File: extended.go

package info (click to toggle)
golang-debian-vasudev-gospake2 0.2.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 248 kB
  • sloc: makefile: 19; sh: 15
file content (334 lines) | stat: -rw-r--r-- 7,964 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
package ed25519group

import (
	"bytes"
	"fmt"
	"math/big"
	group "salsa.debian.org/vasudev/gospake2/groups"
)

// ExtendedPoint represents co-ordinate on twisted edwards curve derived from Affine Points
type ExtendedPoint struct {
	X, Y, Z, T *big.Int
}

// NewExtendedPoint creates ExtendedPoint with given x,y,z,t arguments as string
// and base of the integer
func NewExtendedPoint(x, y, z, t string, base int) ExtendedPoint {
	X := new(big.Int)
	Y := new(big.Int)
	Z := new(big.Int)
	T := new(big.Int)

	X.SetString(x, base)
	Y.SetString(y, base)
	Z.SetString(z, base)
	T.SetString(t, base)

	return ExtendedPoint{X, Y, Z, T}
}

func (e ExtendedPoint) String() string {
	return fmt.Sprintf("X: %s\nY: %s\nZ: %s\nT: %s\n", e.X,
		e.Y, e.Z, e.T)
}

// ToAffine converts ExtendedPoint back to AffinePoint representation
func (e *ExtendedPoint) ToAffine() AffinePoint {
	zinv := new(big.Int).ModInverse(e.Z, Q)

	X := new(big.Int).Mul(e.X, zinv)
	X.Mod(X, Q)

	Y := new(big.Int).Mul(e.Y, zinv)
	Y.Mod(Y, Q)

	return AffinePoint{X, Y}
}

// Double doubles given extended point. Given point P this function returns 2P.
// This is dbl-2008-hwcd implementation
// from http://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html
func (e ExtendedPoint) Double() ExtendedPoint {
	X1, Y1, Z1 := e.X, e.Y, e.Z

	// A = (X1 * X1)
	A := new(big.Int).Mul(X1, X1)

	// B = (Y1*Y1)
	B := new(big.Int).Mul(Y1, Y1)

	// C = (2*Z1*Z1)
	// twoZ.Mul(Z1, Z1)
	C := new(big.Int).Mul(big.NewInt(2), Z1)
	C.Mul(C, Z1)

	// D = (-A) % Q
	D := new(big.Int).Mod(new(big.Int).Neg(A), Q)

	// J = (X1+Y1) % Q
	J := new(big.Int).Add(X1, Y1)
	J.Mod(J, Q)

	// E = (J*J-A-B) % Q
	E := new(big.Int).Mul(J, J)
	E.Sub(E, A)
	E.Sub(E, B)
	E.Mod(E, Q)

	// G = (D+B) % Q
	G := new(big.Int).Add(D, B)
	G.Mod(G, Q)

	// F = (G - C) % Q
	F := new(big.Int).Sub(G, C)
	F.Mod(F, Q)

	// H = (D - B) % Q
	H := new(big.Int).Sub(D, B)
	H.Mod(H, Q)

	// X3 = (E*F) % Q
	X3 := new(big.Int).Mul(E, F)
	X3.Mod(X3, Q)

	// Y3 = (G*H) % Q
	Y3 := new(big.Int).Mul(G, H)
	Y3.Mod(Y3, Q)

	// Z3 = (F*G) % Q
	Z3 := new(big.Int).Mul(F, G)
	Z3.Mod(Z3, Q)

	// T3 = (E*H) % Q
	T3 := new(big.Int).Mul(E, H)
	T3.Mod(T3, Q)

	a := ExtendedPoint{X3, Y3, Z3, T3}
	return a
}

// Cmp compares 2 points in CompressedEdwardsY (i.e. 32 byte format representing
// Y co-ordinate) form and returns integer. The result will be 0 if e == other, -1
// if e < other and +1 if e > other
func (e *ExtendedPoint) Cmp(other *ExtendedPoint) int {
	a := e.ToAffine()
	b := other.ToAffine()

	aBytes := a.Compress()
	bBytes := b.Compress()

	return bytes.Compare(aBytes, bBytes)
}

// Add implements the group.Element interface and adds 2 ExtendedPoint and
// returns the resulting point as type Element
func (e ExtendedPoint) Add(b group.Element) group.Element {
	other := b.(ExtendedPoint)
	result := AddUnified(&e, &other)
	return result
}

// ScalarMult multiplies given scalar to point on elliptic curve and returns the
// resutling point
func (e ExtendedPoint) ScalarMult(s *big.Int) group.Element {
	result := e.ScalarMultFast(s)
	return result
}

// AddUnified adds 2 extended co-ordinates and returns resulting extended co-ordinate.
// This is implemented using  add-2008-hwcd-3. It is slightly slower than
// add-2008-hwcd-4 but is unified and is safe for general purpose addition
func AddUnified(a, b *ExtendedPoint) ExtendedPoint {
	x1, y1, z1, t1 := a.X, a.Y, a.Z, a.T
	x2, y2, z2, t2 := b.X, b.Y, b.Z, b.T

	// A = ((Y1-X1)*(Y2-X2)) % Q
	A := new(big.Int).Mul(new(big.Int).Sub(y1, x1), new(big.Int).Sub(y2, x2))
	A.Mod(A, Q)

	// B = ((Y1+X1)*(Y2+X2)) % Q
	B := new(big.Int).Mul(new(big.Int).Add(y1, x1), new(big.Int).Add(y2, x2))
	B.Mod(B, Q)

	// C = T1*(2*d)*T2 % Q
	C := new(big.Int).Mul(t1, d2)
	C.Mul(C, t2)
	C.Mod(C, Q)

	// D = Z1*2*Z2 % Q
	D := new(big.Int).Mul(z1, big.NewInt(2))
	D.Mul(D, z2)
	D.Mod(D, Q)

	// E = (B-A) % Q
	E := new(big.Int).Sub(B, A)
	E.Mod(E, Q)

	// F = (D-C) % Q
	F := new(big.Int).Sub(D, C)
	F.Mod(F, Q)

	// G = (D+C) % Q
	G := new(big.Int).Add(D, C)
	G.Mod(G, Q)

	// H = (B+A) % Q
	H := new(big.Int).Add(B, A)
	H.Mod(H, Q)

	// X3 = (E*H) % Q
	X3 := new(big.Int).Mul(E, F)
	X3.Mod(X3, Q)

	// Y3 = (G*H) % Q
	Y3 := new(big.Int).Mul(G, H)
	Y3.Mod(Y3, Q)

	// Z3 = (F*G) % Q
	Z3 := new(big.Int).Mul(F, G)
	Z3.Mod(Z3, Q)

	// T3 = (E*H) % Q
	T3 := new(big.Int).Mul(E, H)
	T3.Mod(T3, Q)

	return ExtendedPoint{X3, Y3, Z3, T3}
}

// AddNonUnified adds 2 point on elliptic curve and returns the resulting
// extended co-ordinate. This is based on add-2008-hwcd-4 and only for a != b.
// This is 10% faster than Add and safe to use in ScalarMult if points of order
// 1/2/4/8 are not used
func AddNonUnified(a, b *ExtendedPoint) ExtendedPoint {
	x1, y1, z1, t1 := a.X, a.Y, a.Z, a.T
	x2, y2, z2, t2 := b.X, b.Y, b.Z, b.T

	// A = ((Y1-X1)*(Y2+X2)) % Q
	A := new(big.Int).Mul(new(big.Int).Sub(y1, x1), new(big.Int).Add(y2, x2))
	A.Mod(A, Q)

	// B = ((Y1+X1)*(Y2-X2)) % Q
	B := new(big.Int).Mul(new(big.Int).Add(y1, x1), new(big.Int).Sub(y2, x2))
	B.Mod(B, Q)

	// C = (Z1*2*T2) % Q
	C := new(big.Int).Mul(z1, big.NewInt(2))
	C.Mul(C, t2)
	C.Mod(C, Q)

	// D = (T1*2*Z2) % Q
	D := new(big.Int).Mul(t1, big.NewInt(2))
	D.Mul(D, z2)
	D.Mod(D, Q)

	// E = (D+C) % Q
	E := new(big.Int).Add(D, C)
	E.Mod(E, Q)

	// F = (B-A) % Q
	F := new(big.Int).Sub(B, A)
	F.Mod(F, Q)

	// G = (B+A) % Q
	G := new(big.Int).Add(B, A)
	G.Mod(G, Q)

	// H = (D-C) % Q
	H := new(big.Int).Sub(D, C)
	H.Mod(H, Q)

	// X3 = (E*F) % Q
	x3 := new(big.Int).Mul(E, F)
	x3.Mod(x3, Q)

	// Y3 = (G*H) % Q
	y3 := new(big.Int).Mul(G, H)
	y3.Mod(y3, Q)

	// Z3 = (F*G) % Q
	z3 := new(big.Int).Mul(F, G)
	z3.Mod(z3, Q)

	// T3 = (E*H) % Q
	t3 := new(big.Int).Mul(E, H)
	t3.Mod(t3, Q)

	return ExtendedPoint{x3, y3, z3, t3}
}

// ScalarMultSlow multiplies a scalar (Integer) to the point on elliptic curve
// (Extended Co-ordinate) and reutns the resulting point. This form is slightly
// slower, but tolerates arbitrary points, including those which are not in the
// main 1*L subgroup. This includes points of order 1 (the neutral element
// Zero), 2, 4, 6, 8
func (e *ExtendedPoint) ScalarMultSlow(s *big.Int) ExtendedPoint {
	if s.Cmp(big.NewInt(0)) == 0 {
		return Zero
	}

	if s.Cmp(big.NewInt(1)) == 0 {
		return *e
	}

	var result ExtendedPoint
	if IsEven(s) {
		// If scalar is even we recursively call scalarmult with n/2 and
		// then double the result.
		result = e.ScalarMultSlow(new(big.Int).Rsh(s, 1))
		result = result.Double()
	} else {
		// We decrement the scalar and recursively call scalarmult with
		// it then we add the result with point
		result = e.ScalarMultSlow(new(big.Int).Sub(s, big.NewInt(1)))
		result = AddUnified(&result, e)
	}

	return result
}

// ScalarMultFast multiplies a scalar (Integer) to the point on elliptic curve
// (Extended Co-ordinate) and reutns the resulting point. This form only works
// properly when given points that are member of the main 1*L subgroup. It will
// give incorrect answers when called with the points of order 1/2/4/6/8,
// including point Zero.
func (e *ExtendedPoint) ScalarMultFast(s *big.Int) ExtendedPoint {
	if s.Cmp(big.NewInt(0)) == 0 {
		return Zero
	}

	if s.Cmp(big.NewInt(1)) == 0 {
		return *e
	}

	var result ExtendedPoint
	if IsEven(s) {
		// If scalar is even we recursively call scalarmult with n/2 and
		// then double the result.
		result = e.ScalarMultFast(new(big.Int).Rsh(s, 1))
		result = result.Double()
	} else {
		// We decrement the scalar and recursively call scalarmult with
		// it then we add the result with point

		result = e.ScalarMultFast(new(big.Int).Sub(s, big.NewInt(1)))
		result = AddNonUnified(&result, e)
	}

	return result
}

// Negate negates given point e and returns -e
func (e ExtendedPoint) Negate() group.Element {
	var negatedPoint ExtendedPoint
	var X, T big.Int
	X.Sub(Q, e.X)
	T.Sub(Q, e.T)

	negatedPoint.X = &X
	negatedPoint.Y = e.Y
	negatedPoint.Z = e.Z
	negatedPoint.T = &T

	return negatedPoint
}