1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
|
package brotli
import (
"math"
"sync"
)
const maxHuffmanTreeSize = (2*numCommandSymbols + 1)
/*
The maximum size of Huffman dictionary for distances assuming that
NPOSTFIX = 0 and NDIRECT = 0.
*/
const maxSimpleDistanceAlphabetSize = 140
/*
Represents the range of values belonging to a prefix code:
[offset, offset + 2^nbits)
*/
type prefixCodeRange struct {
offset uint32
nbits uint32
}
var kBlockLengthPrefixCode = [numBlockLenSymbols]prefixCodeRange{
prefixCodeRange{1, 2},
prefixCodeRange{5, 2},
prefixCodeRange{9, 2},
prefixCodeRange{13, 2},
prefixCodeRange{17, 3},
prefixCodeRange{25, 3},
prefixCodeRange{33, 3},
prefixCodeRange{41, 3},
prefixCodeRange{49, 4},
prefixCodeRange{65, 4},
prefixCodeRange{81, 4},
prefixCodeRange{97, 4},
prefixCodeRange{113, 5},
prefixCodeRange{145, 5},
prefixCodeRange{177, 5},
prefixCodeRange{209, 5},
prefixCodeRange{241, 6},
prefixCodeRange{305, 6},
prefixCodeRange{369, 7},
prefixCodeRange{497, 8},
prefixCodeRange{753, 9},
prefixCodeRange{1265, 10},
prefixCodeRange{2289, 11},
prefixCodeRange{4337, 12},
prefixCodeRange{8433, 13},
prefixCodeRange{16625, 24},
}
func blockLengthPrefixCode(len uint32) uint32 {
var code uint32
if len >= 177 {
if len >= 753 {
code = 20
} else {
code = 14
}
} else if len >= 41 {
code = 7
} else {
code = 0
}
for code < (numBlockLenSymbols-1) && len >= kBlockLengthPrefixCode[code+1].offset {
code++
}
return code
}
func getBlockLengthPrefixCode(len uint32, code *uint, n_extra *uint32, extra *uint32) {
*code = uint(blockLengthPrefixCode(uint32(len)))
*n_extra = kBlockLengthPrefixCode[*code].nbits
*extra = len - kBlockLengthPrefixCode[*code].offset
}
type blockTypeCodeCalculator struct {
last_type uint
second_last_type uint
}
func initBlockTypeCodeCalculator(self *blockTypeCodeCalculator) {
self.last_type = 1
self.second_last_type = 0
}
func nextBlockTypeCode(calculator *blockTypeCodeCalculator, type_ byte) uint {
var type_code uint
if uint(type_) == calculator.last_type+1 {
type_code = 1
} else if uint(type_) == calculator.second_last_type {
type_code = 0
} else {
type_code = uint(type_) + 2
}
calculator.second_last_type = calculator.last_type
calculator.last_type = uint(type_)
return type_code
}
/*
|nibblesbits| represents the 2 bits to encode MNIBBLES (0-3)
REQUIRES: length > 0
REQUIRES: length <= (1 << 24)
*/
func encodeMlen(length uint, bits *uint64, numbits *uint, nibblesbits *uint64) {
var lg uint
if length == 1 {
lg = 1
} else {
lg = uint(log2FloorNonZero(uint(uint32(length-1)))) + 1
}
var tmp uint
if lg < 16 {
tmp = 16
} else {
tmp = (lg + 3)
}
var mnibbles uint = tmp / 4
assert(length > 0)
assert(length <= 1<<24)
assert(lg <= 24)
*nibblesbits = uint64(mnibbles) - 4
*numbits = mnibbles * 4
*bits = uint64(length) - 1
}
func storeCommandExtra(cmd *command, storage_ix *uint, storage []byte) {
var copylen_code uint32 = commandCopyLenCode(cmd)
var inscode uint16 = getInsertLengthCode(uint(cmd.insert_len_))
var copycode uint16 = getCopyLengthCode(uint(copylen_code))
var insnumextra uint32 = getInsertExtra(inscode)
var insextraval uint64 = uint64(cmd.insert_len_) - uint64(getInsertBase(inscode))
var copyextraval uint64 = uint64(copylen_code) - uint64(getCopyBase(copycode))
var bits uint64 = copyextraval<<insnumextra | insextraval
writeBits(uint(insnumextra+getCopyExtra(copycode)), bits, storage_ix, storage)
}
/*
Data structure that stores almost everything that is needed to encode each
block switch command.
*/
type blockSplitCode struct {
type_code_calculator blockTypeCodeCalculator
type_depths [maxBlockTypeSymbols]byte
type_bits [maxBlockTypeSymbols]uint16
length_depths [numBlockLenSymbols]byte
length_bits [numBlockLenSymbols]uint16
}
/* Stores a number between 0 and 255. */
func storeVarLenUint8(n uint, storage_ix *uint, storage []byte) {
if n == 0 {
writeBits(1, 0, storage_ix, storage)
} else {
var nbits uint = uint(log2FloorNonZero(n))
writeBits(1, 1, storage_ix, storage)
writeBits(3, uint64(nbits), storage_ix, storage)
writeBits(nbits, uint64(n)-(uint64(uint(1))<<nbits), storage_ix, storage)
}
}
/*
Stores the compressed meta-block header.
REQUIRES: length > 0
REQUIRES: length <= (1 << 24)
*/
func storeCompressedMetaBlockHeader(is_final_block bool, length uint, storage_ix *uint, storage []byte) {
var lenbits uint64
var nlenbits uint
var nibblesbits uint64
var is_final uint64
if is_final_block {
is_final = 1
} else {
is_final = 0
}
/* Write ISLAST bit. */
writeBits(1, is_final, storage_ix, storage)
/* Write ISEMPTY bit. */
if is_final_block {
writeBits(1, 0, storage_ix, storage)
}
encodeMlen(length, &lenbits, &nlenbits, &nibblesbits)
writeBits(2, nibblesbits, storage_ix, storage)
writeBits(nlenbits, lenbits, storage_ix, storage)
if !is_final_block {
/* Write ISUNCOMPRESSED bit. */
writeBits(1, 0, storage_ix, storage)
}
}
/*
Stores the uncompressed meta-block header.
REQUIRES: length > 0
REQUIRES: length <= (1 << 24)
*/
func storeUncompressedMetaBlockHeader(length uint, storage_ix *uint, storage []byte) {
var lenbits uint64
var nlenbits uint
var nibblesbits uint64
/* Write ISLAST bit.
Uncompressed block cannot be the last one, so set to 0. */
writeBits(1, 0, storage_ix, storage)
encodeMlen(length, &lenbits, &nlenbits, &nibblesbits)
writeBits(2, nibblesbits, storage_ix, storage)
writeBits(nlenbits, lenbits, storage_ix, storage)
/* Write ISUNCOMPRESSED bit. */
writeBits(1, 1, storage_ix, storage)
}
var storeHuffmanTreeOfHuffmanTreeToBitMask_kStorageOrder = [codeLengthCodes]byte{1, 2, 3, 4, 0, 5, 17, 6, 16, 7, 8, 9, 10, 11, 12, 13, 14, 15}
var storeHuffmanTreeOfHuffmanTreeToBitMask_kHuffmanBitLengthHuffmanCodeSymbols = [6]byte{0, 7, 3, 2, 1, 15}
var storeHuffmanTreeOfHuffmanTreeToBitMask_kHuffmanBitLengthHuffmanCodeBitLengths = [6]byte{2, 4, 3, 2, 2, 4}
func storeHuffmanTreeOfHuffmanTreeToBitMask(num_codes int, code_length_bitdepth []byte, storage_ix *uint, storage []byte) {
var skip_some uint = 0
var codes_to_store uint = codeLengthCodes
/* The bit lengths of the Huffman code over the code length alphabet
are compressed with the following static Huffman code:
Symbol Code
------ ----
0 00
1 1110
2 110
3 01
4 10
5 1111 */
/* Throw away trailing zeros: */
if num_codes > 1 {
for ; codes_to_store > 0; codes_to_store-- {
if code_length_bitdepth[storeHuffmanTreeOfHuffmanTreeToBitMask_kStorageOrder[codes_to_store-1]] != 0 {
break
}
}
}
if code_length_bitdepth[storeHuffmanTreeOfHuffmanTreeToBitMask_kStorageOrder[0]] == 0 && code_length_bitdepth[storeHuffmanTreeOfHuffmanTreeToBitMask_kStorageOrder[1]] == 0 {
skip_some = 2 /* skips two. */
if code_length_bitdepth[storeHuffmanTreeOfHuffmanTreeToBitMask_kStorageOrder[2]] == 0 {
skip_some = 3 /* skips three. */
}
}
writeBits(2, uint64(skip_some), storage_ix, storage)
{
var i uint
for i = skip_some; i < codes_to_store; i++ {
var l uint = uint(code_length_bitdepth[storeHuffmanTreeOfHuffmanTreeToBitMask_kStorageOrder[i]])
writeBits(uint(storeHuffmanTreeOfHuffmanTreeToBitMask_kHuffmanBitLengthHuffmanCodeBitLengths[l]), uint64(storeHuffmanTreeOfHuffmanTreeToBitMask_kHuffmanBitLengthHuffmanCodeSymbols[l]), storage_ix, storage)
}
}
}
func storeHuffmanTreeToBitMask(huffman_tree_size uint, huffman_tree []byte, huffman_tree_extra_bits []byte, code_length_bitdepth []byte, code_length_bitdepth_symbols []uint16, storage_ix *uint, storage []byte) {
var i uint
for i = 0; i < huffman_tree_size; i++ {
var ix uint = uint(huffman_tree[i])
writeBits(uint(code_length_bitdepth[ix]), uint64(code_length_bitdepth_symbols[ix]), storage_ix, storage)
/* Extra bits */
switch ix {
case repeatPreviousCodeLength:
writeBits(2, uint64(huffman_tree_extra_bits[i]), storage_ix, storage)
case repeatZeroCodeLength:
writeBits(3, uint64(huffman_tree_extra_bits[i]), storage_ix, storage)
}
}
}
func storeSimpleHuffmanTree(depths []byte, symbols []uint, num_symbols uint, max_bits uint, storage_ix *uint, storage []byte) {
/* value of 1 indicates a simple Huffman code */
writeBits(2, 1, storage_ix, storage)
writeBits(2, uint64(num_symbols)-1, storage_ix, storage) /* NSYM - 1 */
{
/* Sort */
var i uint
for i = 0; i < num_symbols; i++ {
var j uint
for j = i + 1; j < num_symbols; j++ {
if depths[symbols[j]] < depths[symbols[i]] {
var tmp uint = symbols[j]
symbols[j] = symbols[i]
symbols[i] = tmp
}
}
}
}
if num_symbols == 2 {
writeBits(max_bits, uint64(symbols[0]), storage_ix, storage)
writeBits(max_bits, uint64(symbols[1]), storage_ix, storage)
} else if num_symbols == 3 {
writeBits(max_bits, uint64(symbols[0]), storage_ix, storage)
writeBits(max_bits, uint64(symbols[1]), storage_ix, storage)
writeBits(max_bits, uint64(symbols[2]), storage_ix, storage)
} else {
writeBits(max_bits, uint64(symbols[0]), storage_ix, storage)
writeBits(max_bits, uint64(symbols[1]), storage_ix, storage)
writeBits(max_bits, uint64(symbols[2]), storage_ix, storage)
writeBits(max_bits, uint64(symbols[3]), storage_ix, storage)
/* tree-select */
var tmp int
if depths[symbols[0]] == 1 {
tmp = 1
} else {
tmp = 0
}
writeBits(1, uint64(tmp), storage_ix, storage)
}
}
/*
num = alphabet size
depths = symbol depths
*/
func storeHuffmanTree(depths []byte, num uint, tree []huffmanTree, storage_ix *uint, storage []byte) {
var huffman_tree [numCommandSymbols]byte
var huffman_tree_extra_bits [numCommandSymbols]byte
var huffman_tree_size uint = 0
var code_length_bitdepth = [codeLengthCodes]byte{0}
var code_length_bitdepth_symbols [codeLengthCodes]uint16
var huffman_tree_histogram = [codeLengthCodes]uint32{0}
var i uint
var num_codes int = 0
/* Write the Huffman tree into the brotli-representation.
The command alphabet is the largest, so this allocation will fit all
alphabets. */
var code uint = 0
assert(num <= numCommandSymbols)
writeHuffmanTree(depths, num, &huffman_tree_size, huffman_tree[:], huffman_tree_extra_bits[:])
/* Calculate the statistics of the Huffman tree in brotli-representation. */
for i = 0; i < huffman_tree_size; i++ {
huffman_tree_histogram[huffman_tree[i]]++
}
for i = 0; i < codeLengthCodes; i++ {
if huffman_tree_histogram[i] != 0 {
if num_codes == 0 {
code = i
num_codes = 1
} else if num_codes == 1 {
num_codes = 2
break
}
}
}
/* Calculate another Huffman tree to use for compressing both the
earlier Huffman tree with. */
createHuffmanTree(huffman_tree_histogram[:], codeLengthCodes, 5, tree, code_length_bitdepth[:])
convertBitDepthsToSymbols(code_length_bitdepth[:], codeLengthCodes, code_length_bitdepth_symbols[:])
/* Now, we have all the data, let's start storing it */
storeHuffmanTreeOfHuffmanTreeToBitMask(num_codes, code_length_bitdepth[:], storage_ix, storage)
if num_codes == 1 {
code_length_bitdepth[code] = 0
}
/* Store the real Huffman tree now. */
storeHuffmanTreeToBitMask(huffman_tree_size, huffman_tree[:], huffman_tree_extra_bits[:], code_length_bitdepth[:], code_length_bitdepth_symbols[:], storage_ix, storage)
}
/*
Builds a Huffman tree from histogram[0:length] into depth[0:length] and
bits[0:length] and stores the encoded tree to the bit stream.
*/
func buildAndStoreHuffmanTree(histogram []uint32, histogram_length uint, alphabet_size uint, tree []huffmanTree, depth []byte, bits []uint16, storage_ix *uint, storage []byte) {
var count uint = 0
var s4 = [4]uint{0}
var i uint
var max_bits uint = 0
for i = 0; i < histogram_length; i++ {
if histogram[i] != 0 {
if count < 4 {
s4[count] = i
} else if count > 4 {
break
}
count++
}
}
{
var max_bits_counter uint = alphabet_size - 1
for max_bits_counter != 0 {
max_bits_counter >>= 1
max_bits++
}
}
if count <= 1 {
writeBits(4, 1, storage_ix, storage)
writeBits(max_bits, uint64(s4[0]), storage_ix, storage)
depth[s4[0]] = 0
bits[s4[0]] = 0
return
}
for i := 0; i < int(histogram_length); i++ {
depth[i] = 0
}
createHuffmanTree(histogram, histogram_length, 15, tree, depth)
convertBitDepthsToSymbols(depth, histogram_length, bits)
if count <= 4 {
storeSimpleHuffmanTree(depth, s4[:], count, max_bits, storage_ix, storage)
} else {
storeHuffmanTree(depth, histogram_length, tree, storage_ix, storage)
}
}
func sortHuffmanTree1(v0 huffmanTree, v1 huffmanTree) bool {
return v0.total_count_ < v1.total_count_
}
var huffmanTreePool sync.Pool
func buildAndStoreHuffmanTreeFast(histogram []uint32, histogram_total uint, max_bits uint, depth []byte, bits []uint16, storage_ix *uint, storage []byte) {
var count uint = 0
var symbols = [4]uint{0}
var length uint = 0
var total uint = histogram_total
for total != 0 {
if histogram[length] != 0 {
if count < 4 {
symbols[count] = length
}
count++
total -= uint(histogram[length])
}
length++
}
if count <= 1 {
writeBits(4, 1, storage_ix, storage)
writeBits(max_bits, uint64(symbols[0]), storage_ix, storage)
depth[symbols[0]] = 0
bits[symbols[0]] = 0
return
}
for i := 0; i < int(length); i++ {
depth[i] = 0
}
{
var max_tree_size uint = 2*length + 1
tree, _ := huffmanTreePool.Get().(*[]huffmanTree)
if tree == nil || cap(*tree) < int(max_tree_size) {
tmp := make([]huffmanTree, max_tree_size)
tree = &tmp
} else {
*tree = (*tree)[:max_tree_size]
}
var count_limit uint32
for count_limit = 1; ; count_limit *= 2 {
var node int = 0
var l uint
for l = length; l != 0; {
l--
if histogram[l] != 0 {
if histogram[l] >= count_limit {
initHuffmanTree(&(*tree)[node:][0], histogram[l], -1, int16(l))
} else {
initHuffmanTree(&(*tree)[node:][0], count_limit, -1, int16(l))
}
node++
}
}
{
var n int = node
/* Points to the next leaf node. */ /* Points to the next non-leaf node. */
var sentinel huffmanTree
var i int = 0
var j int = n + 1
var k int
sortHuffmanTreeItems(*tree, uint(n), huffmanTreeComparator(sortHuffmanTree1))
/* The nodes are:
[0, n): the sorted leaf nodes that we start with.
[n]: we add a sentinel here.
[n + 1, 2n): new parent nodes are added here, starting from
(n+1). These are naturally in ascending order.
[2n]: we add a sentinel at the end as well.
There will be (2n+1) elements at the end. */
initHuffmanTree(&sentinel, math.MaxUint32, -1, -1)
(*tree)[node] = sentinel
node++
(*tree)[node] = sentinel
node++
for k = n - 1; k > 0; k-- {
var left int
var right int
if (*tree)[i].total_count_ <= (*tree)[j].total_count_ {
left = i
i++
} else {
left = j
j++
}
if (*tree)[i].total_count_ <= (*tree)[j].total_count_ {
right = i
i++
} else {
right = j
j++
}
/* The sentinel node becomes the parent node. */
(*tree)[node-1].total_count_ = (*tree)[left].total_count_ + (*tree)[right].total_count_
(*tree)[node-1].index_left_ = int16(left)
(*tree)[node-1].index_right_or_value_ = int16(right)
/* Add back the last sentinel node. */
(*tree)[node] = sentinel
node++
}
if setDepth(2*n-1, *tree, depth, 14) {
/* We need to pack the Huffman tree in 14 bits. If this was not
successful, add fake entities to the lowest values and retry. */
break
}
}
}
huffmanTreePool.Put(tree)
}
convertBitDepthsToSymbols(depth, length, bits)
if count <= 4 {
var i uint
/* value of 1 indicates a simple Huffman code */
writeBits(2, 1, storage_ix, storage)
writeBits(2, uint64(count)-1, storage_ix, storage) /* NSYM - 1 */
/* Sort */
for i = 0; i < count; i++ {
var j uint
for j = i + 1; j < count; j++ {
if depth[symbols[j]] < depth[symbols[i]] {
var tmp uint = symbols[j]
symbols[j] = symbols[i]
symbols[i] = tmp
}
}
}
if count == 2 {
writeBits(max_bits, uint64(symbols[0]), storage_ix, storage)
writeBits(max_bits, uint64(symbols[1]), storage_ix, storage)
} else if count == 3 {
writeBits(max_bits, uint64(symbols[0]), storage_ix, storage)
writeBits(max_bits, uint64(symbols[1]), storage_ix, storage)
writeBits(max_bits, uint64(symbols[2]), storage_ix, storage)
} else {
writeBits(max_bits, uint64(symbols[0]), storage_ix, storage)
writeBits(max_bits, uint64(symbols[1]), storage_ix, storage)
writeBits(max_bits, uint64(symbols[2]), storage_ix, storage)
writeBits(max_bits, uint64(symbols[3]), storage_ix, storage)
/* tree-select */
var tmp int
if depth[symbols[0]] == 1 {
tmp = 1
} else {
tmp = 0
}
writeBits(1, uint64(tmp), storage_ix, storage)
}
} else {
var previous_value byte = 8
var i uint
/* Complex Huffman Tree */
storeStaticCodeLengthCode(storage_ix, storage)
/* Actual RLE coding. */
for i = 0; i < length; {
var value byte = depth[i]
var reps uint = 1
var k uint
for k = i + 1; k < length && depth[k] == value; k++ {
reps++
}
i += reps
if value == 0 {
writeBits(uint(kZeroRepsDepth[reps]), kZeroRepsBits[reps], storage_ix, storage)
} else {
if previous_value != value {
writeBits(uint(kCodeLengthDepth[value]), uint64(kCodeLengthBits[value]), storage_ix, storage)
reps--
}
if reps < 3 {
for reps != 0 {
reps--
writeBits(uint(kCodeLengthDepth[value]), uint64(kCodeLengthBits[value]), storage_ix, storage)
}
} else {
reps -= 3
writeBits(uint(kNonZeroRepsDepth[reps]), kNonZeroRepsBits[reps], storage_ix, storage)
}
previous_value = value
}
}
}
}
func buildAndStoreHuffmanTreeFastBW(histogram []uint32, histogram_total uint, max_bits uint, depth []byte, bits []uint16, bw *bitWriter) {
var count uint = 0
var symbols = [4]uint{0}
var length uint = 0
var total uint = histogram_total
for total != 0 {
if histogram[length] != 0 {
if count < 4 {
symbols[count] = length
}
count++
total -= uint(histogram[length])
}
length++
}
if count <= 1 {
bw.writeBits(4, 1)
bw.writeBits(max_bits, uint64(symbols[0]))
depth[symbols[0]] = 0
bits[symbols[0]] = 0
return
}
for i := 0; i < int(length); i++ {
depth[i] = 0
}
{
var max_tree_size uint = 2*length + 1
tree, _ := huffmanTreePool.Get().(*[]huffmanTree)
if tree == nil || cap(*tree) < int(max_tree_size) {
tmp := make([]huffmanTree, max_tree_size)
tree = &tmp
} else {
*tree = (*tree)[:max_tree_size]
}
var count_limit uint32
for count_limit = 1; ; count_limit *= 2 {
var node int = 0
var l uint
for l = length; l != 0; {
l--
if histogram[l] != 0 {
if histogram[l] >= count_limit {
initHuffmanTree(&(*tree)[node:][0], histogram[l], -1, int16(l))
} else {
initHuffmanTree(&(*tree)[node:][0], count_limit, -1, int16(l))
}
node++
}
}
{
var n int = node
/* Points to the next leaf node. */ /* Points to the next non-leaf node. */
var sentinel huffmanTree
var i int = 0
var j int = n + 1
var k int
sortHuffmanTreeItems(*tree, uint(n), huffmanTreeComparator(sortHuffmanTree1))
/* The nodes are:
[0, n): the sorted leaf nodes that we start with.
[n]: we add a sentinel here.
[n + 1, 2n): new parent nodes are added here, starting from
(n+1). These are naturally in ascending order.
[2n]: we add a sentinel at the end as well.
There will be (2n+1) elements at the end. */
initHuffmanTree(&sentinel, math.MaxUint32, -1, -1)
(*tree)[node] = sentinel
node++
(*tree)[node] = sentinel
node++
for k = n - 1; k > 0; k-- {
var left int
var right int
if (*tree)[i].total_count_ <= (*tree)[j].total_count_ {
left = i
i++
} else {
left = j
j++
}
if (*tree)[i].total_count_ <= (*tree)[j].total_count_ {
right = i
i++
} else {
right = j
j++
}
/* The sentinel node becomes the parent node. */
(*tree)[node-1].total_count_ = (*tree)[left].total_count_ + (*tree)[right].total_count_
(*tree)[node-1].index_left_ = int16(left)
(*tree)[node-1].index_right_or_value_ = int16(right)
/* Add back the last sentinel node. */
(*tree)[node] = sentinel
node++
}
if setDepth(2*n-1, *tree, depth, 14) {
/* We need to pack the Huffman tree in 14 bits. If this was not
successful, add fake entities to the lowest values and retry. */
break
}
}
}
huffmanTreePool.Put(tree)
}
convertBitDepthsToSymbols(depth, length, bits)
if count <= 4 {
var i uint
/* value of 1 indicates a simple Huffman code */
bw.writeBits(2, 1)
bw.writeBits(2, uint64(count)-1) /* NSYM - 1 */
/* Sort */
for i = 0; i < count; i++ {
var j uint
for j = i + 1; j < count; j++ {
if depth[symbols[j]] < depth[symbols[i]] {
var tmp uint = symbols[j]
symbols[j] = symbols[i]
symbols[i] = tmp
}
}
}
if count == 2 {
bw.writeBits(max_bits, uint64(symbols[0]))
bw.writeBits(max_bits, uint64(symbols[1]))
} else if count == 3 {
bw.writeBits(max_bits, uint64(symbols[0]))
bw.writeBits(max_bits, uint64(symbols[1]))
bw.writeBits(max_bits, uint64(symbols[2]))
} else {
bw.writeBits(max_bits, uint64(symbols[0]))
bw.writeBits(max_bits, uint64(symbols[1]))
bw.writeBits(max_bits, uint64(symbols[2]))
bw.writeBits(max_bits, uint64(symbols[3]))
/* tree-select */
bw.writeSingleBit(depth[symbols[0]] == 1)
}
} else {
var previous_value byte = 8
var i uint
/* Complex Huffman Tree */
storeStaticCodeLengthCodeBW(bw)
/* Actual RLE coding. */
for i = 0; i < length; {
var value byte = depth[i]
var reps uint = 1
var k uint
for k = i + 1; k < length && depth[k] == value; k++ {
reps++
}
i += reps
if value == 0 {
bw.writeBits(uint(kZeroRepsDepth[reps]), kZeroRepsBits[reps])
} else {
if previous_value != value {
bw.writeBits(uint(kCodeLengthDepth[value]), uint64(kCodeLengthBits[value]))
reps--
}
if reps < 3 {
for reps != 0 {
reps--
bw.writeBits(uint(kCodeLengthDepth[value]), uint64(kCodeLengthBits[value]))
}
} else {
reps -= 3
bw.writeBits(uint(kNonZeroRepsDepth[reps]), kNonZeroRepsBits[reps])
}
previous_value = value
}
}
}
}
func indexOf(v []byte, v_size uint, value byte) uint {
var i uint = 0
for ; i < v_size; i++ {
if v[i] == value {
return i
}
}
return i
}
func moveToFront(v []byte, index uint) {
var value byte = v[index]
var i uint
for i = index; i != 0; i-- {
v[i] = v[i-1]
}
v[0] = value
}
func moveToFrontTransform(v_in []uint32, v_size uint, v_out []uint32) {
var i uint
var mtf [256]byte
var max_value uint32
if v_size == 0 {
return
}
max_value = v_in[0]
for i = 1; i < v_size; i++ {
if v_in[i] > max_value {
max_value = v_in[i]
}
}
assert(max_value < 256)
for i = 0; uint32(i) <= max_value; i++ {
mtf[i] = byte(i)
}
{
var mtf_size uint = uint(max_value + 1)
for i = 0; i < v_size; i++ {
var index uint = indexOf(mtf[:], mtf_size, byte(v_in[i]))
assert(index < mtf_size)
v_out[i] = uint32(index)
moveToFront(mtf[:], index)
}
}
}
/*
Finds runs of zeros in v[0..in_size) and replaces them with a prefix code of
the run length plus extra bits (lower 9 bits is the prefix code and the rest
are the extra bits). Non-zero values in v[] are shifted by
*max_length_prefix. Will not create prefix codes bigger than the initial
value of *max_run_length_prefix. The prefix code of run length L is simply
Log2Floor(L) and the number of extra bits is the same as the prefix code.
*/
func runLengthCodeZeros(in_size uint, v []uint32, out_size *uint, max_run_length_prefix *uint32) {
var max_reps uint32 = 0
var i uint
var max_prefix uint32
for i = 0; i < in_size; {
var reps uint32 = 0
for ; i < in_size && v[i] != 0; i++ {
}
for ; i < in_size && v[i] == 0; i++ {
reps++
}
max_reps = brotli_max_uint32_t(reps, max_reps)
}
if max_reps > 0 {
max_prefix = log2FloorNonZero(uint(max_reps))
} else {
max_prefix = 0
}
max_prefix = brotli_min_uint32_t(max_prefix, *max_run_length_prefix)
*max_run_length_prefix = max_prefix
*out_size = 0
for i = 0; i < in_size; {
assert(*out_size <= i)
if v[i] != 0 {
v[*out_size] = v[i] + *max_run_length_prefix
i++
(*out_size)++
} else {
var reps uint32 = 1
var k uint
for k = i + 1; k < in_size && v[k] == 0; k++ {
reps++
}
i += uint(reps)
for reps != 0 {
if reps < 2<<max_prefix {
var run_length_prefix uint32 = log2FloorNonZero(uint(reps))
var extra_bits uint32 = reps - (1 << run_length_prefix)
v[*out_size] = run_length_prefix + (extra_bits << 9)
(*out_size)++
break
} else {
var extra_bits uint32 = (1 << max_prefix) - 1
v[*out_size] = max_prefix + (extra_bits << 9)
reps -= (2 << max_prefix) - 1
(*out_size)++
}
}
}
}
}
const symbolBits = 9
var encodeContextMap_kSymbolMask uint32 = (1 << symbolBits) - 1
func encodeContextMap(context_map []uint32, context_map_size uint, num_clusters uint, tree []huffmanTree, storage_ix *uint, storage []byte) {
var i uint
var rle_symbols []uint32
var max_run_length_prefix uint32 = 6
var num_rle_symbols uint = 0
var histogram [maxContextMapSymbols]uint32
var depths [maxContextMapSymbols]byte
var bits [maxContextMapSymbols]uint16
storeVarLenUint8(num_clusters-1, storage_ix, storage)
if num_clusters == 1 {
return
}
rle_symbols = make([]uint32, context_map_size)
moveToFrontTransform(context_map, context_map_size, rle_symbols)
runLengthCodeZeros(context_map_size, rle_symbols, &num_rle_symbols, &max_run_length_prefix)
histogram = [maxContextMapSymbols]uint32{}
for i = 0; i < num_rle_symbols; i++ {
histogram[rle_symbols[i]&encodeContextMap_kSymbolMask]++
}
{
var use_rle bool = (max_run_length_prefix > 0)
writeSingleBit(use_rle, storage_ix, storage)
if use_rle {
writeBits(4, uint64(max_run_length_prefix)-1, storage_ix, storage)
}
}
buildAndStoreHuffmanTree(histogram[:], uint(uint32(num_clusters)+max_run_length_prefix), uint(uint32(num_clusters)+max_run_length_prefix), tree, depths[:], bits[:], storage_ix, storage)
for i = 0; i < num_rle_symbols; i++ {
var rle_symbol uint32 = rle_symbols[i] & encodeContextMap_kSymbolMask
var extra_bits_val uint32 = rle_symbols[i] >> symbolBits
writeBits(uint(depths[rle_symbol]), uint64(bits[rle_symbol]), storage_ix, storage)
if rle_symbol > 0 && rle_symbol <= max_run_length_prefix {
writeBits(uint(rle_symbol), uint64(extra_bits_val), storage_ix, storage)
}
}
writeBits(1, 1, storage_ix, storage) /* use move-to-front */
rle_symbols = nil
}
/* Stores the block switch command with index block_ix to the bit stream. */
func storeBlockSwitch(code *blockSplitCode, block_len uint32, block_type byte, is_first_block bool, storage_ix *uint, storage []byte) {
var typecode uint = nextBlockTypeCode(&code.type_code_calculator, block_type)
var lencode uint
var len_nextra uint32
var len_extra uint32
if !is_first_block {
writeBits(uint(code.type_depths[typecode]), uint64(code.type_bits[typecode]), storage_ix, storage)
}
getBlockLengthPrefixCode(block_len, &lencode, &len_nextra, &len_extra)
writeBits(uint(code.length_depths[lencode]), uint64(code.length_bits[lencode]), storage_ix, storage)
writeBits(uint(len_nextra), uint64(len_extra), storage_ix, storage)
}
/*
Builds a BlockSplitCode data structure from the block split given by the
vector of block types and block lengths and stores it to the bit stream.
*/
func buildAndStoreBlockSplitCode(types []byte, lengths []uint32, num_blocks uint, num_types uint, tree []huffmanTree, code *blockSplitCode, storage_ix *uint, storage []byte) {
var type_histo [maxBlockTypeSymbols]uint32
var length_histo [numBlockLenSymbols]uint32
var i uint
var type_code_calculator blockTypeCodeCalculator
for i := 0; i < int(num_types+2); i++ {
type_histo[i] = 0
}
length_histo = [numBlockLenSymbols]uint32{}
initBlockTypeCodeCalculator(&type_code_calculator)
for i = 0; i < num_blocks; i++ {
var type_code uint = nextBlockTypeCode(&type_code_calculator, types[i])
if i != 0 {
type_histo[type_code]++
}
length_histo[blockLengthPrefixCode(lengths[i])]++
}
storeVarLenUint8(num_types-1, storage_ix, storage)
if num_types > 1 { /* TODO: else? could StoreBlockSwitch occur? */
buildAndStoreHuffmanTree(type_histo[0:], num_types+2, num_types+2, tree, code.type_depths[0:], code.type_bits[0:], storage_ix, storage)
buildAndStoreHuffmanTree(length_histo[0:], numBlockLenSymbols, numBlockLenSymbols, tree, code.length_depths[0:], code.length_bits[0:], storage_ix, storage)
storeBlockSwitch(code, lengths[0], types[0], true, storage_ix, storage)
}
}
/* Stores a context map where the histogram type is always the block type. */
func storeTrivialContextMap(num_types uint, context_bits uint, tree []huffmanTree, storage_ix *uint, storage []byte) {
storeVarLenUint8(num_types-1, storage_ix, storage)
if num_types > 1 {
var repeat_code uint = context_bits - 1
var repeat_bits uint = (1 << repeat_code) - 1
var alphabet_size uint = num_types + repeat_code
var histogram [maxContextMapSymbols]uint32
var depths [maxContextMapSymbols]byte
var bits [maxContextMapSymbols]uint16
var i uint
for i := 0; i < int(alphabet_size); i++ {
histogram[i] = 0
}
/* Write RLEMAX. */
writeBits(1, 1, storage_ix, storage)
writeBits(4, uint64(repeat_code)-1, storage_ix, storage)
histogram[repeat_code] = uint32(num_types)
histogram[0] = 1
for i = context_bits; i < alphabet_size; i++ {
histogram[i] = 1
}
buildAndStoreHuffmanTree(histogram[:], alphabet_size, alphabet_size, tree, depths[:], bits[:], storage_ix, storage)
for i = 0; i < num_types; i++ {
var tmp uint
if i == 0 {
tmp = 0
} else {
tmp = i + context_bits - 1
}
var code uint = tmp
writeBits(uint(depths[code]), uint64(bits[code]), storage_ix, storage)
writeBits(uint(depths[repeat_code]), uint64(bits[repeat_code]), storage_ix, storage)
writeBits(repeat_code, uint64(repeat_bits), storage_ix, storage)
}
/* Write IMTF (inverse-move-to-front) bit. */
writeBits(1, 1, storage_ix, storage)
}
}
/* Manages the encoding of one block category (literal, command or distance). */
type blockEncoder struct {
histogram_length_ uint
num_block_types_ uint
block_types_ []byte
block_lengths_ []uint32
num_blocks_ uint
block_split_code_ blockSplitCode
block_ix_ uint
block_len_ uint
entropy_ix_ uint
depths_ []byte
bits_ []uint16
}
var blockEncoderPool sync.Pool
func getBlockEncoder(histogram_length uint, num_block_types uint, block_types []byte, block_lengths []uint32, num_blocks uint) *blockEncoder {
self, _ := blockEncoderPool.Get().(*blockEncoder)
if self != nil {
self.block_ix_ = 0
self.entropy_ix_ = 0
self.depths_ = self.depths_[:0]
self.bits_ = self.bits_[:0]
} else {
self = &blockEncoder{}
}
self.histogram_length_ = histogram_length
self.num_block_types_ = num_block_types
self.block_types_ = block_types
self.block_lengths_ = block_lengths
self.num_blocks_ = num_blocks
initBlockTypeCodeCalculator(&self.block_split_code_.type_code_calculator)
if num_blocks == 0 {
self.block_len_ = 0
} else {
self.block_len_ = uint(block_lengths[0])
}
return self
}
func cleanupBlockEncoder(self *blockEncoder) {
blockEncoderPool.Put(self)
}
/*
Creates entropy codes of block lengths and block types and stores them
to the bit stream.
*/
func buildAndStoreBlockSwitchEntropyCodes(self *blockEncoder, tree []huffmanTree, storage_ix *uint, storage []byte) {
buildAndStoreBlockSplitCode(self.block_types_, self.block_lengths_, self.num_blocks_, self.num_block_types_, tree, &self.block_split_code_, storage_ix, storage)
}
/*
Stores the next symbol with the entropy code of the current block type.
Updates the block type and block length at block boundaries.
*/
func storeSymbol(self *blockEncoder, symbol uint, storage_ix *uint, storage []byte) {
if self.block_len_ == 0 {
self.block_ix_++
var block_ix uint = self.block_ix_
var block_len uint32 = self.block_lengths_[block_ix]
var block_type byte = self.block_types_[block_ix]
self.block_len_ = uint(block_len)
self.entropy_ix_ = uint(block_type) * self.histogram_length_
storeBlockSwitch(&self.block_split_code_, block_len, block_type, false, storage_ix, storage)
}
self.block_len_--
{
var ix uint = self.entropy_ix_ + symbol
writeBits(uint(self.depths_[ix]), uint64(self.bits_[ix]), storage_ix, storage)
}
}
/*
Stores the next symbol with the entropy code of the current block type and
context value.
Updates the block type and block length at block boundaries.
*/
func storeSymbolWithContext(self *blockEncoder, symbol uint, context uint, context_map []uint32, storage_ix *uint, storage []byte, context_bits uint) {
if self.block_len_ == 0 {
self.block_ix_++
var block_ix uint = self.block_ix_
var block_len uint32 = self.block_lengths_[block_ix]
var block_type byte = self.block_types_[block_ix]
self.block_len_ = uint(block_len)
self.entropy_ix_ = uint(block_type) << context_bits
storeBlockSwitch(&self.block_split_code_, block_len, block_type, false, storage_ix, storage)
}
self.block_len_--
{
var histo_ix uint = uint(context_map[self.entropy_ix_+context])
var ix uint = histo_ix*self.histogram_length_ + symbol
writeBits(uint(self.depths_[ix]), uint64(self.bits_[ix]), storage_ix, storage)
}
}
func buildAndStoreEntropyCodesLiteral(self *blockEncoder, histograms []histogramLiteral, histograms_size uint, alphabet_size uint, tree []huffmanTree, storage_ix *uint, storage []byte) {
var table_size uint = histograms_size * self.histogram_length_
if cap(self.depths_) < int(table_size) {
self.depths_ = make([]byte, table_size)
} else {
self.depths_ = self.depths_[:table_size]
}
if cap(self.bits_) < int(table_size) {
self.bits_ = make([]uint16, table_size)
} else {
self.bits_ = self.bits_[:table_size]
}
{
var i uint
for i = 0; i < histograms_size; i++ {
var ix uint = i * self.histogram_length_
buildAndStoreHuffmanTree(histograms[i].data_[0:], self.histogram_length_, alphabet_size, tree, self.depths_[ix:], self.bits_[ix:], storage_ix, storage)
}
}
}
func buildAndStoreEntropyCodesCommand(self *blockEncoder, histograms []histogramCommand, histograms_size uint, alphabet_size uint, tree []huffmanTree, storage_ix *uint, storage []byte) {
var table_size uint = histograms_size * self.histogram_length_
if cap(self.depths_) < int(table_size) {
self.depths_ = make([]byte, table_size)
} else {
self.depths_ = self.depths_[:table_size]
}
if cap(self.bits_) < int(table_size) {
self.bits_ = make([]uint16, table_size)
} else {
self.bits_ = self.bits_[:table_size]
}
{
var i uint
for i = 0; i < histograms_size; i++ {
var ix uint = i * self.histogram_length_
buildAndStoreHuffmanTree(histograms[i].data_[0:], self.histogram_length_, alphabet_size, tree, self.depths_[ix:], self.bits_[ix:], storage_ix, storage)
}
}
}
func buildAndStoreEntropyCodesDistance(self *blockEncoder, histograms []histogramDistance, histograms_size uint, alphabet_size uint, tree []huffmanTree, storage_ix *uint, storage []byte) {
var table_size uint = histograms_size * self.histogram_length_
if cap(self.depths_) < int(table_size) {
self.depths_ = make([]byte, table_size)
} else {
self.depths_ = self.depths_[:table_size]
}
if cap(self.bits_) < int(table_size) {
self.bits_ = make([]uint16, table_size)
} else {
self.bits_ = self.bits_[:table_size]
}
{
var i uint
for i = 0; i < histograms_size; i++ {
var ix uint = i * self.histogram_length_
buildAndStoreHuffmanTree(histograms[i].data_[0:], self.histogram_length_, alphabet_size, tree, self.depths_[ix:], self.bits_[ix:], storage_ix, storage)
}
}
}
func jumpToByteBoundary(storage_ix *uint, storage []byte) {
*storage_ix = (*storage_ix + 7) &^ 7
storage[*storage_ix>>3] = 0
}
func storeMetaBlock(input []byte, start_pos uint, length uint, mask uint, prev_byte byte, prev_byte2 byte, is_last bool, params *encoderParams, literal_context_mode int, commands []command, mb *metaBlockSplit, storage_ix *uint, storage []byte) {
var pos uint = start_pos
var i uint
var num_distance_symbols uint32 = params.dist.alphabet_size
var num_effective_distance_symbols uint32 = num_distance_symbols
var tree []huffmanTree
var literal_context_lut contextLUT = getContextLUT(literal_context_mode)
var dist *distanceParams = ¶ms.dist
if params.large_window && num_effective_distance_symbols > numHistogramDistanceSymbols {
num_effective_distance_symbols = numHistogramDistanceSymbols
}
storeCompressedMetaBlockHeader(is_last, length, storage_ix, storage)
tree = make([]huffmanTree, maxHuffmanTreeSize)
literal_enc := getBlockEncoder(numLiteralSymbols, mb.literal_split.num_types, mb.literal_split.types, mb.literal_split.lengths, mb.literal_split.num_blocks)
command_enc := getBlockEncoder(numCommandSymbols, mb.command_split.num_types, mb.command_split.types, mb.command_split.lengths, mb.command_split.num_blocks)
distance_enc := getBlockEncoder(uint(num_effective_distance_symbols), mb.distance_split.num_types, mb.distance_split.types, mb.distance_split.lengths, mb.distance_split.num_blocks)
buildAndStoreBlockSwitchEntropyCodes(literal_enc, tree, storage_ix, storage)
buildAndStoreBlockSwitchEntropyCodes(command_enc, tree, storage_ix, storage)
buildAndStoreBlockSwitchEntropyCodes(distance_enc, tree, storage_ix, storage)
writeBits(2, uint64(dist.distance_postfix_bits), storage_ix, storage)
writeBits(4, uint64(dist.num_direct_distance_codes)>>dist.distance_postfix_bits, storage_ix, storage)
for i = 0; i < mb.literal_split.num_types; i++ {
writeBits(2, uint64(literal_context_mode), storage_ix, storage)
}
if mb.literal_context_map_size == 0 {
storeTrivialContextMap(mb.literal_histograms_size, literalContextBits, tree, storage_ix, storage)
} else {
encodeContextMap(mb.literal_context_map, mb.literal_context_map_size, mb.literal_histograms_size, tree, storage_ix, storage)
}
if mb.distance_context_map_size == 0 {
storeTrivialContextMap(mb.distance_histograms_size, distanceContextBits, tree, storage_ix, storage)
} else {
encodeContextMap(mb.distance_context_map, mb.distance_context_map_size, mb.distance_histograms_size, tree, storage_ix, storage)
}
buildAndStoreEntropyCodesLiteral(literal_enc, mb.literal_histograms, mb.literal_histograms_size, numLiteralSymbols, tree, storage_ix, storage)
buildAndStoreEntropyCodesCommand(command_enc, mb.command_histograms, mb.command_histograms_size, numCommandSymbols, tree, storage_ix, storage)
buildAndStoreEntropyCodesDistance(distance_enc, mb.distance_histograms, mb.distance_histograms_size, uint(num_distance_symbols), tree, storage_ix, storage)
tree = nil
for _, cmd := range commands {
var cmd_code uint = uint(cmd.cmd_prefix_)
storeSymbol(command_enc, cmd_code, storage_ix, storage)
storeCommandExtra(&cmd, storage_ix, storage)
if mb.literal_context_map_size == 0 {
var j uint
for j = uint(cmd.insert_len_); j != 0; j-- {
storeSymbol(literal_enc, uint(input[pos&mask]), storage_ix, storage)
pos++
}
} else {
var j uint
for j = uint(cmd.insert_len_); j != 0; j-- {
var context uint = uint(getContext(prev_byte, prev_byte2, literal_context_lut))
var literal byte = input[pos&mask]
storeSymbolWithContext(literal_enc, uint(literal), context, mb.literal_context_map, storage_ix, storage, literalContextBits)
prev_byte2 = prev_byte
prev_byte = literal
pos++
}
}
pos += uint(commandCopyLen(&cmd))
if commandCopyLen(&cmd) != 0 {
prev_byte2 = input[(pos-2)&mask]
prev_byte = input[(pos-1)&mask]
if cmd.cmd_prefix_ >= 128 {
var dist_code uint = uint(cmd.dist_prefix_) & 0x3FF
var distnumextra uint32 = uint32(cmd.dist_prefix_) >> 10
var distextra uint64 = uint64(cmd.dist_extra_)
if mb.distance_context_map_size == 0 {
storeSymbol(distance_enc, dist_code, storage_ix, storage)
} else {
var context uint = uint(commandDistanceContext(&cmd))
storeSymbolWithContext(distance_enc, dist_code, context, mb.distance_context_map, storage_ix, storage, distanceContextBits)
}
writeBits(uint(distnumextra), distextra, storage_ix, storage)
}
}
}
cleanupBlockEncoder(distance_enc)
cleanupBlockEncoder(command_enc)
cleanupBlockEncoder(literal_enc)
if is_last {
jumpToByteBoundary(storage_ix, storage)
}
}
func buildHistograms(input []byte, start_pos uint, mask uint, commands []command, lit_histo *histogramLiteral, cmd_histo *histogramCommand, dist_histo *histogramDistance) {
var pos uint = start_pos
for _, cmd := range commands {
var j uint
histogramAddCommand(cmd_histo, uint(cmd.cmd_prefix_))
for j = uint(cmd.insert_len_); j != 0; j-- {
histogramAddLiteral(lit_histo, uint(input[pos&mask]))
pos++
}
pos += uint(commandCopyLen(&cmd))
if commandCopyLen(&cmd) != 0 && cmd.cmd_prefix_ >= 128 {
histogramAddDistance(dist_histo, uint(cmd.dist_prefix_)&0x3FF)
}
}
}
func storeDataWithHuffmanCodes(input []byte, start_pos uint, mask uint, commands []command, lit_depth []byte, lit_bits []uint16, cmd_depth []byte, cmd_bits []uint16, dist_depth []byte, dist_bits []uint16, storage_ix *uint, storage []byte) {
var pos uint = start_pos
for _, cmd := range commands {
var cmd_code uint = uint(cmd.cmd_prefix_)
var j uint
writeBits(uint(cmd_depth[cmd_code]), uint64(cmd_bits[cmd_code]), storage_ix, storage)
storeCommandExtra(&cmd, storage_ix, storage)
for j = uint(cmd.insert_len_); j != 0; j-- {
var literal byte = input[pos&mask]
writeBits(uint(lit_depth[literal]), uint64(lit_bits[literal]), storage_ix, storage)
pos++
}
pos += uint(commandCopyLen(&cmd))
if commandCopyLen(&cmd) != 0 && cmd.cmd_prefix_ >= 128 {
var dist_code uint = uint(cmd.dist_prefix_) & 0x3FF
var distnumextra uint32 = uint32(cmd.dist_prefix_) >> 10
var distextra uint32 = cmd.dist_extra_
writeBits(uint(dist_depth[dist_code]), uint64(dist_bits[dist_code]), storage_ix, storage)
writeBits(uint(distnumextra), uint64(distextra), storage_ix, storage)
}
}
}
func storeMetaBlockTrivial(input []byte, start_pos uint, length uint, mask uint, is_last bool, params *encoderParams, commands []command, storage_ix *uint, storage []byte) {
var lit_histo histogramLiteral
var cmd_histo histogramCommand
var dist_histo histogramDistance
var lit_depth [numLiteralSymbols]byte
var lit_bits [numLiteralSymbols]uint16
var cmd_depth [numCommandSymbols]byte
var cmd_bits [numCommandSymbols]uint16
var dist_depth [maxSimpleDistanceAlphabetSize]byte
var dist_bits [maxSimpleDistanceAlphabetSize]uint16
var tree []huffmanTree
var num_distance_symbols uint32 = params.dist.alphabet_size
storeCompressedMetaBlockHeader(is_last, length, storage_ix, storage)
histogramClearLiteral(&lit_histo)
histogramClearCommand(&cmd_histo)
histogramClearDistance(&dist_histo)
buildHistograms(input, start_pos, mask, commands, &lit_histo, &cmd_histo, &dist_histo)
writeBits(13, 0, storage_ix, storage)
tree = make([]huffmanTree, maxHuffmanTreeSize)
buildAndStoreHuffmanTree(lit_histo.data_[:], numLiteralSymbols, numLiteralSymbols, tree, lit_depth[:], lit_bits[:], storage_ix, storage)
buildAndStoreHuffmanTree(cmd_histo.data_[:], numCommandSymbols, numCommandSymbols, tree, cmd_depth[:], cmd_bits[:], storage_ix, storage)
buildAndStoreHuffmanTree(dist_histo.data_[:], maxSimpleDistanceAlphabetSize, uint(num_distance_symbols), tree, dist_depth[:], dist_bits[:], storage_ix, storage)
tree = nil
storeDataWithHuffmanCodes(input, start_pos, mask, commands, lit_depth[:], lit_bits[:], cmd_depth[:], cmd_bits[:], dist_depth[:], dist_bits[:], storage_ix, storage)
if is_last {
jumpToByteBoundary(storage_ix, storage)
}
}
func storeMetaBlockFast(input []byte, start_pos uint, length uint, mask uint, is_last bool, params *encoderParams, commands []command, storage_ix *uint, storage []byte) {
var num_distance_symbols uint32 = params.dist.alphabet_size
var distance_alphabet_bits uint32 = log2FloorNonZero(uint(num_distance_symbols-1)) + 1
storeCompressedMetaBlockHeader(is_last, length, storage_ix, storage)
writeBits(13, 0, storage_ix, storage)
if len(commands) <= 128 {
var histogram = [numLiteralSymbols]uint32{0}
var pos uint = start_pos
var num_literals uint = 0
var lit_depth [numLiteralSymbols]byte
var lit_bits [numLiteralSymbols]uint16
for _, cmd := range commands {
var j uint
for j = uint(cmd.insert_len_); j != 0; j-- {
histogram[input[pos&mask]]++
pos++
}
num_literals += uint(cmd.insert_len_)
pos += uint(commandCopyLen(&cmd))
}
buildAndStoreHuffmanTreeFast(histogram[:], num_literals, /* max_bits = */
8, lit_depth[:], lit_bits[:], storage_ix, storage)
storeStaticCommandHuffmanTree(storage_ix, storage)
storeStaticDistanceHuffmanTree(storage_ix, storage)
storeDataWithHuffmanCodes(input, start_pos, mask, commands, lit_depth[:], lit_bits[:], kStaticCommandCodeDepth[:], kStaticCommandCodeBits[:], kStaticDistanceCodeDepth[:], kStaticDistanceCodeBits[:], storage_ix, storage)
} else {
var lit_histo histogramLiteral
var cmd_histo histogramCommand
var dist_histo histogramDistance
var lit_depth [numLiteralSymbols]byte
var lit_bits [numLiteralSymbols]uint16
var cmd_depth [numCommandSymbols]byte
var cmd_bits [numCommandSymbols]uint16
var dist_depth [maxSimpleDistanceAlphabetSize]byte
var dist_bits [maxSimpleDistanceAlphabetSize]uint16
histogramClearLiteral(&lit_histo)
histogramClearCommand(&cmd_histo)
histogramClearDistance(&dist_histo)
buildHistograms(input, start_pos, mask, commands, &lit_histo, &cmd_histo, &dist_histo)
buildAndStoreHuffmanTreeFast(lit_histo.data_[:], lit_histo.total_count_, /* max_bits = */
8, lit_depth[:], lit_bits[:], storage_ix, storage)
buildAndStoreHuffmanTreeFast(cmd_histo.data_[:], cmd_histo.total_count_, /* max_bits = */
10, cmd_depth[:], cmd_bits[:], storage_ix, storage)
buildAndStoreHuffmanTreeFast(dist_histo.data_[:], dist_histo.total_count_, /* max_bits = */
uint(distance_alphabet_bits), dist_depth[:], dist_bits[:], storage_ix, storage)
storeDataWithHuffmanCodes(input, start_pos, mask, commands, lit_depth[:], lit_bits[:], cmd_depth[:], cmd_bits[:], dist_depth[:], dist_bits[:], storage_ix, storage)
}
if is_last {
jumpToByteBoundary(storage_ix, storage)
}
}
/*
This is for storing uncompressed blocks (simple raw storage of
bytes-as-bytes).
*/
func storeUncompressedMetaBlock(is_final_block bool, input []byte, position uint, mask uint, len uint, storage_ix *uint, storage []byte) {
var masked_pos uint = position & mask
storeUncompressedMetaBlockHeader(uint(len), storage_ix, storage)
jumpToByteBoundary(storage_ix, storage)
if masked_pos+len > mask+1 {
var len1 uint = mask + 1 - masked_pos
copy(storage[*storage_ix>>3:], input[masked_pos:][:len1])
*storage_ix += len1 << 3
len -= len1
masked_pos = 0
}
copy(storage[*storage_ix>>3:], input[masked_pos:][:len])
*storage_ix += uint(len << 3)
/* We need to clear the next 4 bytes to continue to be
compatible with BrotliWriteBits. */
writeBitsPrepareStorage(*storage_ix, storage)
/* Since the uncompressed block itself may not be the final block, add an
empty one after this. */
if is_final_block {
writeBits(1, 1, storage_ix, storage) /* islast */
writeBits(1, 1, storage_ix, storage) /* isempty */
jumpToByteBoundary(storage_ix, storage)
}
}
|