1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
|
/*
Copyright 2020...2021 Adam Lavrik <lavrik.adam@gmail.com>
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied. See the License for the specific
language governing permissions and limitations under the License.
*/
package i64
// Fibonacci(index) returns Fibonacci sequence member with corresponding index:
// - Fibonacci(0) == 0
// - Fibonacci(1) == Fibonacci(2) == 1
// - Fibonacci(3) == 2
// - Fibonacci(4) == 3
// ...
// Negative indexes produce results, extended for negative values:
// - Fibonacci(-1) == 1
// - Fibonacci(-2) == -1
// - Fibonacci(-3) == 2
// - Fibonacci(-4) == -3
// ...
// Result is calculated via matrix ((1, 1), (1, 0)) fast raising to `index` power.
func Fibonacci(index int) T {
v0, v1 := T(0), T(1) // Result vector
if index < 0 {
index = -index
v1 = -1
}
for m00, m01, m10, m11 := v1, v1, v1, v0; index != 0; index >>= 1 { // `index` fast division by 2
if (index & 1) != 0 { // If index is odd
v0, v1 = v0 * m00 + v1 * m10, v0 * m01 + v1 * m11 // If power is odd then multiply result vector by matrix
}
m00, m01, m10, m11 = m00 * m00 + m01 * m10, m00 * m01 + m01 * m11, m10 * m00 + m11 * m10, m10 * m01 + m11 * m11 // Square the matrix
}
return v0
}
|