1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
|
// Copyright 2011 Miek Gieben. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// DNSSEC
//
// DNSSEC (DNS Security Extension) adds a layer of security to the DNS. It
// uses public key cryptography to sign resource records. The
// public keys are stored in DNSKEY records and the signatures in RRSIG records.
//
// Requesting DNSSEC information for a zone is done by adding the DO (DNSSEC OK) bit
// to an request.
//
// m := new(dns.Msg)
// m.SetEdns0(4096, true)
//
// Signature generation, signature verification and key generation are all supported.
package dns
import (
"bytes"
"crypto"
"crypto/dsa"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/md5"
"crypto/rand"
"crypto/rsa"
"crypto/sha1"
"crypto/sha256"
"crypto/sha512"
"encoding/hex"
"hash"
"io"
"math/big"
"sort"
"strings"
"time"
)
// DNSSEC encryption algorithm codes.
const (
RSAMD5 = 1
DH = 2
DSA = 3
ECC = 4
RSASHA1 = 5
DSANSEC3SHA1 = 6
RSASHA1NSEC3SHA1 = 7
RSASHA256 = 8
RSASHA512 = 10
ECCGOST = 12
ECDSAP256SHA256 = 13
ECDSAP384SHA384 = 14
INDIRECT = 252
PRIVATEDNS = 253 // Private (experimental keys)
PRIVATEOID = 254
)
// DNSSEC hashing algorithm codes.
const (
_ = iota
SHA1 // RFC 4034
SHA256 // RFC 4509
GOST94 // RFC 5933
SHA384 // Experimental
SHA512 // Experimental
)
// DNSKEY flag values.
const (
SEP = 1
ZONE = 1 << 7
REVOKE = 1 << 8
)
// The RRSIG needs to be converted to wireformat with some of
// the rdata (the signature) missing. Use this struct to easy
// the conversion (and re-use the pack/unpack functions).
type rrsigWireFmt struct {
TypeCovered uint16
Algorithm uint8
Labels uint8
OrigTtl uint32
Expiration uint32
Inception uint32
KeyTag uint16
SignerName string `dns:"domain-name"`
/* No Signature */
}
// Used for converting DNSKEY's rdata to wirefmt.
type dnskeyWireFmt struct {
Flags uint16
Protocol uint8
Algorithm uint8
PublicKey string `dns:"base64"`
/* Nothing is left out */
}
// KeyTag calculates the keytag (or key-id) of the DNSKEY.
func (k *DNSKEY) KeyTag() uint16 {
if k == nil {
return 0
}
var keytag int
switch k.Algorithm {
case RSAMD5:
// Look at the bottom two bytes of the modules, which the last
// item in the pubkey. We could do this faster by looking directly
// at the base64 values. But I'm lazy.
modulus, _ := packBase64([]byte(k.PublicKey))
if len(modulus) > 1 {
x, _ := unpackUint16(modulus, len(modulus)-2)
keytag = int(x)
}
default:
keywire := new(dnskeyWireFmt)
keywire.Flags = k.Flags
keywire.Protocol = k.Protocol
keywire.Algorithm = k.Algorithm
keywire.PublicKey = k.PublicKey
wire := make([]byte, DefaultMsgSize)
n, err := PackStruct(keywire, wire, 0)
if err != nil {
return 0
}
wire = wire[:n]
for i, v := range wire {
if i&1 != 0 {
keytag += int(v) // must be larger than uint32
} else {
keytag += int(v) << 8
}
}
keytag += (keytag >> 16) & 0xFFFF
keytag &= 0xFFFF
}
return uint16(keytag)
}
// ToDS converts a DNSKEY record to a DS record.
func (k *DNSKEY) ToDS(h int) *DS {
if k == nil {
return nil
}
ds := new(DS)
ds.Hdr.Name = k.Hdr.Name
ds.Hdr.Class = k.Hdr.Class
ds.Hdr.Rrtype = TypeDS
ds.Hdr.Ttl = k.Hdr.Ttl
ds.Algorithm = k.Algorithm
ds.DigestType = uint8(h)
ds.KeyTag = k.KeyTag()
keywire := new(dnskeyWireFmt)
keywire.Flags = k.Flags
keywire.Protocol = k.Protocol
keywire.Algorithm = k.Algorithm
keywire.PublicKey = k.PublicKey
wire := make([]byte, DefaultMsgSize)
n, err := PackStruct(keywire, wire, 0)
if err != nil {
return nil
}
wire = wire[:n]
owner := make([]byte, 255)
off, err1 := PackDomainName(k.Hdr.Name, owner, 0, nil, false)
if err1 != nil {
return nil
}
owner = owner[:off]
// RFC4034:
// digest = digest_algorithm( DNSKEY owner name | DNSKEY RDATA);
// "|" denotes concatenation
// DNSKEY RDATA = Flags | Protocol | Algorithm | Public Key.
// digest buffer
digest := append(owner, wire...) // another copy
switch h {
case SHA1:
s := sha1.New()
io.WriteString(s, string(digest))
ds.Digest = hex.EncodeToString(s.Sum(nil))
case SHA256:
s := sha256.New()
io.WriteString(s, string(digest))
ds.Digest = hex.EncodeToString(s.Sum(nil))
case SHA384:
s := sha512.New384()
io.WriteString(s, string(digest))
ds.Digest = hex.EncodeToString(s.Sum(nil))
case GOST94:
/* I have no clue */
default:
return nil
}
return ds
}
// Sign signs an RRSet. The signature needs to be filled in with
// the values: Inception, Expiration, KeyTag, SignerName and Algorithm.
// The rest is copied from the RRset. Sign returns true when the signing went OK,
// otherwise false.
// There is no check if RRSet is a proper (RFC 2181) RRSet.
func (rr *RRSIG) Sign(k PrivateKey, rrset []RR) error {
if k == nil {
return ErrPrivKey
}
// s.Inception and s.Expiration may be 0 (rollover etc.), the rest must be set
if rr.KeyTag == 0 || len(rr.SignerName) == 0 || rr.Algorithm == 0 {
return ErrKey
}
rr.Hdr.Rrtype = TypeRRSIG
rr.Hdr.Name = rrset[0].Header().Name
rr.Hdr.Class = rrset[0].Header().Class
rr.OrigTtl = rrset[0].Header().Ttl
rr.TypeCovered = rrset[0].Header().Rrtype
rr.TypeCovered = rrset[0].Header().Rrtype
rr.Labels = uint8(CountLabel(rrset[0].Header().Name))
if strings.HasPrefix(rrset[0].Header().Name, "*") {
rr.Labels-- // wildcard, remove from label count
}
sigwire := new(rrsigWireFmt)
sigwire.TypeCovered = rr.TypeCovered
sigwire.Algorithm = rr.Algorithm
sigwire.Labels = rr.Labels
sigwire.OrigTtl = rr.OrigTtl
sigwire.Expiration = rr.Expiration
sigwire.Inception = rr.Inception
sigwire.KeyTag = rr.KeyTag
// For signing, lowercase this name
sigwire.SignerName = strings.ToLower(rr.SignerName)
// Create the desired binary blob
signdata := make([]byte, DefaultMsgSize)
n, err := PackStruct(sigwire, signdata, 0)
if err != nil {
return err
}
signdata = signdata[:n]
wire := rawSignatureData(rrset, rr)
if wire == nil {
return ErrSigGen
}
signdata = append(signdata, wire...)
var sighash []byte
var h hash.Hash
var ch crypto.Hash // Only need for RSA
switch rr.Algorithm {
case DSA, DSANSEC3SHA1:
// Implicit in the ParameterSizes
case RSASHA1, RSASHA1NSEC3SHA1:
h = sha1.New()
ch = crypto.SHA1
case RSASHA256, ECDSAP256SHA256:
h = sha256.New()
ch = crypto.SHA256
case ECDSAP384SHA384:
h = sha512.New384()
case RSASHA512:
h = sha512.New()
ch = crypto.SHA512
case RSAMD5:
fallthrough // Deprecated in RFC 6725
default:
return ErrAlg
}
io.WriteString(h, string(signdata))
sighash = h.Sum(nil)
switch p := k.(type) {
case *dsa.PrivateKey:
r1, s1, err := dsa.Sign(rand.Reader, p, sighash)
if err != nil {
return err
}
signature := []byte{0x4D} // T value, here the ASCII M for Miek (not used in DNSSEC)
signature = append(signature, r1.Bytes()...)
signature = append(signature, s1.Bytes()...)
rr.Signature = unpackBase64(signature)
case *rsa.PrivateKey:
// We can use nil as rand.Reader here (says AGL)
signature, err := rsa.SignPKCS1v15(nil, p, ch, sighash)
if err != nil {
return err
}
rr.Signature = unpackBase64(signature)
case *ecdsa.PrivateKey:
r1, s1, err := ecdsa.Sign(rand.Reader, p, sighash)
if err != nil {
return err
}
signature := r1.Bytes()
signature = append(signature, s1.Bytes()...)
rr.Signature = unpackBase64(signature)
default:
// Not given the correct key
return ErrKeyAlg
}
return nil
}
// Verify validates an RRSet with the signature and key. This is only the
// cryptographic test, the signature validity period must be checked separately.
// This function copies the rdata of some RRs (to lowercase domain names) for the validation to work.
func (rr *RRSIG) Verify(k *DNSKEY, rrset []RR) error {
// First the easy checks
if len(rrset) == 0 {
return ErrRRset
}
if rr.KeyTag != k.KeyTag() {
return ErrKey
}
if rr.Hdr.Class != k.Hdr.Class {
return ErrKey
}
if rr.Algorithm != k.Algorithm {
return ErrKey
}
if strings.ToLower(rr.SignerName) != strings.ToLower(k.Hdr.Name) {
return ErrKey
}
if k.Protocol != 3 {
return ErrKey
}
for _, r := range rrset {
if r.Header().Class != rr.Hdr.Class {
return ErrRRset
}
if r.Header().Rrtype != rr.TypeCovered {
return ErrRRset
}
}
// RFC 4035 5.3.2. Reconstructing the Signed Data
// Copy the sig, except the rrsig data
sigwire := new(rrsigWireFmt)
sigwire.TypeCovered = rr.TypeCovered
sigwire.Algorithm = rr.Algorithm
sigwire.Labels = rr.Labels
sigwire.OrigTtl = rr.OrigTtl
sigwire.Expiration = rr.Expiration
sigwire.Inception = rr.Inception
sigwire.KeyTag = rr.KeyTag
sigwire.SignerName = strings.ToLower(rr.SignerName)
// Create the desired binary blob
signeddata := make([]byte, DefaultMsgSize)
n, err := PackStruct(sigwire, signeddata, 0)
if err != nil {
return err
}
signeddata = signeddata[:n]
wire := rawSignatureData(rrset, rr)
if wire == nil {
return ErrSigGen
}
signeddata = append(signeddata, wire...)
sigbuf := rr.sigBuf() // Get the binary signature data
if rr.Algorithm == PRIVATEDNS { // PRIVATEOID
// TODO(mg)
// remove the domain name and assume its our
}
switch rr.Algorithm {
case RSASHA1, RSASHA1NSEC3SHA1, RSASHA256, RSASHA512, RSAMD5:
// TODO(mg): this can be done quicker, ie. cache the pubkey data somewhere??
pubkey := k.publicKeyRSA() // Get the key
if pubkey == nil {
return ErrKey
}
// Setup the hash as defined for this alg.
var h hash.Hash
var ch crypto.Hash
switch rr.Algorithm {
case RSAMD5:
h = md5.New()
ch = crypto.MD5
case RSASHA1, RSASHA1NSEC3SHA1:
h = sha1.New()
ch = crypto.SHA1
case RSASHA256:
h = sha256.New()
ch = crypto.SHA256
case RSASHA512:
h = sha512.New()
ch = crypto.SHA512
}
io.WriteString(h, string(signeddata))
sighash := h.Sum(nil)
return rsa.VerifyPKCS1v15(pubkey, ch, sighash, sigbuf)
case ECDSAP256SHA256, ECDSAP384SHA384:
pubkey := k.publicKeyCurve()
if pubkey == nil {
return ErrKey
}
var h hash.Hash
switch rr.Algorithm {
case ECDSAP256SHA256:
h = sha256.New()
case ECDSAP384SHA384:
h = sha512.New()
}
io.WriteString(h, string(signeddata))
sighash := h.Sum(nil)
// Split sigbuf into the r and s coordinates
r := big.NewInt(0)
r.SetBytes(sigbuf[:len(sigbuf)/2])
s := big.NewInt(0)
s.SetBytes(sigbuf[len(sigbuf)/2:])
if ecdsa.Verify(pubkey, sighash, r, s) {
return ErrSig
}
return nil
}
// Unknown alg
return ErrAlg
}
// ValidityPeriod uses RFC1982 serial arithmetic to calculate
// if a signature period is valid.
func (rr *RRSIG) ValidityPeriod() bool {
utc := time.Now().UTC().Unix()
modi := (int64(rr.Inception) - utc) / year68
mode := (int64(rr.Expiration) - utc) / year68
ti := int64(rr.Inception) + (modi * year68)
te := int64(rr.Expiration) + (mode * year68)
return ti <= utc && utc <= te
}
// Return the signatures base64 encodedig sigdata as a byte slice.
func (s *RRSIG) sigBuf() []byte {
sigbuf, err := packBase64([]byte(s.Signature))
if err != nil {
return nil
}
return sigbuf
}
// setPublicKeyInPrivate sets the public key in the private key.
func (k *DNSKEY) setPublicKeyInPrivate(p PrivateKey) bool {
switch t := p.(type) {
case *dsa.PrivateKey:
x := k.publicKeyDSA()
if x == nil {
return false
}
t.PublicKey = *x
case *rsa.PrivateKey:
x := k.publicKeyRSA()
if x == nil {
return false
}
t.PublicKey = *x
case *ecdsa.PrivateKey:
x := k.publicKeyCurve()
if x == nil {
return false
}
t.PublicKey = *x
}
return true
}
// publicKeyRSA returns the RSA public key from a DNSKEY record.
func (k *DNSKEY) publicKeyRSA() *rsa.PublicKey {
keybuf, err := packBase64([]byte(k.PublicKey))
if err != nil {
return nil
}
// RFC 2537/3110, section 2. RSA Public KEY Resource Records
// Length is in the 0th byte, unless its zero, then it
// it in bytes 1 and 2 and its a 16 bit number
explen := uint16(keybuf[0])
keyoff := 1
if explen == 0 {
explen = uint16(keybuf[1])<<8 | uint16(keybuf[2])
keyoff = 3
}
pubkey := new(rsa.PublicKey)
pubkey.N = big.NewInt(0)
shift := uint64((explen - 1) * 8)
expo := uint64(0)
for i := int(explen - 1); i > 0; i-- {
expo += uint64(keybuf[keyoff+i]) << shift
shift -= 8
}
// Remainder
expo += uint64(keybuf[keyoff])
if expo > 2<<31 {
// Larger expo than supported.
// println("dns: F5 primes (or larger) are not supported")
return nil
}
pubkey.E = int(expo)
pubkey.N.SetBytes(keybuf[keyoff+int(explen):])
return pubkey
}
// publicKeyCurve returns the Curve public key from the DNSKEY record.
func (k *DNSKEY) publicKeyCurve() *ecdsa.PublicKey {
keybuf, err := packBase64([]byte(k.PublicKey))
if err != nil {
return nil
}
pubkey := new(ecdsa.PublicKey)
switch k.Algorithm {
case ECDSAP256SHA256:
pubkey.Curve = elliptic.P256()
if len(keybuf) != 64 {
// wrongly encoded key
return nil
}
case ECDSAP384SHA384:
pubkey.Curve = elliptic.P384()
if len(keybuf) != 96 {
// Wrongly encoded key
return nil
}
}
pubkey.X = big.NewInt(0)
pubkey.X.SetBytes(keybuf[:len(keybuf)/2])
pubkey.Y = big.NewInt(0)
pubkey.Y.SetBytes(keybuf[len(keybuf)/2:])
return pubkey
}
func (k *DNSKEY) publicKeyDSA() *dsa.PublicKey {
keybuf, err := packBase64([]byte(k.PublicKey))
if err != nil {
return nil
}
if len(keybuf) < 22 { // TODO: check
return nil
}
t := int(keybuf[0])
size := 64 + t*8
pubkey := new(dsa.PublicKey)
pubkey.Parameters.Q = big.NewInt(0)
pubkey.Parameters.Q.SetBytes(keybuf[1:21]) // +/- 1 ?
pubkey.Parameters.P = big.NewInt(0)
pubkey.Parameters.P.SetBytes(keybuf[22 : 22+size])
pubkey.Parameters.G = big.NewInt(0)
pubkey.Parameters.G.SetBytes(keybuf[22+size+1 : 22+size*2])
pubkey.Y = big.NewInt(0)
pubkey.Y.SetBytes(keybuf[22+size*2+1 : 22+size*3])
return pubkey
}
// Set the public key (the value E and N)
func (k *DNSKEY) setPublicKeyRSA(_E int, _N *big.Int) bool {
if _E == 0 || _N == nil {
return false
}
buf := exponentToBuf(_E)
buf = append(buf, _N.Bytes()...)
k.PublicKey = unpackBase64(buf)
return true
}
// Set the public key for Elliptic Curves
func (k *DNSKEY) setPublicKeyCurve(_X, _Y *big.Int) bool {
if _X == nil || _Y == nil {
return false
}
buf := curveToBuf(_X, _Y)
// Check the length of the buffer, either 64 or 92 bytes
k.PublicKey = unpackBase64(buf)
return true
}
// Set the public key for DSA
func (k *DNSKEY) setPublicKeyDSA(_Q, _P, _G, _Y *big.Int) bool {
if _Q == nil || _P == nil || _G == nil || _Y == nil {
return false
}
buf := dsaToBuf(_Q, _P, _G, _Y)
k.PublicKey = unpackBase64(buf)
return true
}
// Set the public key (the values E and N) for RSA
// RFC 3110: Section 2. RSA Public KEY Resource Records
func exponentToBuf(_E int) []byte {
var buf []byte
i := big.NewInt(int64(_E))
if len(i.Bytes()) < 256 {
buf = make([]byte, 1)
buf[0] = uint8(len(i.Bytes()))
} else {
buf = make([]byte, 3)
buf[0] = 0
buf[1] = uint8(len(i.Bytes()) >> 8)
buf[2] = uint8(len(i.Bytes()))
}
buf = append(buf, i.Bytes()...)
return buf
}
// Set the public key for X and Y for Curve. The two
// values are just concatenated.
func curveToBuf(_X, _Y *big.Int) []byte {
buf := _X.Bytes()
buf = append(buf, _Y.Bytes()...)
return buf
}
// Set the public key for X and Y for Curve. The two
// values are just concatenated.
func dsaToBuf(_Q, _P, _G, _Y *big.Int) []byte {
t := byte((len(_G.Bytes()) - 64) / 8)
buf := []byte{t}
buf = append(buf, _Q.Bytes()...)
buf = append(buf, _P.Bytes()...)
buf = append(buf, _G.Bytes()...)
buf = append(buf, _Y.Bytes()...)
return buf
}
type wireSlice [][]byte
func (p wireSlice) Len() int { return len(p) }
func (p wireSlice) Less(i, j int) bool {
_, ioff, _ := UnpackDomainName(p[i], 0)
_, joff, _ := UnpackDomainName(p[j], 0)
return bytes.Compare(p[i][ioff+10:], p[j][joff+10:]) < 0
}
func (p wireSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
// Return the raw signature data.
func rawSignatureData(rrset []RR, s *RRSIG) (buf []byte) {
wires := make(wireSlice, len(rrset))
for i, r := range rrset {
r1 := r.copy()
r1.Header().Ttl = s.OrigTtl
labels := SplitDomainName(r1.Header().Name)
// 6.2. Canonical RR Form. (4) - wildcards
if len(labels) > int(s.Labels) {
// Wildcard
r1.Header().Name = "*." + strings.Join(labels[len(labels)-int(s.Labels):], ".") + "."
}
// RFC 4034: 6.2. Canonical RR Form. (2) - domain name to lowercase
r1.Header().Name = strings.ToLower(r1.Header().Name)
// 6.2. Canonical RR Form. (3) - domain rdata to lowercase.
// NS, MD, MF, CNAME, SOA, MB, MG, MR, PTR,
// HINFO, MINFO, MX, RP, AFSDB, RT, SIG, PX, NXT, NAPTR, KX,
// SRV, DNAME, A6
switch x := r.(type) {
case *NS:
x.Ns = strings.ToLower(x.Ns)
case *CNAME:
x.Target = strings.ToLower(x.Target)
case *SOA:
x.Ns = strings.ToLower(x.Ns)
x.Mbox = strings.ToLower(x.Mbox)
case *MB:
x.Mb = strings.ToLower(x.Mb)
case *MG:
x.Mg = strings.ToLower(x.Mg)
case *MR:
x.Mr = strings.ToLower(x.Mr)
case *PTR:
x.Ptr = strings.ToLower(x.Ptr)
case *MINFO:
x.Rmail = strings.ToLower(x.Rmail)
x.Email = strings.ToLower(x.Email)
case *MX:
x.Mx = strings.ToLower(x.Mx)
case *NAPTR:
x.Replacement = strings.ToLower(x.Replacement)
case *KX:
x.Exchanger = strings.ToLower(x.Exchanger)
case *SRV:
x.Target = strings.ToLower(x.Target)
case *DNAME:
x.Target = strings.ToLower(x.Target)
}
// 6.2. Canonical RR Form. (5) - origTTL
wire := make([]byte, r.len()*2) // TODO(mg): *2 ?
off, err1 := PackRR(r1, wire, 0, nil, false)
if err1 != nil {
return nil
}
wire = wire[:off]
wires[i] = wire
}
sort.Sort(wires)
for _, wire := range wires {
buf = append(buf, wire...)
}
return
}
// Map for algorithm names.
var AlgorithmToString = map[uint8]string{
RSAMD5: "RSAMD5",
DH: "DH",
DSA: "DSA",
RSASHA1: "RSASHA1",
DSANSEC3SHA1: "DSA-NSEC3-SHA1",
RSASHA1NSEC3SHA1: "RSASHA1-NSEC3-SHA1",
RSASHA256: "RSASHA256",
RSASHA512: "RSASHA512",
ECCGOST: "ECC-GOST",
ECDSAP256SHA256: "ECDSAP256SHA256",
ECDSAP384SHA384: "ECDSAP384SHA384",
INDIRECT: "INDIRECT",
PRIVATEDNS: "PRIVATEDNS",
PRIVATEOID: "PRIVATEOID",
}
// Map of algorithm strings.
var StringToAlgorithm = reverseInt8(AlgorithmToString)
// Map for hash names.
var HashToString = map[uint8]string{
SHA1: "SHA1",
SHA256: "SHA256",
GOST94: "GOST94",
SHA384: "SHA384",
SHA512: "SHA512",
}
// Map of hash strings.
var StringToHash = reverseInt8(HashToString)
|