1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
// run
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// absdiff example in which an Abs method is attached to a generic type, which is a
// structure with a single field that may be a list of possible basic types.
package main
import (
"fmt"
"math"
)
type Numeric interface {
~int | ~int8 | ~int16 | ~int32 | ~int64 |
~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr |
~float32 | ~float64 |
~complex64 | ~complex128
}
// numericAbs matches a struct containing a numeric type that has an Abs method.
type numericAbs[T Numeric] interface {
~struct{ Value_ T }
Abs() T
Value() T
}
// absDifference computes the absolute value of the difference of
// a and b, where the absolute value is determined by the Abs method.
func absDifference[T Numeric, U numericAbs[T]](a, b U) T {
d := a.Value() - b.Value()
dt := U{Value_: d}
return dt.Abs()
}
// orderedNumeric matches numeric types that support the < operator.
type orderedNumeric interface {
~int | ~int8 | ~int16 | ~int32 | ~int64 |
~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr |
~float32 | ~float64
}
// Complex matches the two complex types, which do not have a < operator.
type Complex interface {
~complex64 | ~complex128
}
// orderedAbs is a helper type that defines an Abs method for
// a struct containing an ordered numeric type.
type orderedAbs[T orderedNumeric] struct {
Value_ T
}
func (a orderedAbs[T]) Abs() T {
if a.Value_ < 0 {
return -a.Value_
}
return a.Value_
}
// Field accesses through type parameters are disabled
// until we have a more thorough understanding of the
// implications on the spec. See issue #51576.
// Use accessor method instead.
func (a orderedAbs[T]) Value() T {
return a.Value_
}
// complexAbs is a helper type that defines an Abs method for
// a struct containing a complex type.
type complexAbs[T Complex] struct {
Value_ T
}
func realimag(x any) (re, im float64) {
switch z := x.(type) {
case complex64:
re = float64(real(z))
im = float64(imag(z))
case complex128:
re = real(z)
im = imag(z)
default:
panic("unknown complex type")
}
return
}
func (a complexAbs[T]) Abs() T {
// TODO use direct conversion instead of realimag once #50937 is fixed
r, i := realimag(a.Value_)
// r := float64(real(a.Value))
// i := float64(imag(a.Value))
d := math.Sqrt(r*r + i*i)
return T(complex(d, 0))
}
func (a complexAbs[T]) Value() T {
return a.Value_
}
// OrderedAbsDifference returns the absolute value of the difference
// between a and b, where a and b are of an ordered type.
func OrderedAbsDifference[T orderedNumeric](a, b T) T {
return absDifference(orderedAbs[T]{a}, orderedAbs[T]{b})
}
// ComplexAbsDifference returns the absolute value of the difference
// between a and b, where a and b are of a complex type.
func ComplexAbsDifference[T Complex](a, b T) T {
return absDifference(complexAbs[T]{a}, complexAbs[T]{b})
}
func main() {
if got, want := OrderedAbsDifference(1.0, -2.0), 3.0; got != want {
panic(fmt.Sprintf("got = %v, want = %v", got, want))
}
if got, want := OrderedAbsDifference(-1.0, 2.0), 3.0; got != want {
panic(fmt.Sprintf("got = %v, want = %v", got, want))
}
if got, want := OrderedAbsDifference(-20, 15), 35; got != want {
panic(fmt.Sprintf("got = %v, want = %v", got, want))
}
if got, want := ComplexAbsDifference(5.0+2.0i, 2.0-2.0i), 5+0i; got != want {
panic(fmt.Sprintf("got = %v, want = %v", got, want))
}
if got, want := ComplexAbsDifference(2.0-2.0i, 5.0+2.0i), 5+0i; got != want {
panic(fmt.Sprintf("got = %v, want = %v", got, want))
}
}
|