1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
|
// Copyright 2023 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/*
Package iter provides basic definitions and operations related to
iterators over sequences.
# Iterators
An iterator is a function that passes successive elements of a
sequence to a callback function, conventionally named yield.
The function stops either when the sequence is finished or
when yield returns false, indicating to stop the iteration early.
This package defines [Seq] and [Seq2]
(pronounced like seek—the first syllable of sequence)
as shorthands for iterators that pass 1 or 2 values per sequence element
to yield:
type (
Seq[V any] func(yield func(V) bool)
Seq2[K, V any] func(yield func(K, V) bool)
)
Seq2 represents a sequence of paired values, conventionally key-value
or index-value pairs.
Yield returns true if the iterator should continue with the next
element in the sequence, false if it should stop.
For instance, [maps.Keys] returns an iterator that produces the sequence
of keys of the map m, implemented as follows:
func Keys[Map ~map[K]V, K comparable, V any](m Map) iter.Seq[K] {
return func(yield func(K) bool) {
for k := range m {
if !yield(k) {
return
}
}
}
}
Further examples can be found in [The Go Blog: Range Over Function Types].
Iterator functions are most often called by a [range loop], as in:
func PrintAll[V any](seq iter.Seq[V]) {
for v := range seq {
fmt.Println(v)
}
}
# Naming Conventions
Iterator functions and methods are named for the sequence being walked:
// All returns an iterator over all elements in s.
func (s *Set[V]) All() iter.Seq[V]
The iterator method on a collection type is conventionally named All,
because it iterates a sequence of all the values in the collection.
For a type containing multiple possible sequences, the iterator's name
can indicate which sequence is being provided:
// Cities returns an iterator over the major cities in the country.
func (c *Country) Cities() iter.Seq[*City]
// Languages returns an iterator over the official spoken languages of the country.
func (c *Country) Languages() iter.Seq[string]
If an iterator requires additional configuration, the constructor function
can take additional configuration arguments:
// Scan returns an iterator over key-value pairs with min ≤ key ≤ max.
func (m *Map[K, V]) Scan(min, max K) iter.Seq2[K, V]
// Split returns an iterator over the (possibly-empty) substrings of s
// separated by sep.
func Split(s, sep string) iter.Seq[string]
When there are multiple possible iteration orders, the method name may
indicate that order:
// All returns an iterator over the list from head to tail.
func (l *List[V]) All() iter.Seq[V]
// Backward returns an iterator over the list from tail to head.
func (l *List[V]) Backward() iter.Seq[V]
// Preorder returns an iterator over all nodes of the syntax tree
// beneath (and including) the specified root, in depth-first preorder,
// visiting a parent node before its children.
func Preorder(root Node) iter.Seq[Node]
# Single-Use Iterators
Most iterators provide the ability to walk an entire sequence:
when called, the iterator does any setup necessary to start the
sequence, then calls yield on successive elements of the sequence,
and then cleans up before returning. Calling the iterator again
walks the sequence again.
Some iterators break that convention, providing the ability to walk a
sequence only once. These “single-use iterators” typically report values
from a data stream that cannot be rewound to start over.
Calling the iterator again after stopping early may continue the
stream, but calling it again after the sequence is finished will yield
no values at all. Doc comments for functions or methods that return
single-use iterators should document this fact:
// Lines returns an iterator over lines read from r.
// It returns a single-use iterator.
func (r *Reader) Lines() iter.Seq[string]
# Pulling Values
Functions and methods that accept or return iterators
should use the standard [Seq] or [Seq2] types, to ensure
compatibility with range loops and other iterator adapters.
The standard iterators can be thought of as “push iterators”, which
push values to the yield function.
Sometimes a range loop is not the most natural way to consume values
of the sequence. In this case, [Pull] converts a standard push iterator
to a “pull iterator”, which can be called to pull one value at a time
from the sequence. [Pull] starts an iterator and returns a pair
of functions—next and stop—which return the next value from the iterator
and stop it, respectively.
For example:
// Pairs returns an iterator over successive pairs of values from seq.
func Pairs[V any](seq iter.Seq[V]) iter.Seq2[V, V] {
return func(yield func(V, V) bool) {
next, stop := iter.Pull(seq)
defer stop()
for {
v1, ok1 := next()
if !ok1 {
return
}
v2, ok2 := next()
// If ok2 is false, v2 should be the
// zero value; yield one last pair.
if !yield(v1, v2) {
return
}
if !ok2 {
return
}
}
}
}
If clients do not consume the sequence to completion, they must call stop,
which allows the iterator function to finish and return. As shown in
the example, the conventional way to ensure this is to use defer.
# Standard Library Usage
A few packages in the standard library provide iterator-based APIs,
most notably the [maps] and [slices] packages.
For example, [maps.Keys] returns an iterator over the keys of a map,
while [slices.Sorted] collects the values of an iterator into a slice,
sorts them, and returns the slice, so to iterate over the sorted keys of a map:
for _, key := range slices.Sorted(maps.Keys(m)) {
...
}
# Mutation
Iterators provide only the values of the sequence, not any direct way
to modify it. If an iterator wishes to provide a mechanism for modifying
a sequence during iteration, the usual approach is to define a position type
with the extra operations and then provide an iterator over positions.
For example, a tree implementation might provide:
// Positions returns an iterator over positions in the sequence.
func (t *Tree[V]) Positions() iter.Seq[*Pos]
// A Pos represents a position in the sequence.
// It is only valid during the yield call it is passed to.
type Pos[V any] struct { ... }
// Pos returns the value at the cursor.
func (p *Pos[V]) Value() V
// Delete deletes the value at this point in the iteration.
func (p *Pos[V]) Delete()
// Set changes the value v at the cursor.
func (p *Pos[V]) Set(v V)
And then a client could delete boring values from the tree using:
for p := range t.Positions() {
if boring(p.Value()) {
p.Delete()
}
}
[The Go Blog: Range Over Function Types]: https://go.dev/blog/range-functions
[range loop]: https://go.dev/ref/spec#For_range
*/
package iter
import (
"internal/race"
"runtime"
"unsafe"
)
// Seq is an iterator over sequences of individual values.
// When called as seq(yield), seq calls yield(v) for each value v in the sequence,
// stopping early if yield returns false.
// See the [iter] package documentation for more details.
type Seq[V any] func(yield func(V) bool)
// Seq2 is an iterator over sequences of pairs of values, most commonly key-value pairs.
// When called as seq(yield), seq calls yield(k, v) for each pair (k, v) in the sequence,
// stopping early if yield returns false.
// See the [iter] package documentation for more details.
type Seq2[K, V any] func(yield func(K, V) bool)
type coro struct{}
//go:linkname newcoro runtime.newcoro
func newcoro(func(*coro)) *coro
//go:linkname coroswitch runtime.coroswitch
func coroswitch(*coro)
// Pull converts the “push-style” iterator sequence seq
// into a “pull-style” iterator accessed by the two functions
// next and stop.
//
// Next returns the next value in the sequence
// and a boolean indicating whether the value is valid.
// When the sequence is over, next returns the zero V and false.
// It is valid to call next after reaching the end of the sequence
// or after calling stop. These calls will continue
// to return the zero V and false.
//
// Stop ends the iteration. It must be called when the caller is
// no longer interested in next values and next has not yet
// signaled that the sequence is over (with a false boolean return).
// It is valid to call stop multiple times and when next has
// already returned false. Typically, callers should “defer stop()”.
//
// It is an error to call next or stop from multiple goroutines
// simultaneously.
//
// If the iterator panics during a call to next (or stop),
// then next (or stop) itself panics with the same value.
func Pull[V any](seq Seq[V]) (next func() (V, bool), stop func()) {
var (
v V
ok bool
done bool
yieldNext bool
racer int
panicValue any
seqDone bool // to detect Goexit
)
c := newcoro(func(c *coro) {
race.Acquire(unsafe.Pointer(&racer))
if done {
race.Release(unsafe.Pointer(&racer))
return
}
yield := func(v1 V) bool {
if done {
return false
}
if !yieldNext {
panic("iter.Pull: yield called again before next")
}
yieldNext = false
v, ok = v1, true
race.Release(unsafe.Pointer(&racer))
coroswitch(c)
race.Acquire(unsafe.Pointer(&racer))
return !done
}
// Recover and propagate panics from seq.
defer func() {
if p := recover(); p != nil {
panicValue = p
} else if !seqDone {
panicValue = goexitPanicValue
}
done = true // Invalidate iterator
race.Release(unsafe.Pointer(&racer))
}()
seq(yield)
var v0 V
v, ok = v0, false
seqDone = true
})
next = func() (v1 V, ok1 bool) {
race.Write(unsafe.Pointer(&racer)) // detect races
if done {
return
}
if yieldNext {
panic("iter.Pull: next called again before yield")
}
yieldNext = true
race.Release(unsafe.Pointer(&racer))
coroswitch(c)
race.Acquire(unsafe.Pointer(&racer))
// Propagate panics and goexits from seq.
if panicValue != nil {
if panicValue == goexitPanicValue {
// Propagate runtime.Goexit from seq.
runtime.Goexit()
} else {
panic(panicValue)
}
}
return v, ok
}
stop = func() {
race.Write(unsafe.Pointer(&racer)) // detect races
if !done {
done = true
race.Release(unsafe.Pointer(&racer))
coroswitch(c)
race.Acquire(unsafe.Pointer(&racer))
// Propagate panics and goexits from seq.
if panicValue != nil {
if panicValue == goexitPanicValue {
// Propagate runtime.Goexit from seq.
runtime.Goexit()
} else {
panic(panicValue)
}
}
}
}
return next, stop
}
// Pull2 converts the “push-style” iterator sequence seq
// into a “pull-style” iterator accessed by the two functions
// next and stop.
//
// Next returns the next pair in the sequence
// and a boolean indicating whether the pair is valid.
// When the sequence is over, next returns a pair of zero values and false.
// It is valid to call next after reaching the end of the sequence
// or after calling stop. These calls will continue
// to return a pair of zero values and false.
//
// Stop ends the iteration. It must be called when the caller is
// no longer interested in next values and next has not yet
// signaled that the sequence is over (with a false boolean return).
// It is valid to call stop multiple times and when next has
// already returned false. Typically, callers should “defer stop()”.
//
// It is an error to call next or stop from multiple goroutines
// simultaneously.
//
// If the iterator panics during a call to next (or stop),
// then next (or stop) itself panics with the same value.
func Pull2[K, V any](seq Seq2[K, V]) (next func() (K, V, bool), stop func()) {
var (
k K
v V
ok bool
done bool
yieldNext bool
racer int
panicValue any
seqDone bool
)
c := newcoro(func(c *coro) {
race.Acquire(unsafe.Pointer(&racer))
if done {
race.Release(unsafe.Pointer(&racer))
return
}
yield := func(k1 K, v1 V) bool {
if done {
return false
}
if !yieldNext {
panic("iter.Pull2: yield called again before next")
}
yieldNext = false
k, v, ok = k1, v1, true
race.Release(unsafe.Pointer(&racer))
coroswitch(c)
race.Acquire(unsafe.Pointer(&racer))
return !done
}
// Recover and propagate panics from seq.
defer func() {
if p := recover(); p != nil {
panicValue = p
} else if !seqDone {
panicValue = goexitPanicValue
}
done = true // Invalidate iterator.
race.Release(unsafe.Pointer(&racer))
}()
seq(yield)
var k0 K
var v0 V
k, v, ok = k0, v0, false
seqDone = true
})
next = func() (k1 K, v1 V, ok1 bool) {
race.Write(unsafe.Pointer(&racer)) // detect races
if done {
return
}
if yieldNext {
panic("iter.Pull2: next called again before yield")
}
yieldNext = true
race.Release(unsafe.Pointer(&racer))
coroswitch(c)
race.Acquire(unsafe.Pointer(&racer))
// Propagate panics and goexits from seq.
if panicValue != nil {
if panicValue == goexitPanicValue {
// Propagate runtime.Goexit from seq.
runtime.Goexit()
} else {
panic(panicValue)
}
}
return k, v, ok
}
stop = func() {
race.Write(unsafe.Pointer(&racer)) // detect races
if !done {
done = true
race.Release(unsafe.Pointer(&racer))
coroswitch(c)
race.Acquire(unsafe.Pointer(&racer))
// Propagate panics and goexits from seq.
if panicValue != nil {
if panicValue == goexitPanicValue {
// Propagate runtime.Goexit from seq.
runtime.Goexit()
} else {
panic(panicValue)
}
}
}
}
return next, stop
}
// goexitPanicValue is a sentinel value indicating that an iterator
// exited via runtime.Goexit.
var goexitPanicValue any = new(int)
|