1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package a
type Ordered interface {
~int | ~int8 | ~int16 | ~int32 | ~int64 |
~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr |
~float32 | ~float64 |
~string
}
// Max returns the maximum of two values of some ordered type.
func Max[T Ordered](a, b T) T {
if a > b {
return a
}
return b
}
// Min returns the minimum of two values of some ordered type.
func Min[T Ordered](a, b T) T {
if a < b {
return a
}
return b
}
// Equal reports whether two slices are equal: the same length and all
// elements equal. All floating point NaNs are considered equal.
func Equal[Elem comparable](s1, s2 []Elem) bool {
if len(s1) != len(s2) {
return false
}
for i, v1 := range s1 {
v2 := s2[i]
if v1 != v2 {
isNaN := func(f Elem) bool { return f != f }
if !isNaN(v1) || !isNaN(v2) {
return false
}
}
}
return true
}
// EqualFn reports whether two slices are equal using a comparison
// function on each element.
func EqualFn[Elem any](s1, s2 []Elem, eq func(Elem, Elem) bool) bool {
if len(s1) != len(s2) {
return false
}
for i, v1 := range s1 {
v2 := s2[i]
if !eq(v1, v2) {
return false
}
}
return true
}
// Map turns a []Elem1 to a []Elem2 using a mapping function.
func Map[Elem1, Elem2 any](s []Elem1, f func(Elem1) Elem2) []Elem2 {
r := make([]Elem2, len(s))
for i, v := range s {
r[i] = f(v)
}
return r
}
// Reduce reduces a []Elem1 to a single value of type Elem2 using
// a reduction function.
func Reduce[Elem1, Elem2 any](s []Elem1, initializer Elem2, f func(Elem2, Elem1) Elem2) Elem2 {
r := initializer
for _, v := range s {
r = f(r, v)
}
return r
}
// Filter filters values from a slice using a filter function.
func Filter[Elem any](s []Elem, f func(Elem) bool) []Elem {
var r []Elem
for _, v := range s {
if f(v) {
r = append(r, v)
}
}
return r
}
// Max returns the maximum element in a slice of some ordered type.
// If the slice is empty it returns the zero value of the element type.
func SliceMax[Elem Ordered](s []Elem) Elem {
if len(s) == 0 {
var zero Elem
return zero
}
return Reduce(s[1:], s[0], Max[Elem])
}
// Min returns the minimum element in a slice of some ordered type.
// If the slice is empty it returns the zero value of the element type.
func SliceMin[Elem Ordered](s []Elem) Elem {
if len(s) == 0 {
var zero Elem
return zero
}
return Reduce(s[1:], s[0], Min[Elem])
}
// Append adds values to the end of a slice, returning a new slice.
// This is like the predeclared append function; it's an example
// of how to write it using generics. We used to write code like
// this before append was added to the language, but we had to write
// a separate copy for each type.
func Append[T any](s []T, t ...T) []T {
lens := len(s)
tot := lens + len(t)
if tot <= cap(s) {
s = s[:tot]
} else {
news := make([]T, tot, tot+tot/2)
Copy(news, s)
s = news
}
Copy(s[lens:tot], t)
return s
}
// Copy copies values from t to s, stopping when either slice is full,
// returning the number of values copied. This is like the predeclared
// copy function; it's an example of how to write it using generics.
func Copy[T any](s, t []T) int {
i := 0
for ; i < len(s) && i < len(t); i++ {
s[i] = t[i]
}
return i
}
|