, so zero out linear parts
posError,
infoGlobal,
min_applied_impulse, max_applied_impulse, true,
1.0, false, 0, 0,
damp);
constraintRow.m_orgConstraint = this;
constraintRow.m_orgDofIndex = row;
}
break;
}
default:
{
btAssert(0);
}
};
}
}
}
void btMultiBodySphericalJointLimit::debugDraw(class btIDebugDraw* drawer)
{
btTransform tr;
tr.setIdentity();
if (m_bodyB)
{
btVector3 pivotBworld = m_bodyB->localPosToWorld(m_linkB, m_pivotB);
tr.setOrigin(pivotBworld);
drawer->drawTransform(tr, 0.1);
}
}
|