1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
|
package cview
import (
"math"
"sync"
"github.com/gdamore/tcell/v2"
)
// gridItem represents one primitive and its possible position on a grid.
type gridItem struct {
Item Primitive // The item to be positioned. May be nil for an empty item.
Row, Column int // The top-left grid cell where the item is placed.
Width, Height int // The number of rows and columns the item occupies.
MinGridWidth, MinGridHeight int // The minimum grid width/height for which this item is visible.
Focus bool // Whether or not this item attracts the layout's focus.
visible bool // Whether or not this item was visible the last time the grid was drawn.
x, y, w, h int // The last position of the item relative to the top-left corner of the grid. Undefined if visible is false.
}
// Grid is an implementation of a grid-based layout. It works by defining the
// size of the rows and columns, then placing primitives into the grid.
//
// Some settings can lead to the grid exceeding its available space. SetOffset()
// can then be used to scroll in steps of rows and columns. These offset values
// can also be controlled with the arrow keys (or the "g","G", "j", "k", "h",
// and "l" keys) while the grid has focus and none of its contained primitives
// do.
type Grid struct {
*Box
// The items to be positioned.
items []*gridItem
// The definition of the rows and columns of the grid. See
// SetRows()/SetColumns() for details.
rows, columns []int
// The minimum sizes for rows and columns.
minWidth, minHeight int
// The size of the gaps between neighboring primitives. This is automatically
// set to 1 if borders is true.
gapRows, gapColumns int
// The number of rows and columns skipped before drawing the top-left corner
// of the grid.
rowOffset, columnOffset int
// Whether or not borders are drawn around grid items. If this is set to true,
// a gap size of 1 is automatically assumed (which is filled with the border
// graphics).
borders bool
// The color of the borders around grid items.
bordersColor tcell.Color
sync.RWMutex
}
// NewGrid returns a new grid-based layout container with no initial primitives.
//
// Note that Grid will have a transparent background by default so that any
// areas not covered by any primitives will show primitives behind the Grid.
// To disable this transparency:
//
// grid.SetBackgroundTransparent(false)
func NewGrid() *Grid {
g := &Grid{
Box: NewBox(),
bordersColor: Styles.GraphicsColor,
}
g.SetBackgroundTransparent(true)
g.focus = g
return g
}
// SetColumns defines how the columns of the grid are distributed. Each value
// defines the size of one column, starting with the leftmost column. Values
// greater 0 represent absolute column widths (gaps not included). Values less
// or equal 0 represent proportional column widths or fractions of the remaining
// free space, where 0 is treated the same as -1. That is, a column with a value
// of -3 will have three times the width of a column with a value of -1 (or 0).
// The minimum width set with SetMinSize() is always observed.
//
// Primitives may extend beyond the columns defined explicitly with this
// function. A value of 0 is assumed for any undefined column. In fact, if you
// never call this function, all columns occupied by primitives will have the
// same width. On the other hand, unoccupied columns defined with this function
// will always take their place.
//
// Assuming a total width of the grid of 100 cells and a minimum width of 0, the
// following call will result in columns with widths of 30, 10, 15, 15, and 30
// cells:
//
// grid.SetColumns(30, 10, -1, -1, -2)
//
// If a primitive were then placed in the 6th and 7th column, the resulting
// widths would be: 30, 10, 10, 10, 20, 10, and 10 cells.
//
// If you then called SetMinSize() as follows:
//
// grid.SetMinSize(15, 20)
//
// The resulting widths would be: 30, 15, 15, 15, 20, 15, and 15 cells, a total
// of 125 cells, 25 cells wider than the available grid width.
func (g *Grid) SetColumns(columns ...int) {
g.Lock()
defer g.Unlock()
g.columns = columns
}
// SetRows defines how the rows of the grid are distributed. These values behave
// the same as the column values provided with SetColumns(), see there for a
// definition and examples.
//
// The provided values correspond to row heights, the first value defining
// the height of the topmost row.
func (g *Grid) SetRows(rows ...int) {
g.Lock()
defer g.Unlock()
g.rows = rows
}
// SetSize is a shortcut for SetRows() and SetColumns() where all row and column
// values are set to the given size values. See SetColumns() for details on sizes.
func (g *Grid) SetSize(numRows, numColumns, rowSize, columnSize int) {
g.Lock()
defer g.Unlock()
g.rows = make([]int, numRows)
for index := range g.rows {
g.rows[index] = rowSize
}
g.columns = make([]int, numColumns)
for index := range g.columns {
g.columns[index] = columnSize
}
}
// SetMinSize sets an absolute minimum width for rows and an absolute minimum
// height for columns. Panics if negative values are provided.
func (g *Grid) SetMinSize(row, column int) {
g.Lock()
defer g.Unlock()
if row < 0 || column < 0 {
panic("Invalid minimum row/column size")
}
g.minHeight, g.minWidth = row, column
}
// SetGap sets the size of the gaps between neighboring primitives on the grid.
// If borders are drawn (see SetBorders()), these values are ignored and a gap
// of 1 is assumed. Panics if negative values are provided.
func (g *Grid) SetGap(row, column int) {
g.Lock()
defer g.Unlock()
if row < 0 || column < 0 {
panic("Invalid gap size")
}
g.gapRows, g.gapColumns = row, column
}
// SetBorders sets whether or not borders are drawn around grid items. Setting
// this value to true will cause the gap values (see SetGap()) to be ignored and
// automatically assumed to be 1 where the border graphics are drawn.
func (g *Grid) SetBorders(borders bool) {
g.Lock()
defer g.Unlock()
g.borders = borders
}
// SetBordersColor sets the color of the item borders.
func (g *Grid) SetBordersColor(color tcell.Color) {
g.Lock()
defer g.Unlock()
g.bordersColor = color
}
// AddItem adds a primitive and its position to the grid. The top-left corner
// of the primitive will be located in the top-left corner of the grid cell at
// the given row and column and will span "rowSpan" rows and "colSpan" columns.
// For example, for a primitive to occupy rows 2, 3, and 4 and columns 5 and 6:
//
// grid.AddItem(p, 2, 5, 3, 2, 0, 0, true)
//
// If rowSpan or colSpan is 0, the primitive will not be drawn.
//
// You can add the same primitive multiple times with different grid positions.
// The minGridWidth and minGridHeight values will then determine which of those
// positions will be used. This is similar to CSS media queries. These minimum
// values refer to the overall size of the grid. If multiple items for the same
// primitive apply, the one that has at least one highest minimum value will be
// used, or the primitive added last if those values are the same. Example:
//
// grid.AddItem(p, 0, 0, 0, 0, 0, 0, true). // Hide in small grids.
// AddItem(p, 0, 0, 1, 2, 100, 0, true). // One-column layout for medium grids.
// AddItem(p, 1, 1, 3, 2, 300, 0, true) // Multi-column layout for large grids.
//
// To use the same grid layout for all sizes, simply set minGridWidth and
// minGridHeight to 0.
//
// If the item's focus is set to true, it will receive focus when the grid
// receives focus. If there are multiple items with a true focus flag, the last
// visible one that was added will receive focus.
func (g *Grid) AddItem(p Primitive, row, column, rowSpan, colSpan, minGridHeight, minGridWidth int, focus bool) {
g.Lock()
defer g.Unlock()
g.items = append(g.items, &gridItem{
Item: p,
Row: row,
Column: column,
Height: rowSpan,
Width: colSpan,
MinGridHeight: minGridHeight,
MinGridWidth: minGridWidth,
Focus: focus,
})
}
// RemoveItem removes all items for the given primitive from the grid, keeping
// the order of the remaining items intact.
func (g *Grid) RemoveItem(p Primitive) {
g.Lock()
defer g.Unlock()
for index := len(g.items) - 1; index >= 0; index-- {
if g.items[index].Item == p {
g.items = append(g.items[:index], g.items[index+1:]...)
}
}
}
// Clear removes all items from the grid.
func (g *Grid) Clear() {
g.Lock()
defer g.Unlock()
g.items = nil
}
// SetOffset sets the number of rows and columns which are skipped before
// drawing the first grid cell in the top-left corner. As the grid will never
// completely move off the screen, these values may be adjusted the next time
// the grid is drawn. The actual position of the grid may also be adjusted such
// that contained primitives that have focus remain visible.
func (g *Grid) SetOffset(rows, columns int) {
g.Lock()
defer g.Unlock()
g.rowOffset, g.columnOffset = rows, columns
}
// GetOffset returns the current row and column offset (see SetOffset() for
// details).
func (g *Grid) GetOffset() (rows, columns int) {
g.RLock()
defer g.RUnlock()
return g.rowOffset, g.columnOffset
}
// Focus is called when this primitive receives focus.
func (g *Grid) Focus(delegate func(p Primitive)) {
g.Lock()
items := g.items
g.Unlock()
for _, item := range items {
if item.Focus {
delegate(item.Item)
return
}
}
g.Lock()
g.hasFocus = true
g.Unlock()
}
// Blur is called when this primitive loses focus.
func (g *Grid) Blur() {
g.Lock()
defer g.Unlock()
g.hasFocus = false
}
// HasFocus returns whether or not this primitive has focus.
func (g *Grid) HasFocus() bool {
g.RLock()
defer g.RUnlock()
for _, item := range g.items {
if item.visible && item.Item.GetFocusable().HasFocus() {
return true
}
}
return g.hasFocus
}
// InputHandler returns the handler for this primitive.
func (g *Grid) InputHandler() func(event *tcell.EventKey, setFocus func(p Primitive)) {
return g.WrapInputHandler(func(event *tcell.EventKey, setFocus func(p Primitive)) {
g.Lock()
defer g.Unlock()
if HitShortcut(event, Keys.MoveFirst, Keys.MoveFirst2) {
g.rowOffset, g.columnOffset = 0, 0
} else if HitShortcut(event, Keys.MoveLast, Keys.MoveLast2) {
g.rowOffset = math.MaxInt32
} else if HitShortcut(event, Keys.MoveUp, Keys.MoveUp2, Keys.MovePreviousField) {
g.rowOffset--
} else if HitShortcut(event, Keys.MoveDown, Keys.MoveDown2, Keys.MoveNextField) {
g.rowOffset++
} else if HitShortcut(event, Keys.MoveLeft, Keys.MoveLeft2) {
g.columnOffset--
} else if HitShortcut(event, Keys.MoveRight, Keys.MoveRight2) {
g.columnOffset++
}
})
}
// Draw draws this primitive onto the screen.
func (g *Grid) Draw(screen tcell.Screen) {
if !g.GetVisible() {
return
}
g.Box.Draw(screen)
g.Lock()
defer g.Unlock()
x, y, width, height := g.GetInnerRect()
screenWidth, screenHeight := screen.Size()
// Make a list of items which apply.
items := make(map[Primitive]*gridItem)
for _, item := range g.items {
item.visible = false
if item.Width <= 0 || item.Height <= 0 || width < item.MinGridWidth || height < item.MinGridHeight {
continue
}
previousItem, ok := items[item.Item]
if ok && item.MinGridWidth < previousItem.MinGridWidth && item.MinGridHeight < previousItem.MinGridHeight {
continue
}
items[item.Item] = item
}
// How many rows and columns do we have?
rows := len(g.rows)
columns := len(g.columns)
for _, item := range items {
rowEnd := item.Row + item.Height
if rowEnd > rows {
rows = rowEnd
}
columnEnd := item.Column + item.Width
if columnEnd > columns {
columns = columnEnd
}
}
if rows == 0 || columns == 0 {
return // No content.
}
// Where are they located?
rowPos := make([]int, rows)
rowHeight := make([]int, rows)
columnPos := make([]int, columns)
columnWidth := make([]int, columns)
// How much space do we distribute?
remainingWidth := width
remainingHeight := height
proportionalWidth := 0
proportionalHeight := 0
for index, row := range g.rows {
if row > 0 {
if row < g.minHeight {
row = g.minHeight
}
remainingHeight -= row
rowHeight[index] = row
} else if row == 0 {
proportionalHeight++
} else {
proportionalHeight += -row
}
}
for index, column := range g.columns {
if column > 0 {
if column < g.minWidth {
column = g.minWidth
}
remainingWidth -= column
columnWidth[index] = column
} else if column == 0 {
proportionalWidth++
} else {
proportionalWidth += -column
}
}
if g.borders {
remainingHeight -= rows + 1
remainingWidth -= columns + 1
} else {
remainingHeight -= (rows - 1) * g.gapRows
remainingWidth -= (columns - 1) * g.gapColumns
}
if rows > len(g.rows) {
proportionalHeight += rows - len(g.rows)
}
if columns > len(g.columns) {
proportionalWidth += columns - len(g.columns)
}
// Distribute proportional rows/columns.
for index := 0; index < rows; index++ {
row := 0
if index < len(g.rows) {
row = g.rows[index]
}
if row > 0 {
if row < g.minHeight {
row = g.minHeight
}
continue // Not proportional. We already know the width.
} else if row == 0 {
row = 1
} else {
row = -row
}
rowAbs := row * remainingHeight / proportionalHeight
remainingHeight -= rowAbs
proportionalHeight -= row
if rowAbs < g.minHeight {
rowAbs = g.minHeight
}
rowHeight[index] = rowAbs
}
for index := 0; index < columns; index++ {
column := 0
if index < len(g.columns) {
column = g.columns[index]
}
if column > 0 {
if column < g.minWidth {
column = g.minWidth
}
continue // Not proportional. We already know the height.
} else if column == 0 {
column = 1
} else {
column = -column
}
columnAbs := column * remainingWidth / proportionalWidth
remainingWidth -= columnAbs
proportionalWidth -= column
if columnAbs < g.minWidth {
columnAbs = g.minWidth
}
columnWidth[index] = columnAbs
}
// Calculate row/column positions.
var columnX, rowY int
if g.borders {
columnX++
rowY++
}
for index, row := range rowHeight {
rowPos[index] = rowY
gap := g.gapRows
if g.borders {
gap = 1
}
rowY += row + gap
}
for index, column := range columnWidth {
columnPos[index] = columnX
gap := g.gapColumns
if g.borders {
gap = 1
}
columnX += column + gap
}
// Calculate primitive positions.
var focus *gridItem // The item which has focus.
for primitive, item := range items {
px := columnPos[item.Column]
py := rowPos[item.Row]
var pw, ph int
for index := 0; index < item.Height; index++ {
ph += rowHeight[item.Row+index]
}
for index := 0; index < item.Width; index++ {
pw += columnWidth[item.Column+index]
}
if g.borders {
pw += item.Width - 1
ph += item.Height - 1
} else {
pw += (item.Width - 1) * g.gapColumns
ph += (item.Height - 1) * g.gapRows
}
item.x, item.y, item.w, item.h = px, py, pw, ph
item.visible = true
if primitive.GetFocusable().HasFocus() {
focus = item
}
}
// Calculate screen offsets.
var offsetX, offsetY int
add := 1
if !g.borders {
add = g.gapRows
}
for index, height := range rowHeight {
if index >= g.rowOffset {
break
}
offsetY += height + add
}
if !g.borders {
add = g.gapColumns
}
for index, width := range columnWidth {
if index >= g.columnOffset {
break
}
offsetX += width + add
}
// Line up the last row/column with the end of the available area.
var border int
if g.borders {
border = 1
}
last := len(rowPos) - 1
if rowPos[last]+rowHeight[last]+border-offsetY < height {
offsetY = rowPos[last] - height + rowHeight[last] + border
}
last = len(columnPos) - 1
if columnPos[last]+columnWidth[last]+border-offsetX < width {
offsetX = columnPos[last] - width + columnWidth[last] + border
}
// The focused item must be within the visible area.
if focus != nil {
if focus.y+focus.h-offsetY >= height {
offsetY = focus.y - height + focus.h
}
if focus.y-offsetY < 0 {
offsetY = focus.y
}
if focus.x+focus.w-offsetX >= width {
offsetX = focus.x - width + focus.w
}
if focus.x-offsetX < 0 {
offsetX = focus.x
}
}
// Adjust row/column offsets based on this value.
var from, to int
for index, pos := range rowPos {
if pos-offsetY < 0 {
from = index + 1
}
if pos-offsetY < height {
to = index
}
}
if g.rowOffset < from {
g.rowOffset = from
}
if g.rowOffset > to {
g.rowOffset = to
}
from, to = 0, 0
for index, pos := range columnPos {
if pos-offsetX < 0 {
from = index + 1
}
if pos-offsetX < width {
to = index
}
}
if g.columnOffset < from {
g.columnOffset = from
}
if g.columnOffset > to {
g.columnOffset = to
}
// Draw primitives and borders.
for primitive, item := range items {
// Final primitive position.
if !item.visible {
continue
}
item.x -= offsetX
item.y -= offsetY
if item.x >= width || item.x+item.w <= 0 || item.y >= height || item.y+item.h <= 0 {
item.visible = false
continue
}
if item.x+item.w > width {
item.w = width - item.x
}
if item.y+item.h > height {
item.h = height - item.y
}
if item.x < 0 {
item.w += item.x
item.x = 0
}
if item.y < 0 {
item.h += item.y
item.y = 0
}
if item.w <= 0 || item.h <= 0 {
item.visible = false
continue
}
item.x += x
item.y += y
primitive.SetRect(item.x, item.y, item.w, item.h)
// Draw primitive.
if item == focus {
defer primitive.Draw(screen)
} else {
primitive.Draw(screen)
}
// Draw border around primitive.
if g.borders {
for bx := item.x; bx < item.x+item.w; bx++ { // Top/bottom lines.
if bx < 0 || bx >= screenWidth {
continue
}
by := item.y - 1
if by >= 0 && by < screenHeight {
PrintJoinedSemigraphics(screen, bx, by, Borders.Horizontal, g.bordersColor)
}
by = item.y + item.h
if by >= 0 && by < screenHeight {
PrintJoinedSemigraphics(screen, bx, by, Borders.Horizontal, g.bordersColor)
}
}
for by := item.y; by < item.y+item.h; by++ { // Left/right lines.
if by < 0 || by >= screenHeight {
continue
}
bx := item.x - 1
if bx >= 0 && bx < screenWidth {
PrintJoinedSemigraphics(screen, bx, by, Borders.Vertical, g.bordersColor)
}
bx = item.x + item.w
if bx >= 0 && bx < screenWidth {
PrintJoinedSemigraphics(screen, bx, by, Borders.Vertical, g.bordersColor)
}
}
bx, by := item.x-1, item.y-1 // Top-left corner.
if bx >= 0 && bx < screenWidth && by >= 0 && by < screenHeight {
PrintJoinedSemigraphics(screen, bx, by, Borders.TopLeft, g.bordersColor)
}
bx, by = item.x+item.w, item.y-1 // Top-right corner.
if bx >= 0 && bx < screenWidth && by >= 0 && by < screenHeight {
PrintJoinedSemigraphics(screen, bx, by, Borders.TopRight, g.bordersColor)
}
bx, by = item.x-1, item.y+item.h // Bottom-left corner.
if bx >= 0 && bx < screenWidth && by >= 0 && by < screenHeight {
PrintJoinedSemigraphics(screen, bx, by, Borders.BottomLeft, g.bordersColor)
}
bx, by = item.x+item.w, item.y+item.h // Bottom-right corner.
if bx >= 0 && bx < screenWidth && by >= 0 && by < screenHeight {
PrintJoinedSemigraphics(screen, bx, by, Borders.BottomRight, g.bordersColor)
}
}
}
}
// MouseHandler returns the mouse handler for this primitive.
func (g *Grid) MouseHandler() func(action MouseAction, event *tcell.EventMouse, setFocus func(p Primitive)) (consumed bool, capture Primitive) {
return g.WrapMouseHandler(func(action MouseAction, event *tcell.EventMouse, setFocus func(p Primitive)) (consumed bool, capture Primitive) {
if !g.InRect(event.Position()) {
return false, nil
}
// Pass mouse events along to the first child item that takes it.
for _, item := range g.items {
consumed, capture = item.Item.MouseHandler()(action, event, setFocus)
if consumed {
return
}
}
return
})
}
|