1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
|
package brotli
import "math"
/* Copyright 2013 Google Inc. All Rights Reserved.
Distributed under MIT license.
See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
*/
/* Computes the bit cost reduction by combining out[idx1] and out[idx2] and if
it is below a threshold, stores the pair (idx1, idx2) in the *pairs queue. */
func compareAndPushToQueueDistance(out []histogramDistance, cluster_size []uint32, idx1 uint32, idx2 uint32, max_num_pairs uint, pairs []histogramPair, num_pairs *uint) {
var is_good_pair bool = false
var p histogramPair
p.idx2 = 0
p.idx1 = p.idx2
p.cost_combo = 0
p.cost_diff = p.cost_combo
if idx1 == idx2 {
return
}
if idx2 < idx1 {
var t uint32 = idx2
idx2 = idx1
idx1 = t
}
p.idx1 = idx1
p.idx2 = idx2
p.cost_diff = 0.5 * clusterCostDiff(uint(cluster_size[idx1]), uint(cluster_size[idx2]))
p.cost_diff -= out[idx1].bit_cost_
p.cost_diff -= out[idx2].bit_cost_
if out[idx1].total_count_ == 0 {
p.cost_combo = out[idx2].bit_cost_
is_good_pair = true
} else if out[idx2].total_count_ == 0 {
p.cost_combo = out[idx1].bit_cost_
is_good_pair = true
} else {
var threshold float64
if *num_pairs == 0 {
threshold = 1e99
} else {
threshold = brotli_max_double(0.0, pairs[0].cost_diff)
}
var combo histogramDistance = out[idx1]
var cost_combo float64
histogramAddHistogramDistance(&combo, &out[idx2])
cost_combo = populationCostDistance(&combo)
if cost_combo < threshold-p.cost_diff {
p.cost_combo = cost_combo
is_good_pair = true
}
}
if is_good_pair {
p.cost_diff += p.cost_combo
if *num_pairs > 0 && histogramPairIsLess(&pairs[0], &p) {
/* Replace the top of the queue if needed. */
if *num_pairs < max_num_pairs {
pairs[*num_pairs] = pairs[0]
(*num_pairs)++
}
pairs[0] = p
} else if *num_pairs < max_num_pairs {
pairs[*num_pairs] = p
(*num_pairs)++
}
}
}
func histogramCombineDistance(out []histogramDistance, cluster_size []uint32, symbols []uint32, clusters []uint32, pairs []histogramPair, num_clusters uint, symbols_size uint, max_clusters uint, max_num_pairs uint) uint {
var cost_diff_threshold float64 = 0.0
var min_cluster_size uint = 1
var num_pairs uint = 0
{
/* We maintain a vector of histogram pairs, with the property that the pair
with the maximum bit cost reduction is the first. */
var idx1 uint
for idx1 = 0; idx1 < num_clusters; idx1++ {
var idx2 uint
for idx2 = idx1 + 1; idx2 < num_clusters; idx2++ {
compareAndPushToQueueDistance(out, cluster_size, clusters[idx1], clusters[idx2], max_num_pairs, pairs[0:], &num_pairs)
}
}
}
for num_clusters > min_cluster_size {
var best_idx1 uint32
var best_idx2 uint32
var i uint
if pairs[0].cost_diff >= cost_diff_threshold {
cost_diff_threshold = 1e99
min_cluster_size = max_clusters
continue
}
/* Take the best pair from the top of heap. */
best_idx1 = pairs[0].idx1
best_idx2 = pairs[0].idx2
histogramAddHistogramDistance(&out[best_idx1], &out[best_idx2])
out[best_idx1].bit_cost_ = pairs[0].cost_combo
cluster_size[best_idx1] += cluster_size[best_idx2]
for i = 0; i < symbols_size; i++ {
if symbols[i] == best_idx2 {
symbols[i] = best_idx1
}
}
for i = 0; i < num_clusters; i++ {
if clusters[i] == best_idx2 {
copy(clusters[i:], clusters[i+1:][:num_clusters-i-1])
break
}
}
num_clusters--
{
/* Remove pairs intersecting the just combined best pair. */
var copy_to_idx uint = 0
for i = 0; i < num_pairs; i++ {
var p *histogramPair = &pairs[i]
if p.idx1 == best_idx1 || p.idx2 == best_idx1 || p.idx1 == best_idx2 || p.idx2 == best_idx2 {
/* Remove invalid pair from the queue. */
continue
}
if histogramPairIsLess(&pairs[0], p) {
/* Replace the top of the queue if needed. */
var front histogramPair = pairs[0]
pairs[0] = *p
pairs[copy_to_idx] = front
} else {
pairs[copy_to_idx] = *p
}
copy_to_idx++
}
num_pairs = copy_to_idx
}
/* Push new pairs formed with the combined histogram to the heap. */
for i = 0; i < num_clusters; i++ {
compareAndPushToQueueDistance(out, cluster_size, best_idx1, clusters[i], max_num_pairs, pairs[0:], &num_pairs)
}
}
return num_clusters
}
/* What is the bit cost of moving histogram from cur_symbol to candidate. */
func histogramBitCostDistanceDistance(histogram *histogramDistance, candidate *histogramDistance) float64 {
if histogram.total_count_ == 0 {
return 0.0
} else {
var tmp histogramDistance = *histogram
histogramAddHistogramDistance(&tmp, candidate)
return populationCostDistance(&tmp) - candidate.bit_cost_
}
}
/* Find the best 'out' histogram for each of the 'in' histograms.
When called, clusters[0..num_clusters) contains the unique values from
symbols[0..in_size), but this property is not preserved in this function.
Note: we assume that out[]->bit_cost_ is already up-to-date. */
func histogramRemapDistance(in []histogramDistance, in_size uint, clusters []uint32, num_clusters uint, out []histogramDistance, symbols []uint32) {
var i uint
for i = 0; i < in_size; i++ {
var best_out uint32
if i == 0 {
best_out = symbols[0]
} else {
best_out = symbols[i-1]
}
var best_bits float64 = histogramBitCostDistanceDistance(&in[i], &out[best_out])
var j uint
for j = 0; j < num_clusters; j++ {
var cur_bits float64 = histogramBitCostDistanceDistance(&in[i], &out[clusters[j]])
if cur_bits < best_bits {
best_bits = cur_bits
best_out = clusters[j]
}
}
symbols[i] = best_out
}
/* Recompute each out based on raw and symbols. */
for i = 0; i < num_clusters; i++ {
histogramClearDistance(&out[clusters[i]])
}
for i = 0; i < in_size; i++ {
histogramAddHistogramDistance(&out[symbols[i]], &in[i])
}
}
/* Reorders elements of the out[0..length) array and changes values in
symbols[0..length) array in the following way:
* when called, symbols[] contains indexes into out[], and has N unique
values (possibly N < length)
* on return, symbols'[i] = f(symbols[i]) and
out'[symbols'[i]] = out[symbols[i]], for each 0 <= i < length,
where f is a bijection between the range of symbols[] and [0..N), and
the first occurrences of values in symbols'[i] come in consecutive
increasing order.
Returns N, the number of unique values in symbols[]. */
var histogramReindexDistance_kInvalidIndex uint32 = math.MaxUint32
func histogramReindexDistance(out []histogramDistance, symbols []uint32, length uint) uint {
var new_index []uint32 = make([]uint32, length)
var next_index uint32
var tmp []histogramDistance
var i uint
for i = 0; i < length; i++ {
new_index[i] = histogramReindexDistance_kInvalidIndex
}
next_index = 0
for i = 0; i < length; i++ {
if new_index[symbols[i]] == histogramReindexDistance_kInvalidIndex {
new_index[symbols[i]] = next_index
next_index++
}
}
/* TODO: by using idea of "cycle-sort" we can avoid allocation of
tmp and reduce the number of copying by the factor of 2. */
tmp = make([]histogramDistance, next_index)
next_index = 0
for i = 0; i < length; i++ {
if new_index[symbols[i]] == next_index {
tmp[next_index] = out[symbols[i]]
next_index++
}
symbols[i] = new_index[symbols[i]]
}
new_index = nil
for i = 0; uint32(i) < next_index; i++ {
out[i] = tmp[i]
}
tmp = nil
return uint(next_index)
}
func clusterHistogramsDistance(in []histogramDistance, in_size uint, max_histograms uint, out []histogramDistance, out_size *uint, histogram_symbols []uint32) {
var cluster_size []uint32 = make([]uint32, in_size)
var clusters []uint32 = make([]uint32, in_size)
var num_clusters uint = 0
var max_input_histograms uint = 64
var pairs_capacity uint = max_input_histograms * max_input_histograms / 2
var pairs []histogramPair = make([]histogramPair, (pairs_capacity + 1))
var i uint
/* For the first pass of clustering, we allow all pairs. */
for i = 0; i < in_size; i++ {
cluster_size[i] = 1
}
for i = 0; i < in_size; i++ {
out[i] = in[i]
out[i].bit_cost_ = populationCostDistance(&in[i])
histogram_symbols[i] = uint32(i)
}
for i = 0; i < in_size; i += max_input_histograms {
var num_to_combine uint = brotli_min_size_t(in_size-i, max_input_histograms)
var num_new_clusters uint
var j uint
for j = 0; j < num_to_combine; j++ {
clusters[num_clusters+j] = uint32(i + j)
}
num_new_clusters = histogramCombineDistance(out, cluster_size, histogram_symbols[i:], clusters[num_clusters:], pairs, num_to_combine, num_to_combine, max_histograms, pairs_capacity)
num_clusters += num_new_clusters
}
{
/* For the second pass, we limit the total number of histogram pairs.
After this limit is reached, we only keep searching for the best pair. */
var max_num_pairs uint = brotli_min_size_t(64*num_clusters, (num_clusters/2)*num_clusters)
if pairs_capacity < (max_num_pairs + 1) {
var _new_size uint
if pairs_capacity == 0 {
_new_size = max_num_pairs + 1
} else {
_new_size = pairs_capacity
}
var new_array []histogramPair
for _new_size < (max_num_pairs + 1) {
_new_size *= 2
}
new_array = make([]histogramPair, _new_size)
if pairs_capacity != 0 {
copy(new_array, pairs[:pairs_capacity])
}
pairs = new_array
pairs_capacity = _new_size
}
/* Collapse similar histograms. */
num_clusters = histogramCombineDistance(out, cluster_size, histogram_symbols, clusters, pairs, num_clusters, in_size, max_histograms, max_num_pairs)
}
pairs = nil
cluster_size = nil
/* Find the optimal map from original histograms to the final ones. */
histogramRemapDistance(in, in_size, clusters, num_clusters, out, histogram_symbols)
clusters = nil
/* Convert the context map to a canonical form. */
*out_size = histogramReindexDistance(out, histogram_symbols, in_size)
}
|