1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
package antlr
// Copyright (c) 2012-2022 The ANTLR Project. All rights reserved.
// Use of this file is governed by the BSD 3-clause license that
// can be found in the LICENSE.txt file in the project root.
import "sort"
// Collectable is an interface that a struct should implement if it is to be
// usable as a key in these collections.
type Collectable[T any] interface {
Hash() int
Equals(other Collectable[T]) bool
}
type Comparator[T any] interface {
Hash1(o T) int
Equals2(T, T) bool
}
// JStore implements a container that allows the use of a struct to calculate the key
// for a collection of values akin to map. This is not meant to be a full-blown HashMap but just
// serve the needs of the ANTLR Go runtime.
//
// For ease of porting the logic of the runtime from the master target (Java), this collection
// operates in a similar way to Java, in that it can use any struct that supplies a Hash() and Equals()
// function as the key. The values are stored in a standard go map which internally is a form of hashmap
// itself, the key for the go map is the hash supplied by the key object. The collection is able to deal with
// hash conflicts by using a simple slice of values associated with the hash code indexed bucket. That isn't
// particularly efficient, but it is simple, and it works. As this is specifically for the ANTLR runtime, and
// we understand the requirements, then this is fine - this is not a general purpose collection.
type JStore[T any, C Comparator[T]] struct {
store map[int][]T
len int
comparator Comparator[T]
}
func NewJStore[T any, C Comparator[T]](comparator Comparator[T]) *JStore[T, C] {
if comparator == nil {
panic("comparator cannot be nil")
}
s := &JStore[T, C]{
store: make(map[int][]T, 1),
comparator: comparator,
}
return s
}
// Put will store given value in the collection. Note that the key for storage is generated from
// the value itself - this is specifically because that is what ANTLR needs - this would not be useful
// as any kind of general collection.
//
// If the key has a hash conflict, then the value will be added to the slice of values associated with the
// hash, unless the value is already in the slice, in which case the existing value is returned. Value equivalence is
// tested by calling the equals() method on the key.
//
// # If the given value is already present in the store, then the existing value is returned as v and exists is set to true
//
// If the given value is not present in the store, then the value is added to the store and returned as v and exists is set to false.
func (s *JStore[T, C]) Put(value T) (v T, exists bool) { //nolint:ireturn
kh := s.comparator.Hash1(value)
for _, v1 := range s.store[kh] {
if s.comparator.Equals2(value, v1) {
return v1, true
}
}
s.store[kh] = append(s.store[kh], value)
s.len++
return value, false
}
// Get will return the value associated with the key - the type of the key is the same type as the value
// which would not generally be useful, but this is a specific thing for ANTLR where the key is
// generated using the object we are going to store.
func (s *JStore[T, C]) Get(key T) (T, bool) { //nolint:ireturn
kh := s.comparator.Hash1(key)
for _, v := range s.store[kh] {
if s.comparator.Equals2(key, v) {
return v, true
}
}
return key, false
}
// Contains returns true if the given key is present in the store
func (s *JStore[T, C]) Contains(key T) bool { //nolint:ireturn
_, present := s.Get(key)
return present
}
func (s *JStore[T, C]) SortedSlice(less func(i, j T) bool) []T {
vs := make([]T, 0, len(s.store))
for _, v := range s.store {
vs = append(vs, v...)
}
sort.Slice(vs, func(i, j int) bool {
return less(vs[i], vs[j])
})
return vs
}
func (s *JStore[T, C]) Each(f func(T) bool) {
for _, e := range s.store {
for _, v := range e {
f(v)
}
}
}
func (s *JStore[T, C]) Len() int {
return s.len
}
func (s *JStore[T, C]) Values() []T {
vs := make([]T, 0, len(s.store))
for _, e := range s.store {
for _, v := range e {
vs = append(vs, v)
}
}
return vs
}
type entry[K, V any] struct {
key K
val V
}
type JMap[K, V any, C Comparator[K]] struct {
store map[int][]*entry[K, V]
len int
comparator Comparator[K]
}
func NewJMap[K, V any, C Comparator[K]](comparator Comparator[K]) *JMap[K, V, C] {
return &JMap[K, V, C]{
store: make(map[int][]*entry[K, V], 1),
comparator: comparator,
}
}
func (m *JMap[K, V, C]) Put(key K, val V) {
kh := m.comparator.Hash1(key)
m.store[kh] = append(m.store[kh], &entry[K, V]{key, val})
m.len++
}
func (m *JMap[K, V, C]) Values() []V {
vs := make([]V, 0, len(m.store))
for _, e := range m.store {
for _, v := range e {
vs = append(vs, v.val)
}
}
return vs
}
func (m *JMap[K, V, C]) Get(key K) (V, bool) {
var none V
kh := m.comparator.Hash1(key)
for _, e := range m.store[kh] {
if m.comparator.Equals2(e.key, key) {
return e.val, true
}
}
return none, false
}
func (m *JMap[K, V, C]) Len() int {
return len(m.store)
}
func (m *JMap[K, V, C]) Delete(key K) {
kh := m.comparator.Hash1(key)
for i, e := range m.store[kh] {
if m.comparator.Equals2(e.key, key) {
m.store[kh] = append(m.store[kh][:i], m.store[kh][i+1:]...)
m.len--
return
}
}
}
func (m *JMap[K, V, C]) Clear() {
m.store = make(map[int][]*entry[K, V])
}
|