1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
|
// run
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package orderedmap provides an ordered map, implemented as a binary tree.
package main
import (
"bytes"
"context"
"fmt"
"runtime"
)
type Ordered interface {
~int | ~int8 | ~int16 | ~int32 | ~int64 |
~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr |
~float32 | ~float64 |
~string
}
// _Map is an ordered map.
type _Map[K, V any] struct {
root *node[K, V]
compare func(K, K) int
}
// node is the type of a node in the binary tree.
type node[K, V any] struct {
key K
val V
left, right *node[K, V]
}
// _New returns a new map. It takes a comparison function that compares two
// keys and returns < 0 if the first is less, == 0 if they are equal,
// > 0 if the first is greater.
func _New[K, V any](compare func(K, K) int) *_Map[K, V] {
return &_Map[K, V]{compare: compare}
}
// _NewOrdered returns a new map whose key is an ordered type.
// This is like _New, but does not require providing a compare function.
// The map compare function uses the obvious key ordering.
func _NewOrdered[K Ordered, V any]() *_Map[K, V] {
return _New[K, V](func(k1, k2 K) int {
switch {
case k1 < k2:
return -1
case k1 == k2:
return 0
default:
return 1
}
})
}
// find looks up key in the map, returning either a pointer to the slot of the
// node holding key, or a pointer to the slot where should a node would go.
func (m *_Map[K, V]) find(key K) **node[K, V] {
pn := &m.root
for *pn != nil {
switch cmp := m.compare(key, (*pn).key); {
case cmp < 0:
pn = &(*pn).left
case cmp > 0:
pn = &(*pn).right
default:
return pn
}
}
return pn
}
// Insert inserts a new key/value into the map.
// If the key is already present, the value is replaced.
// Reports whether this is a new key.
func (m *_Map[K, V]) Insert(key K, val V) bool {
pn := m.find(key)
if *pn != nil {
(*pn).val = val
return false
}
*pn = &node[K, V]{key: key, val: val}
return true
}
// Find returns the value associated with a key, or the zero value
// if not present. The found result reports whether the key was found.
func (m *_Map[K, V]) Find(key K) (V, bool) {
pn := m.find(key)
if *pn == nil {
var zero V
return zero, false
}
return (*pn).val, true
}
// keyValue is a pair of key and value used while iterating.
type keyValue[K, V any] struct {
key K
val V
}
// iterate returns an iterator that traverses the map.
func (m *_Map[K, V]) Iterate() *_Iterator[K, V] {
sender, receiver := _Ranger[keyValue[K, V]]()
var f func(*node[K, V]) bool
f = func(n *node[K, V]) bool {
if n == nil {
return true
}
// Stop the traversal if Send fails, which means that
// nothing is listening to the receiver.
return f(n.left) &&
sender.Send(context.Background(), keyValue[K, V]{n.key, n.val}) &&
f(n.right)
}
go func() {
f(m.root)
sender.Close()
}()
return &_Iterator[K, V]{receiver}
}
// _Iterator is used to iterate over the map.
type _Iterator[K, V any] struct {
r *_Receiver[keyValue[K, V]]
}
// Next returns the next key and value pair, and a boolean that reports
// whether they are valid. If not valid, we have reached the end of the map.
func (it *_Iterator[K, V]) Next() (K, V, bool) {
keyval, ok := it.r.Next(context.Background())
if !ok {
var zerok K
var zerov V
return zerok, zerov, false
}
return keyval.key, keyval.val, true
}
func TestMap() {
m := _New[[]byte, int](bytes.Compare)
if _, found := m.Find([]byte("a")); found {
panic(fmt.Sprintf("unexpectedly found %q in empty map", []byte("a")))
}
if !m.Insert([]byte("a"), 'a') {
panic(fmt.Sprintf("key %q unexpectedly already present", []byte("a")))
}
if !m.Insert([]byte("c"), 'c') {
panic(fmt.Sprintf("key %q unexpectedly already present", []byte("c")))
}
if !m.Insert([]byte("b"), 'b') {
panic(fmt.Sprintf("key %q unexpectedly already present", []byte("b")))
}
if m.Insert([]byte("c"), 'x') {
panic(fmt.Sprintf("key %q unexpectedly not present", []byte("c")))
}
if v, found := m.Find([]byte("a")); !found {
panic(fmt.Sprintf("did not find %q", []byte("a")))
} else if v != 'a' {
panic(fmt.Sprintf("key %q returned wrong value %c, expected %c", []byte("a"), v, 'a'))
}
if v, found := m.Find([]byte("c")); !found {
panic(fmt.Sprintf("did not find %q", []byte("c")))
} else if v != 'x' {
panic(fmt.Sprintf("key %q returned wrong value %c, expected %c", []byte("c"), v, 'x'))
}
if _, found := m.Find([]byte("d")); found {
panic(fmt.Sprintf("unexpectedly found %q", []byte("d")))
}
gather := func(it *_Iterator[[]byte, int]) []int {
var r []int
for {
_, v, ok := it.Next()
if !ok {
return r
}
r = append(r, v)
}
}
got := gather(m.Iterate())
want := []int{'a', 'b', 'x'}
if !_SliceEqual(got, want) {
panic(fmt.Sprintf("Iterate returned %v, want %v", got, want))
}
}
func main() {
TestMap()
}
// _Equal reports whether two slices are equal: the same length and all
// elements equal. All floating point NaNs are considered equal.
func _SliceEqual[Elem comparable](s1, s2 []Elem) bool {
if len(s1) != len(s2) {
return false
}
for i, v1 := range s1 {
v2 := s2[i]
if v1 != v2 {
isNaN := func(f Elem) bool { return f != f }
if !isNaN(v1) || !isNaN(v2) {
return false
}
}
}
return true
}
// Ranger returns a Sender and a Receiver. The Receiver provides a
// Next method to retrieve values. The Sender provides a Send method
// to send values and a Close method to stop sending values. The Next
// method indicates when the Sender has been closed, and the Send
// method indicates when the Receiver has been freed.
//
// This is a convenient way to exit a goroutine sending values when
// the receiver stops reading them.
func _Ranger[Elem any]() (*_Sender[Elem], *_Receiver[Elem]) {
c := make(chan Elem)
d := make(chan struct{})
s := &_Sender[Elem]{
values: c,
done: d,
}
r := &_Receiver[Elem]{
values: c,
done: d,
}
runtime.SetFinalizer(r, (*_Receiver[Elem]).finalize)
return s, r
}
// A _Sender is used to send values to a Receiver.
type _Sender[Elem any] struct {
values chan<- Elem
done <-chan struct{}
}
// Send sends a value to the receiver. It reports whether the value was sent.
// The value will not be sent if the context is closed or the receiver
// is freed.
func (s *_Sender[Elem]) Send(ctx context.Context, v Elem) bool {
select {
case <-ctx.Done():
return false
case s.values <- v:
return true
case <-s.done:
return false
}
}
// Close tells the receiver that no more values will arrive.
// After Close is called, the _Sender may no longer be used.
func (s *_Sender[Elem]) Close() {
close(s.values)
}
// A _Receiver receives values from a _Sender.
type _Receiver[Elem any] struct {
values <-chan Elem
done chan<- struct{}
}
// Next returns the next value from the channel. The bool result indicates
// whether the value is valid.
func (r *_Receiver[Elem]) Next(ctx context.Context) (v Elem, ok bool) {
select {
case <-ctx.Done():
case v, ok = <-r.values:
}
return v, ok
}
// finalize is a finalizer for the receiver.
func (r *_Receiver[Elem]) finalize() {
close(r.done)
}
|