| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 
 | // Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
import (
	"cmd/internal/src"
)
// findlive returns the reachable blocks and live values in f.
// The caller should call f.Cache.freeBoolSlice(live) when it is done with it.
func findlive(f *Func) (reachable []bool, live []bool) {
	reachable = ReachableBlocks(f)
	var order []*Value
	live, order = liveValues(f, reachable)
	f.Cache.freeValueSlice(order)
	return
}
// ReachableBlocks returns the reachable blocks in f.
func ReachableBlocks(f *Func) []bool {
	reachable := make([]bool, f.NumBlocks())
	reachable[f.Entry.ID] = true
	p := make([]*Block, 0, 64) // stack-like worklist
	p = append(p, f.Entry)
	for len(p) > 0 {
		// Pop a reachable block
		b := p[len(p)-1]
		p = p[:len(p)-1]
		// Mark successors as reachable
		s := b.Succs
		if b.Kind == BlockFirst {
			s = s[:1]
		}
		for _, e := range s {
			c := e.b
			if int(c.ID) >= len(reachable) {
				f.Fatalf("block %s >= f.NumBlocks()=%d?", c, len(reachable))
			}
			if !reachable[c.ID] {
				reachable[c.ID] = true
				p = append(p, c) // push
			}
		}
	}
	return reachable
}
// liveValues returns the live values in f and a list of values that are eligible
// to be statements in reversed data flow order.
// The second result is used to help conserve statement boundaries for debugging.
// reachable is a map from block ID to whether the block is reachable.
// The caller should call f.Cache.freeBoolSlice(live) and f.Cache.freeValueSlice(liveOrderStmts).
// when they are done with the return values.
func liveValues(f *Func, reachable []bool) (live []bool, liveOrderStmts []*Value) {
	live = f.Cache.allocBoolSlice(f.NumValues())
	liveOrderStmts = f.Cache.allocValueSlice(f.NumValues())[:0]
	// After regalloc, consider all values to be live.
	// See the comment at the top of regalloc.go and in deadcode for details.
	if f.RegAlloc != nil {
		for i := range live {
			live[i] = true
		}
		return
	}
	// Record all the inline indexes we need
	var liveInlIdx map[int]bool
	pt := f.Config.ctxt.PosTable
	for _, b := range f.Blocks {
		for _, v := range b.Values {
			i := pt.Pos(v.Pos).Base().InliningIndex()
			if i < 0 {
				continue
			}
			if liveInlIdx == nil {
				liveInlIdx = map[int]bool{}
			}
			liveInlIdx[i] = true
		}
		i := pt.Pos(b.Pos).Base().InliningIndex()
		if i < 0 {
			continue
		}
		if liveInlIdx == nil {
			liveInlIdx = map[int]bool{}
		}
		liveInlIdx[i] = true
	}
	// Find all live values
	q := f.Cache.allocValueSlice(f.NumValues())[:0]
	defer f.Cache.freeValueSlice(q)
	// Starting set: all control values of reachable blocks are live.
	// Calls are live (because callee can observe the memory state).
	for _, b := range f.Blocks {
		if !reachable[b.ID] {
			continue
		}
		for _, v := range b.ControlValues() {
			if !live[v.ID] {
				live[v.ID] = true
				q = append(q, v)
				if v.Pos.IsStmt() != src.PosNotStmt {
					liveOrderStmts = append(liveOrderStmts, v)
				}
			}
		}
		for _, v := range b.Values {
			if (opcodeTable[v.Op].call || opcodeTable[v.Op].hasSideEffects || opcodeTable[v.Op].nilCheck) && !live[v.ID] {
				live[v.ID] = true
				q = append(q, v)
				if v.Pos.IsStmt() != src.PosNotStmt {
					liveOrderStmts = append(liveOrderStmts, v)
				}
			}
			if v.Op == OpInlMark {
				if !liveInlIdx[int(v.AuxInt)] {
					// We don't need marks for bodies that
					// have been completely optimized away.
					// TODO: save marks only for bodies which
					// have a faulting instruction or a call?
					continue
				}
				live[v.ID] = true
				q = append(q, v)
				if v.Pos.IsStmt() != src.PosNotStmt {
					liveOrderStmts = append(liveOrderStmts, v)
				}
			}
		}
	}
	// Compute transitive closure of live values.
	for len(q) > 0 {
		// pop a reachable value
		v := q[len(q)-1]
		q[len(q)-1] = nil
		q = q[:len(q)-1]
		for i, x := range v.Args {
			if v.Op == OpPhi && !reachable[v.Block.Preds[i].b.ID] {
				continue
			}
			if !live[x.ID] {
				live[x.ID] = true
				q = append(q, x) // push
				if x.Pos.IsStmt() != src.PosNotStmt {
					liveOrderStmts = append(liveOrderStmts, x)
				}
			}
		}
	}
	return
}
// deadcode removes dead code from f.
func deadcode(f *Func) {
	// deadcode after regalloc is forbidden for now. Regalloc
	// doesn't quite generate legal SSA which will lead to some
	// required moves being eliminated. See the comment at the
	// top of regalloc.go for details.
	if f.RegAlloc != nil {
		f.Fatalf("deadcode after regalloc")
	}
	// Find reachable blocks.
	reachable := ReachableBlocks(f)
	// Get rid of edges from dead to live code.
	for _, b := range f.Blocks {
		if reachable[b.ID] {
			continue
		}
		for i := 0; i < len(b.Succs); {
			e := b.Succs[i]
			if reachable[e.b.ID] {
				b.removeEdge(i)
			} else {
				i++
			}
		}
	}
	// Get rid of dead edges from live code.
	for _, b := range f.Blocks {
		if !reachable[b.ID] {
			continue
		}
		if b.Kind != BlockFirst {
			continue
		}
		b.removeEdge(1)
		b.Kind = BlockPlain
		b.Likely = BranchUnknown
	}
	// Splice out any copies introduced during dead block removal.
	copyelim(f)
	// Find live values.
	live, order := liveValues(f, reachable)
	defer func() { f.Cache.freeBoolSlice(live) }()
	defer func() { f.Cache.freeValueSlice(order) }()
	// Remove dead & duplicate entries from namedValues map.
	s := f.newSparseSet(f.NumValues())
	defer f.retSparseSet(s)
	i := 0
	for _, name := range f.Names {
		j := 0
		s.clear()
		values := f.NamedValues[*name]
		for _, v := range values {
			if live[v.ID] && !s.contains(v.ID) {
				values[j] = v
				j++
				s.add(v.ID)
			}
		}
		if j == 0 {
			delete(f.NamedValues, *name)
		} else {
			f.Names[i] = name
			i++
			for k := len(values) - 1; k >= j; k-- {
				values[k] = nil
			}
			f.NamedValues[*name] = values[:j]
		}
	}
	clearNames := f.Names[i:]
	for j := range clearNames {
		clearNames[j] = nil
	}
	f.Names = f.Names[:i]
	pendingLines := f.cachedLineStarts // Holds statement boundaries that need to be moved to a new value/block
	pendingLines.clear()
	// Unlink values and conserve statement boundaries
	for i, b := range f.Blocks {
		if !reachable[b.ID] {
			// TODO what if control is statement boundary? Too late here.
			b.ResetControls()
		}
		for _, v := range b.Values {
			if !live[v.ID] {
				v.resetArgs()
				if v.Pos.IsStmt() == src.PosIsStmt && reachable[b.ID] {
					pendingLines.set(v.Pos, int32(i)) // TODO could be more than one pos for a line
				}
			}
		}
	}
	// Find new homes for lost lines -- require earliest in data flow with same line that is also in same block
	for i := len(order) - 1; i >= 0; i-- {
		w := order[i]
		if j := pendingLines.get(w.Pos); j > -1 && f.Blocks[j] == w.Block {
			w.Pos = w.Pos.WithIsStmt()
			pendingLines.remove(w.Pos)
		}
	}
	// Any boundary that failed to match a live value can move to a block end
	pendingLines.foreachEntry(func(j int32, l uint, bi int32) {
		b := f.Blocks[bi]
		if b.Pos.Line() == l && b.Pos.FileIndex() == j {
			b.Pos = b.Pos.WithIsStmt()
		}
	})
	// Remove dead values from blocks' value list. Return dead
	// values to the allocator.
	for _, b := range f.Blocks {
		i := 0
		for _, v := range b.Values {
			if live[v.ID] {
				b.Values[i] = v
				i++
			} else {
				f.freeValue(v)
			}
		}
		b.truncateValues(i)
	}
	// Remove unreachable blocks. Return dead blocks to allocator.
	i = 0
	for _, b := range f.Blocks {
		if reachable[b.ID] {
			f.Blocks[i] = b
			i++
		} else {
			if len(b.Values) > 0 {
				b.Fatalf("live values in unreachable block %v: %v", b, b.Values)
			}
			f.freeBlock(b)
		}
	}
	// zero remainder to help GC
	tail := f.Blocks[i:]
	for j := range tail {
		tail[j] = nil
	}
	f.Blocks = f.Blocks[:i]
}
// removeEdge removes the i'th outgoing edge from b (and
// the corresponding incoming edge from b.Succs[i].b).
// Note that this potentially reorders successors of b, so it
// must be used very carefully.
func (b *Block) removeEdge(i int) {
	e := b.Succs[i]
	c := e.b
	j := e.i
	// Adjust b.Succs
	b.removeSucc(i)
	// Adjust c.Preds
	c.removePred(j)
	// Remove phi args from c's phis.
	for _, v := range c.Values {
		if v.Op != OpPhi {
			continue
		}
		c.removePhiArg(v, j)
		// Note: this is trickier than it looks. Replacing
		// a Phi with a Copy can in general cause problems because
		// Phi and Copy don't have exactly the same semantics.
		// Phi arguments always come from a predecessor block,
		// whereas copies don't. This matters in loops like:
		// 1: x = (Phi y)
		//    y = (Add x 1)
		//    goto 1
		// If we replace Phi->Copy, we get
		// 1: x = (Copy y)
		//    y = (Add x 1)
		//    goto 1
		// (Phi y) refers to the *previous* value of y, whereas
		// (Copy y) refers to the *current* value of y.
		// The modified code has a cycle and the scheduler
		// will barf on it.
		//
		// Fortunately, this situation can only happen for dead
		// code loops. We know the code we're working with is
		// not dead, so we're ok.
		// Proof: If we have a potential bad cycle, we have a
		// situation like this:
		//   x = (Phi z)
		//   y = (op1 x ...)
		//   z = (op2 y ...)
		// Where opX are not Phi ops. But such a situation
		// implies a cycle in the dominator graph. In the
		// example, x.Block dominates y.Block, y.Block dominates
		// z.Block, and z.Block dominates x.Block (treating
		// "dominates" as reflexive).  Cycles in the dominator
		// graph can only happen in an unreachable cycle.
	}
}
 |