1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
// run
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Test heap sampling logic.
package main
import (
"fmt"
"math"
"runtime"
)
var a16 *[16]byte
var a512 *[512]byte
var a256 *[256]byte
var a1k *[1024]byte
var a16k *[16 * 1024]byte
var a17k *[17 * 1024]byte
var a18k *[18 * 1024]byte
// This test checks that heap sampling produces reasonable results.
// Note that heap sampling uses randomization, so the results vary for
// run to run. To avoid flakes, this test performs multiple
// experiments and only complains if all of them consistently fail.
func main() {
// Sample at 16K instead of default 512K to exercise sampling more heavily.
runtime.MemProfileRate = 16 * 1024
if err := testInterleavedAllocations(); err != nil {
panic(err.Error())
}
if err := testSmallAllocations(); err != nil {
panic(err.Error())
}
}
// Repeatedly exercise a set of allocations and check that the heap
// profile collected by the runtime unsamples to a reasonable
// value. Because sampling is based on randomization, there can be
// significant variability on the unsampled data. To account for that,
// the testcase allows for a 10% margin of error, but only fails if it
// consistently fails across three experiments, avoiding flakes.
func testInterleavedAllocations() error {
const iters = 50000
// Sizes of the allocations performed by each experiment.
frames := []string{"main.allocInterleaved1", "main.allocInterleaved2", "main.allocInterleaved3"}
// Pass if at least one of three experiments has no errors. Use a separate
// function for each experiment to identify each experiment in the profile.
allocInterleaved1(iters)
if checkAllocations(getMemProfileRecords(), frames[0:1], iters, allocInterleavedSizes) == nil {
// Passed on first try, report no error.
return nil
}
allocInterleaved2(iters)
if checkAllocations(getMemProfileRecords(), frames[0:2], iters, allocInterleavedSizes) == nil {
// Passed on second try, report no error.
return nil
}
allocInterleaved3(iters)
// If it fails a third time, we may be onto something.
return checkAllocations(getMemProfileRecords(), frames[0:3], iters, allocInterleavedSizes)
}
var allocInterleavedSizes = []int64{17 * 1024, 1024, 18 * 1024, 512, 16 * 1024, 256}
// allocInterleaved stress-tests the heap sampling logic by interleaving large and small allocations.
func allocInterleaved(n int) {
for i := 0; i < n; i++ {
// Test verification depends on these lines being contiguous.
a17k = new([17 * 1024]byte)
a1k = new([1024]byte)
a18k = new([18 * 1024]byte)
a512 = new([512]byte)
a16k = new([16 * 1024]byte)
a256 = new([256]byte)
// Test verification depends on these lines being contiguous.
// Slow down the allocation rate to avoid #52433.
runtime.Gosched()
}
}
func allocInterleaved1(n int) {
allocInterleaved(n)
}
func allocInterleaved2(n int) {
allocInterleaved(n)
}
func allocInterleaved3(n int) {
allocInterleaved(n)
}
// Repeatedly exercise a set of allocations and check that the heap
// profile collected by the runtime unsamples to a reasonable
// value. Because sampling is based on randomization, there can be
// significant variability on the unsampled data. To account for that,
// the testcase allows for a 10% margin of error, but only fails if it
// consistently fails across three experiments, avoiding flakes.
func testSmallAllocations() error {
const iters = 50000
// Sizes of the allocations performed by each experiment.
sizes := []int64{1024, 512, 256}
frames := []string{"main.allocSmall1", "main.allocSmall2", "main.allocSmall3"}
// Pass if at least one of three experiments has no errors. Use a separate
// function for each experiment to identify each experiment in the profile.
allocSmall1(iters)
if checkAllocations(getMemProfileRecords(), frames[0:1], iters, sizes) == nil {
// Passed on first try, report no error.
return nil
}
allocSmall2(iters)
if checkAllocations(getMemProfileRecords(), frames[0:2], iters, sizes) == nil {
// Passed on second try, report no error.
return nil
}
allocSmall3(iters)
// If it fails a third time, we may be onto something.
return checkAllocations(getMemProfileRecords(), frames[0:3], iters, sizes)
}
// allocSmall performs only small allocations for sanity testing.
func allocSmall(n int) {
for i := 0; i < n; i++ {
// Test verification depends on these lines being contiguous.
a1k = new([1024]byte)
a512 = new([512]byte)
a256 = new([256]byte)
// Slow down the allocation rate to avoid #52433.
runtime.Gosched()
}
}
// Three separate instances of testing to avoid flakes. Will report an error
// only if they all consistently report failures.
func allocSmall1(n int) {
allocSmall(n)
}
func allocSmall2(n int) {
allocSmall(n)
}
func allocSmall3(n int) {
allocSmall(n)
}
// checkAllocations validates that the profile records collected for
// the named function are consistent with count contiguous allocations
// of the specified sizes.
// Check multiple functions and only report consistent failures across
// multiple tests.
// Look only at samples that include the named frames, and group the
// allocations by their line number. All these allocations are done from
// the same leaf function, so their line numbers are the same.
func checkAllocations(records []runtime.MemProfileRecord, frames []string, count int64, size []int64) error {
objectsPerLine := map[int][]int64{}
bytesPerLine := map[int][]int64{}
totalCount := []int64{}
// Compute the line number of the first allocation. All the
// allocations are from the same leaf, so pick the first one.
var firstLine int
for ln := range allocObjects(records, frames[0]) {
if firstLine == 0 || firstLine > ln {
firstLine = ln
}
}
for _, frame := range frames {
var objectCount int64
a := allocObjects(records, frame)
for s := range size {
// Allocations of size size[s] should be on line firstLine + s.
ln := firstLine + s
objectsPerLine[ln] = append(objectsPerLine[ln], a[ln].objects)
bytesPerLine[ln] = append(bytesPerLine[ln], a[ln].bytes)
objectCount += a[ln].objects
}
totalCount = append(totalCount, objectCount)
}
for i, w := range size {
ln := firstLine + i
if err := checkValue(frames[0], ln, "objects", count, objectsPerLine[ln]); err != nil {
return err
}
if err := checkValue(frames[0], ln, "bytes", count*w, bytesPerLine[ln]); err != nil {
return err
}
}
return checkValue(frames[0], 0, "total", count*int64(len(size)), totalCount)
}
// checkValue checks an unsampled value against its expected value.
// Given that this is a sampled value, it will be unexact and will change
// from run to run. Only report it as a failure if all the values land
// consistently far from the expected value.
func checkValue(fname string, ln int, testName string, want int64, got []int64) error {
if got == nil {
return fmt.Errorf("Unexpected empty result")
}
min, max := got[0], got[0]
for _, g := range got[1:] {
if g < min {
min = g
}
if g > max {
max = g
}
}
margin := want / 10 // 10% margin.
if min > want+margin || max < want-margin {
return fmt.Errorf("%s:%d want %s in [%d: %d], got %v", fname, ln, testName, want-margin, want+margin, got)
}
return nil
}
func getMemProfileRecords() []runtime.MemProfileRecord {
// Force the runtime to update the object and byte counts.
// This can take up to two GC cycles to get a complete
// snapshot of the current point in time.
runtime.GC()
runtime.GC()
// Find out how many records there are (MemProfile(nil, true)),
// allocate that many records, and get the data.
// There's a race—more records might be added between
// the two calls—so allocate a few extra records for safety
// and also try again if we're very unlucky.
// The loop should only execute one iteration in the common case.
var p []runtime.MemProfileRecord
n, ok := runtime.MemProfile(nil, true)
for {
// Allocate room for a slightly bigger profile,
// in case a few more entries have been added
// since the call to MemProfile.
p = make([]runtime.MemProfileRecord, n+50)
n, ok = runtime.MemProfile(p, true)
if ok {
p = p[0:n]
break
}
// Profile grew; try again.
}
return p
}
type allocStat struct {
bytes, objects int64
}
// allocObjects examines the profile records for samples including the
// named function and returns the allocation stats aggregated by
// source line number of the allocation (at the leaf frame).
func allocObjects(records []runtime.MemProfileRecord, function string) map[int]allocStat {
a := make(map[int]allocStat)
for _, r := range records {
var pcs []uintptr
for _, s := range r.Stack0 {
if s == 0 {
break
}
pcs = append(pcs, s)
}
frames := runtime.CallersFrames(pcs)
line := 0
for {
frame, more := frames.Next()
name := frame.Function
if line == 0 {
line = frame.Line
}
if name == function {
allocStat := a[line]
allocStat.bytes += r.AllocBytes
allocStat.objects += r.AllocObjects
a[line] = allocStat
}
if !more {
break
}
}
}
for line, stats := range a {
objects, bytes := scaleHeapSample(stats.objects, stats.bytes, int64(runtime.MemProfileRate))
a[line] = allocStat{bytes, objects}
}
return a
}
// scaleHeapSample unsamples heap allocations.
// Taken from src/cmd/pprof/internal/profile/legacy_profile.go
func scaleHeapSample(count, size, rate int64) (int64, int64) {
if count == 0 || size == 0 {
return 0, 0
}
if rate <= 1 {
// if rate==1 all samples were collected so no adjustment is needed.
// if rate<1 treat as unknown and skip scaling.
return count, size
}
avgSize := float64(size) / float64(count)
scale := 1 / (1 - math.Exp(-avgSize/float64(rate)))
return int64(float64(count) * scale), int64(float64(size) * scale)
}
|