File: julia.actual

package info (click to toggle)
golang-github-alecthomas-chroma 0.10.0-5
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 6,652 kB
  • sloc: python: 426; javascript: 79; makefile: 34; sh: 32
file content (179 lines) | stat: -rw-r--r-- 3,292 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
## Test keywords are identified

mutable struct MutableType end
struct ImmutableType end
abstract type AbstractMyType end
primitive type MyPrimitive 32 end
(abstract, mutable, type) = true, π, missing

abstract    type AbstractMyType end
primitive   type MyPrimitive 32 end
mutable     struct MutableType end

## Test that macros are parsed, including ones which are defined as symbols

@generated function
@. a + b
@~ a + b
@± a + b
@mymacro(a, b)
@+¹ᵀ a

## Test that the range of Julia variable names are correctly identified

a # single character variable
a_simple_name
_leading_underscore
5implicit_mul
6_more_mul
nums1
nums_2
nameswith!
multiple!!
embedded!_inthemiddle
embed!1
prime_suffix′
for_each # starts with keyword substring

# variables with characters > \u00A1
ð # category Ll
Aʺ # category Lm -- \U02BA (MODIFIER LETTER DOUBLE PRIME), not \U2033 (DOUBLE PRIME)
א # category Lo
Ð # category Lu
A̅ # category Mn -- \U0305 (COMBINING OVERLINE)
ⅿ # category Nl -- \U217F (SMALL ROMAN NUMERAL ONE THOUSAND)
A₁ # category No
A² # category No
€ # category Sc
© # category So

# number-like names
𝟙 # category Nd
𝟏 # category Nd

## Tests identification of number forms

# floats
  1e1   1e+1   1e-1
1.1e1 1.1e+1 1.1e-1 .1e1 .1_1e1 1_1.1e1 1.1_1e1 1.1_11e1
1.1E1 1.1E+1 1.1E-1 .1E1 .1_1E1 1_1.1E1 1.1_1E1 1.1_11E1
1.1f1 1.1f+1 1.1f-1 .1f1 .1_1f1 1_1.1f1 1.1_1f1 1.1_11f1
1E1   1E+1   1E-1
1f1   1f+1   1f-1
.1  1.  1.1  1.1_1  1.1_11  .1_1  .1_11 1_1.1_1
# hex floats
0x1p1 0xa_bp10 0x01_ap11 0x01_abp1
0x1.1p1 0xA.Bp10 0x0.1_Ap9 0x0_1.Ap1 0x0_1.A_Bp9

# integers
1 01 10_1 10_11

# non-decimal
0xf 0xf_0 0xfff_000
0o7 0o7_0 0o777_000
0b1 0b1_0 0b111_000

# invalid in Julia - out of range values
0xg 0o8 0b2 0x1pA
# invalid in Julia - no trailing underscores
1_ 1.1_ 0xf_ 0o7_ 0b1_ 0xF_p1
# parsed as juxtaposed numeral + variable in Julia (no underscores in exponents)
1e1_1 1E1_1 1f1_1 0xfp1_1

# not floats -- range-like expression parts
1..1  ..1  1..

## Test that operators --- dotted and unicode --- are identified correctly.

a += b.c
a .÷= .~b.c
a = !b ⋆ c!
a = b ? c : d ⊕ e
a = √(5)
a -> (a...) .+ 1
a \ b
1..2
a = a === b
a <: T
a >: T
a::T
[adjoint]'
(identity)''
adjoint'''
transpose'ᵀ
suffixed +¹ operator
suffixed +¹²³ operator

%% Test string forms

"global function"
"An $interpolated variable"
"An $(a + 1) expression"
"""a"""
"""
global function
de e f
"inner string"
"""
raw"\\ a \" $interp $(1 + 1) \""
raw"""
"inner string"
$interp
$(1 + 1)
"""
# commented "string"

@sprintf "%0.2f" var
v"1.0"
var"#nonstandard#"

r"^[abs]+$"m
arbi"trary"suff
arbi"trary"1234

`global function`
`abc \` \$ $interpolated`
`abc $(a + 1)`
```a```
```
global function
"thing" ` \$
`now` $(now())
```
# commented `command`

arbi`trary`suff
arbi`trary`1234

## Tests that symbols are parsed as special literals

:abc_123
:abc_def
Val{:mysymbol}

# non-symbols
a:b
1:b
1.:b
a::T
a<:T
a>:T
UInt(1):UInt(2)

## Tests identifying names which must be types from context

Union{}
MyType{Nothing, Any}
f(::Union{T,S}) where S where T = 1
f(::T) where {T} = 1
f(::Type{<:T}) = 1
f(::AT) where AT <: AbstractArray{MyType,1} = 1
f(::Val{:named}) = 1
f(::typeof(sin)) = 1
MyInt <: Integer
Number >: MyInt
AT{T,1} <: B
B>:AT{T,1}
A <: f(B)
g(C) <: T