File: highlevel.go

package info (click to toggle)
golang-barcode 1.0.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 476 kB
  • sloc: makefile: 3
file content (354 lines) | stat: -rw-r--r-- 7,471 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
package pdf417

import (
	"errors"
	"math/big"

	"github.com/boombuler/barcode/utils"
)

type encodingMode byte

type subMode byte

const (
	encText encodingMode = iota
	encNumeric
	encBinary

	subUpper subMode = iota
	subLower
	subMixed
	subPunct

	latch_to_text        = 900
	latch_to_byte_padded = 901
	latch_to_numeric     = 902
	latch_to_byte        = 924
	shift_to_byte        = 913

	min_numeric_count = 13
)

var (
	mixedMap map[rune]int
	punctMap map[rune]int
)

func init() {
	mixedMap = make(map[rune]int)
	mixedRaw := []rune{
		48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 38, 13, 9, 44, 58,
		35, 45, 46, 36, 47, 43, 37, 42, 61, 94, 0, 32, 0, 0, 0,
	}
	for idx, ch := range mixedRaw {
		if ch > 0 {
			mixedMap[ch] = idx
		}
	}

	punctMap = make(map[rune]int)
	punctRaw := []rune{
		59, 60, 62, 64, 91, 92, 93, 95, 96, 126, 33, 13, 9, 44, 58,
		10, 45, 46, 36, 47, 34, 124, 42, 40, 41, 63, 123, 125, 39, 0,
	}
	for idx, ch := range punctRaw {
		if ch > 0 {
			punctMap[ch] = idx
		}
	}
}

func determineConsecutiveDigitCount(data []rune) int {
	cnt := 0
	for _, r := range data {
		if utils.RuneToInt(r) == -1 {
			break
		}
		cnt++
	}
	return cnt
}

func encodeNumeric(digits []rune) ([]int, error) {
	digitCount := len(digits)
	chunkCount := digitCount / 44
	if digitCount%44 != 0 {
		chunkCount++
	}

	codeWords := []int{}

	for i := 0; i < chunkCount; i++ {
		start := i * 44
		end := start + 44
		if end > digitCount {
			end = digitCount
		}
		chunk := digits[start:end]

		chunkNum := big.NewInt(0)
		_, ok := chunkNum.SetString("1"+string(chunk), 10)

		if !ok {
			return nil, errors.New("Failed converting: " + string(chunk))
		}

		cws := []int{}

		for chunkNum.Cmp(big.NewInt(0)) > 0 {
			newChunk, cw := chunkNum.DivMod(chunkNum, big.NewInt(900), big.NewInt(0))
			chunkNum = newChunk
			cws = append([]int{int(cw.Int64())}, cws...)
		}

		codeWords = append(codeWords, cws...)
	}

	return codeWords, nil
}

func determineConsecutiveTextCount(msg []rune) int {
	result := 0

	isText := func(ch rune) bool {
		return ch == '\t' || ch == '\n' || ch == '\r' || (ch >= 32 && ch <= 126)
	}

	for i, ch := range msg {
		numericCount := determineConsecutiveDigitCount(msg[i:])
		if numericCount >= min_numeric_count || (numericCount == 0 && !isText(ch)) {
			break
		}

		result++
	}
	return result
}

func encodeText(text []rune, submode subMode) (subMode, []int) {
	isAlphaUpper := func(ch rune) bool {
		return ch == ' ' || (ch >= 'A' && ch <= 'Z')
	}
	isAlphaLower := func(ch rune) bool {
		return ch == ' ' || (ch >= 'a' && ch <= 'z')
	}
	isMixed := func(ch rune) bool {
		_, ok := mixedMap[ch]
		return ok
	}
	isPunctuation := func(ch rune) bool {
		_, ok := punctMap[ch]
		return ok
	}

	idx := 0
	var tmp []int
	for idx < len(text) {
		ch := text[idx]
		switch submode {
		case subUpper:
			if isAlphaUpper(ch) {
				if ch == ' ' {
					tmp = append(tmp, 26) //space
				} else {
					tmp = append(tmp, int(ch-'A'))
				}
			} else {
				if isAlphaLower(ch) {
					submode = subLower
					tmp = append(tmp, 27) // lower latch
					continue
				} else if isMixed(ch) {
					submode = subMixed
					tmp = append(tmp, 28) // mixed latch
					continue
				} else {
					tmp = append(tmp, 29) // punctuation switch
					tmp = append(tmp, punctMap[ch])
					break
				}
			}
			break
		case subLower:
			if isAlphaLower(ch) {
				if ch == ' ' {
					tmp = append(tmp, 26) //space
				} else {
					tmp = append(tmp, int(ch-'a'))
				}
			} else {
				if isAlphaUpper(ch) {
					tmp = append(tmp, 27) //upper switch
					tmp = append(tmp, int(ch-'A'))
					break
				} else if isMixed(ch) {
					submode = subMixed
					tmp = append(tmp, 28) //mixed latch
					continue
				} else {
					tmp = append(tmp, 29) //punctuation switch
					tmp = append(tmp, punctMap[ch])
					break
				}
			}
			break
		case subMixed:
			if isMixed(ch) {
				tmp = append(tmp, mixedMap[ch])
			} else {
				if isAlphaUpper(ch) {
					submode = subUpper
					tmp = append(tmp, 28) //upper latch
					continue
				} else if isAlphaLower(ch) {
					submode = subLower
					tmp = append(tmp, 27) //lower latch
					continue
				} else {
					if idx+1 < len(text) {
						next := text[idx+1]
						if isPunctuation(next) {
							submode = subPunct
							tmp = append(tmp, 25) //punctuation latch
							continue
						}
					}
					tmp = append(tmp, 29) //punctuation switch
					tmp = append(tmp, punctMap[ch])
				}
			}
			break
		default: //subPunct
			if isPunctuation(ch) {
				tmp = append(tmp, punctMap[ch])
			} else {
				submode = subUpper
				tmp = append(tmp, 29) //upper latch
				continue
			}
		}
		idx++
	}

	h := 0
	result := []int{}
	for i, val := range tmp {
		if i%2 != 0 {
			h = (h * 30) + val
			result = append(result, h)
		} else {
			h = val
		}
	}
	if len(tmp)%2 != 0 {
		result = append(result, (h*30)+29)
	}
	return submode, result
}

func determineConsecutiveBinaryCount(msg []byte) int {
	result := 0

	for i, _ := range msg {
		numericCount := determineConsecutiveDigitCount([]rune(string(msg[i:])))
		if numericCount >= min_numeric_count {
			break
		}
		textCount := determineConsecutiveTextCount([]rune(string(msg[i:])))
		if textCount > 5 {
			break
		}
		result++
	}
	return result
}

func encodeBinary(data []byte, startmode encodingMode) []int {
	result := []int{}

	count := len(data)
	if count == 1 && startmode == encText {
		result = append(result, shift_to_byte)
	} else if (count % 6) == 0 {
		result = append(result, latch_to_byte)
	} else {
		result = append(result, latch_to_byte_padded)
	}

	idx := 0
	// Encode sixpacks
	if count >= 6 {
		words := make([]int, 5)
		for (count - idx) >= 6 {
			var t int64 = 0
			for i := 0; i < 6; i++ {
				t = t << 8
				t += int64(data[idx+i])
			}
			for i := 0; i < 5; i++ {
				words[4-i] = int(t % 900)
				t = t / 900
			}
			result = append(result, words...)
			idx += 6
		}
	}
	//Encode rest (remaining n<5 bytes if any)
	for i := idx; i < count; i++ {
		result = append(result, int(data[i]&0xff))
	}
	return result
}

func highlevelEncode(dataStr string) ([]int, error) {
	encodingMode := encText
	textSubMode := subUpper

	result := []int{}

	data := []byte(dataStr)

	for len(data) > 0 {
		numericCount := determineConsecutiveDigitCount([]rune(string(data)))
		if numericCount >= min_numeric_count || numericCount == len(data) {
			result = append(result, latch_to_numeric)
			encodingMode = encNumeric
			textSubMode = subUpper
			numData, err := encodeNumeric([]rune(string(data[:numericCount])))
			if err != nil {
				return nil, err
			}
			result = append(result, numData...)
			data = data[numericCount:]
		} else {
			textCount := determineConsecutiveTextCount([]rune(string(data)))
			if textCount >= 5 || textCount == len(data) {
				if encodingMode != encText {
					result = append(result, latch_to_text)
					encodingMode = encText
					textSubMode = subUpper
				}
				var txtData []int
				textSubMode, txtData = encodeText([]rune(string(data[:textCount])), textSubMode)
				result = append(result, txtData...)
				data = data[textCount:]
			} else {
				binaryCount := determineConsecutiveBinaryCount(data)
				if binaryCount == 0 {
					binaryCount = 1
				}
				bytes := data[:binaryCount]
				if len(bytes) != 1 || encodingMode != encText {
					encodingMode = encBinary
					textSubMode = subUpper
				}
				byteData := encodeBinary(bytes, encodingMode)
				result = append(result, byteData...)
				data = data[binaryCount:]
			}
		}
	}

	return result, nil
}