File: concat.go

package info (click to toggle)
golang-github-apache-arrow-go 18.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 32,200 kB
  • sloc: asm: 477,547; ansic: 5,369; cpp: 759; sh: 585; makefile: 319; python: 190; sed: 5
file content (933 lines) | stat: -rw-r--r-- 30,416 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package array

import (
	"errors"
	"fmt"
	"math"
	"math/bits"
	"unsafe"

	"github.com/apache/arrow-go/v18/arrow"
	"github.com/apache/arrow-go/v18/arrow/bitutil"
	"github.com/apache/arrow-go/v18/arrow/encoded"
	"github.com/apache/arrow-go/v18/arrow/internal/debug"
	"github.com/apache/arrow-go/v18/arrow/memory"
	"github.com/apache/arrow-go/v18/internal/bitutils"
	"github.com/apache/arrow-go/v18/internal/utils"
)

// Concatenate creates a new arrow.Array which is the concatenation of the
// passed in arrays. Returns nil if an error is encountered.
//
// The passed in arrays still need to be released manually, and will not be
// released by this function.
func Concatenate(arrs []arrow.Array, mem memory.Allocator) (result arrow.Array, err error) {
	if len(arrs) == 0 {
		return nil, errors.New("array/concat: must pass at least one array")
	}

	// gather Data of inputs
	data := make([]arrow.ArrayData, len(arrs))
	for i, ar := range arrs {
		if !arrow.TypeEqual(ar.DataType(), arrs[0].DataType()) {
			return nil, fmt.Errorf("arrays to be concatenated must be identically typed, but %s and %s were encountered",
				arrs[0].DataType(), ar.DataType())
		}
		data[i] = ar.Data()
	}

	out, err := concat(data, mem)
	if err != nil {
		return nil, err
	}

	defer out.Release()
	return MakeFromData(out), nil
}

// simple struct to hold ranges
type rng struct {
	offset, len int
}

// simple bitmap struct to reference a specific slice of a bitmap where the range
// offset and length are in bits
type bitmap struct {
	data []byte
	rng  rng
}

// gather up the bitmaps from the passed in data objects
func gatherBitmaps(data []arrow.ArrayData, idx int) []bitmap {
	out := make([]bitmap, len(data))
	for i, d := range data {
		if d.Buffers()[idx] != nil {
			out[i].data = d.Buffers()[idx].Bytes()
		}
		out[i].rng.offset = d.Offset()
		out[i].rng.len = d.Len()
	}
	return out
}

// gatherFixedBuffers gathers up the buffer objects of the given index, specifically
// returning only the slices of the buffers which are relevant to the passed in arrays
// in case they are themselves slices of other arrays. nil buffers are ignored and not
// in the output slice.
func gatherFixedBuffers(data []arrow.ArrayData, idx, byteWidth int) []*memory.Buffer {
	out := make([]*memory.Buffer, 0, len(data))
	for _, d := range data {
		buf := d.Buffers()[idx]
		if buf == nil {
			continue
		}

		out = append(out, memory.NewBufferBytes(buf.Bytes()[d.Offset()*byteWidth:(d.Offset()+d.Len())*byteWidth]))
	}
	return out
}

// gatherBuffersFixedWidthType is like gatherFixedBuffers, but uses a datatype to determine the size
// to use for determining the byte slice rather than a passed in bytewidth.
func gatherBuffersFixedWidthType(data []arrow.ArrayData, idx int, fixed arrow.FixedWidthDataType) []*memory.Buffer {
	return gatherFixedBuffers(data, idx, fixed.BitWidth()/8)
}

// gatherBufferRanges requires that len(ranges) == len(data) and returns a list of buffers
// which represent the corresponding range of each buffer in the specified index of each
// data object.
func gatherBufferRanges(data []arrow.ArrayData, idx int, ranges []rng) []*memory.Buffer {
	out := make([]*memory.Buffer, 0, len(data))
	for i, d := range data {
		buf := d.Buffers()[idx]
		if buf == nil {
			debug.Assert(ranges[i].len == 0, "misaligned buffer value ranges")
			continue
		}

		out = append(out, memory.NewBufferBytes(buf.Bytes()[ranges[i].offset:ranges[i].offset+ranges[i].len]))
	}
	return out
}

// gatherChildren gathers the children data objects for child of index idx for all of the data objects.
func gatherChildren(data []arrow.ArrayData, idx int) []arrow.ArrayData {
	return gatherChildrenMultiplier(data, idx, 1)
}

// gatherChildrenMultiplier gathers the full data slice of the underlying values from the children data objects
// such as the values data for a list array so that it can return a slice of the buffer for a given
// index into the children.
func gatherChildrenMultiplier(data []arrow.ArrayData, idx, multiplier int) []arrow.ArrayData {
	out := make([]arrow.ArrayData, len(data))
	for i, d := range data {
		out[i] = NewSliceData(d.Children()[idx], int64(d.Offset()*multiplier), int64(d.Offset()+d.Len())*int64(multiplier))
	}
	return out
}

// gatherChildrenRanges returns a slice of Data objects which each represent slices of the given ranges from the
// child in the specified index from each data object.
func gatherChildrenRanges(data []arrow.ArrayData, idx int, ranges []rng) []arrow.ArrayData {
	debug.Assert(len(data) == len(ranges), "mismatched children ranges for concat")
	out := make([]arrow.ArrayData, len(data))
	for i, d := range data {
		out[i] = NewSliceData(d.Children()[idx], int64(ranges[i].offset), int64(ranges[i].offset+ranges[i].len))
	}
	return out
}

// creates a single contiguous buffer which contains the concatenation of all of the passed
// in buffer objects.
func concatBuffers(bufs []*memory.Buffer, mem memory.Allocator) *memory.Buffer {
	outLen := 0
	for _, b := range bufs {
		outLen += b.Len()
	}
	out := memory.NewResizableBuffer(mem)
	out.Resize(outLen)

	data := out.Bytes()
	for _, b := range bufs {
		copy(data, b.Bytes())
		data = data[b.Len():]
	}
	return out
}

func handle32BitOffsets(outLen int, buffers []*memory.Buffer, out *memory.Buffer) (*memory.Buffer, []rng, error) {
	dst := arrow.Int32Traits.CastFromBytes(out.Bytes())
	valuesRanges := make([]rng, len(buffers))
	nextOffset := int32(0)
	nextElem := int(0)
	for i, b := range buffers {
		if b.Len() == 0 {
			valuesRanges[i].offset = 0
			valuesRanges[i].len = 0
			continue
		}

		// when we gather our buffers, we sliced off the last offset from the buffer
		// so that we could count the lengths accurately
		src := arrow.Int32Traits.CastFromBytes(b.Bytes())
		valuesRanges[i].offset = int(src[0])
		// expand our slice to see that final offset
		expand := src[:len(src)+1]
		// compute the length of this range by taking the final offset and subtracting where we started.
		valuesRanges[i].len = int(expand[len(src)]) - valuesRanges[i].offset

		if nextOffset > math.MaxInt32-int32(valuesRanges[i].len) {
			return nil, nil, errors.New("offset overflow while concatenating arrays")
		}

		// adjust each offset by the difference between our last ending point and our starting point
		adj := nextOffset - src[0]
		for j, o := range src {
			dst[nextElem+j] = adj + o
		}

		// the next index for an element in the output buffer
		nextElem += b.Len() / arrow.Int32SizeBytes
		// update our offset counter to be the total current length of our output
		nextOffset += int32(valuesRanges[i].len)
	}

	// final offset should point to the end of the data
	dst[outLen] = nextOffset
	return out, valuesRanges, nil
}

func unifyDictionaries(mem memory.Allocator, data []arrow.ArrayData, dt *arrow.DictionaryType) ([]*memory.Buffer, arrow.Array, error) {
	unifier, err := NewDictionaryUnifier(mem, dt.ValueType)
	if err != nil {
		return nil, nil, err
	}
	defer unifier.Release()

	newLookup := make([]*memory.Buffer, len(data))
	for i, d := range data {
		dictArr := MakeFromData(d.Dictionary())
		defer dictArr.Release()
		newLookup[i], err = unifier.UnifyAndTranspose(dictArr)
		if err != nil {
			return nil, nil, err
		}
	}

	unified, err := unifier.GetResultWithIndexType(dt.IndexType)
	if err != nil {
		for _, b := range newLookup {
			b.Release()
		}
		return nil, nil, err
	}
	return newLookup, unified, nil
}

func concatDictIndices(mem memory.Allocator, data []arrow.ArrayData, idxType arrow.FixedWidthDataType, transpositions []*memory.Buffer) (out *memory.Buffer, err error) {
	defer func() {
		if err != nil && out != nil {
			out.Release()
			out = nil
		}
	}()

	idxWidth := idxType.BitWidth() / 8
	outLen := 0
	for i, d := range data {
		outLen += d.Len()
		defer transpositions[i].Release()
	}

	out = memory.NewResizableBuffer(mem)
	out.Resize(outLen * idxWidth)

	outData := out.Bytes()
	for i, d := range data {
		transposeMap := arrow.Int32Traits.CastFromBytes(transpositions[i].Bytes())
		src := d.Buffers()[1].Bytes()
		if d.Buffers()[0] == nil {
			if err = utils.TransposeIntsBuffers(idxType, idxType, src, outData, d.Offset(), 0, d.Len(), transposeMap); err != nil {
				return
			}
		} else {
			rdr := bitutils.NewBitRunReader(d.Buffers()[0].Bytes(), int64(d.Offset()), int64(d.Len()))
			pos := 0
			for {
				run := rdr.NextRun()
				if run.Len == 0 {
					break
				}

				if run.Set {
					err = utils.TransposeIntsBuffers(idxType, idxType, src, outData, d.Offset()+pos, pos, int(run.Len), transposeMap)
					if err != nil {
						return
					}
				} else {
					memory.Set(outData[pos:pos+(int(run.Len)*idxWidth)], 0x00)
				}

				pos += int(run.Len)
			}
		}
		outData = outData[d.Len()*idxWidth:]
	}
	return
}

func handle64BitOffsets(outLen int, buffers []*memory.Buffer, out *memory.Buffer) (*memory.Buffer, []rng, error) {
	dst := arrow.Int64Traits.CastFromBytes(out.Bytes())
	valuesRanges := make([]rng, len(buffers))
	nextOffset := int64(0)
	nextElem := int(0)
	for i, b := range buffers {
		if b.Len() == 0 {
			valuesRanges[i].offset = 0
			valuesRanges[i].len = 0
			continue
		}

		// when we gather our buffers, we sliced off the last offset from the buffer
		// so that we could count the lengths accurately
		src := arrow.Int64Traits.CastFromBytes(b.Bytes())
		valuesRanges[i].offset = int(src[0])
		// expand our slice to see that final offset
		expand := src[:len(src)+1]
		// compute the length of this range by taking the final offset and subtracting where we started.
		valuesRanges[i].len = int(expand[len(src)]) - valuesRanges[i].offset

		if nextOffset > math.MaxInt64-int64(valuesRanges[i].len) {
			return nil, nil, errors.New("offset overflow while concatenating arrays")
		}

		// adjust each offset by the difference between our last ending point and our starting point
		adj := nextOffset - src[0]
		for j, o := range src {
			dst[nextElem+j] = adj + o
		}

		// the next index for an element in the output buffer
		nextElem += b.Len() / arrow.Int64SizeBytes
		// update our offset counter to be the total current length of our output
		nextOffset += int64(valuesRanges[i].len)
	}

	// final offset should point to the end of the data
	dst[outLen] = nextOffset
	return out, valuesRanges, nil
}

// concatOffsets creates a single offset buffer which represents the concatenation of all of the
// offsets buffers, adjusting the offsets appropriately to their new relative locations.
//
// It also returns the list of ranges that need to be fetched for the corresponding value buffers
// to construct the final concatenated value buffer.
func concatOffsets(buffers []*memory.Buffer, byteWidth int, mem memory.Allocator) (*memory.Buffer, []rng, error) {
	outLen := 0
	for _, b := range buffers {
		outLen += b.Len() / byteWidth
	}

	out := memory.NewResizableBuffer(mem)
	out.Resize(byteWidth * (outLen + 1))

	switch byteWidth {
	case arrow.Int64SizeBytes:
		return handle64BitOffsets(outLen, buffers, out)
	default:
		return handle32BitOffsets(outLen, buffers, out)
	}
}

func sumArraySizes(data []arrow.ArrayData) int {
	outSize := 0
	for _, arr := range data {
		outSize += arr.Len()
	}
	return outSize
}

func getListViewBufferValues[T int32 | int64](data arrow.ArrayData, i int) []T {
	bytes := data.Buffers()[i].Bytes()
	base := (*T)(unsafe.Pointer(&bytes[0]))
	ret := unsafe.Slice(base, data.Offset()+data.Len())
	return ret[data.Offset():]
}

func putListViewOffsets32(in arrow.ArrayData, displacement int32, out *memory.Buffer, outOff int) {
	debug.Assert(in.DataType().ID() == arrow.LIST_VIEW, "putListViewOffsets32: expected LIST_VIEW data")
	inOff, inLen := in.Offset(), in.Len()
	if inLen == 0 {
		return
	}
	bitmap := in.Buffers()[0]
	srcOffsets := getListViewBufferValues[int32](in, 1)
	srcSizes := getListViewBufferValues[int32](in, 2)
	isValidAndNonEmpty := func(i int) bool {
		return (bitmap == nil || bitutil.BitIsSet(bitmap.Bytes(), inOff+i)) && srcSizes[i] > 0
	}

	dstOffsets := arrow.Int32Traits.CastFromBytes(out.Bytes())
	for i, offset := range srcOffsets {
		if isValidAndNonEmpty(i) {
			// This is guaranteed by RangeOfValuesUsed returning the smallest offset
			// of valid and non-empty list-views.
			debug.Assert(offset+displacement >= 0, "putListViewOffsets32: offset underflow while concatenating arrays")
			dstOffsets[outOff+i] = offset + displacement
		} else {
			dstOffsets[outOff+i] = 0
		}
	}
}

func putListViewOffsets64(in arrow.ArrayData, displacement int64, out *memory.Buffer, outOff int) {
	debug.Assert(in.DataType().ID() == arrow.LARGE_LIST_VIEW, "putListViewOffsets64: expected LARGE_LIST_VIEW data")
	inOff, inLen := in.Offset(), in.Len()
	if inLen == 0 {
		return
	}
	bitmap := in.Buffers()[0]
	srcOffsets := getListViewBufferValues[int64](in, 1)
	srcSizes := getListViewBufferValues[int64](in, 2)
	isValidAndNonEmpty := func(i int) bool {
		return (bitmap == nil || bitutil.BitIsSet(bitmap.Bytes(), inOff+i)) && srcSizes[i] > 0
	}

	dstOffsets := arrow.Int64Traits.CastFromBytes(out.Bytes())
	for i, offset := range srcOffsets {
		if isValidAndNonEmpty(i) {
			// This is guaranteed by RangeOfValuesUsed returning the smallest offset
			// of valid and non-empty list-views.
			debug.Assert(offset+displacement >= 0, "putListViewOffsets64: offset underflow while concatenating arrays")
			dstOffsets[outOff+i] = offset + displacement
		} else {
			dstOffsets[outOff+i] = 0
		}
	}
}

// Concatenate buffers holding list-view offsets into a single buffer of offsets
//
// valueRanges contains the relevant ranges of values in the child array actually
// referenced to by the views. Most commonly, these ranges will start from 0,
// but when that is not the case, we need to adjust the displacement of offsets.
// The concatenated child array does not contain values from the beginning
// if they are not referenced to by any view.
func concatListViewOffsets(data []arrow.ArrayData, byteWidth int, valueRanges []rng, mem memory.Allocator) (*memory.Buffer, error) {
	outSize := sumArraySizes(data)
	if byteWidth == 4 && outSize > math.MaxInt32 {
		return nil, fmt.Errorf("%w: offset overflow while concatenating arrays", arrow.ErrInvalid)
	}
	out := memory.NewResizableBuffer(mem)
	out.Resize(byteWidth * outSize)

	numChildValues, elementsLength := 0, 0
	for i, arr := range data {
		displacement := numChildValues - valueRanges[i].offset
		if byteWidth == 4 {
			putListViewOffsets32(arr, int32(displacement), out, elementsLength)
		} else {
			putListViewOffsets64(arr, int64(displacement), out, elementsLength)
		}
		elementsLength += arr.Len()
		numChildValues += valueRanges[i].len
	}
	debug.Assert(elementsLength == outSize, "implementation error")

	return out, nil
}

func zeroNullListViewSizes[T int32 | int64](data arrow.ArrayData) {
	if data.Len() == 0 || data.Buffers()[0] == nil {
		return
	}
	validity := data.Buffers()[0].Bytes()
	sizes := getListViewBufferValues[T](data, 2)

	for i := 0; i < data.Len(); i++ {
		if !bitutil.BitIsSet(validity, data.Offset()+i) {
			sizes[i] = 0
		}
	}
}

func concatListView(data []arrow.ArrayData, offsetType arrow.FixedWidthDataType, out *Data, mem memory.Allocator) (err error) {
	// Calculate the ranges of values that each list-view array uses
	valueRanges := make([]rng, len(data))
	for i, input := range data {
		offset, len := rangeOfValuesUsed(input)
		valueRanges[i].offset = offset
		valueRanges[i].len = len
	}

	// Gather the children ranges of each input array
	childData := gatherChildrenRanges(data, 0, valueRanges)
	for _, c := range childData {
		defer c.Release()
	}

	// Concatenate the values
	values, err := concat(childData, mem)
	if err != nil {
		return err
	}

	// Concatenate the offsets
	offsetBuffer, err := concatListViewOffsets(data, offsetType.Bytes(), valueRanges, mem)
	if err != nil {
		return err
	}

	// Concatenate the sizes
	sizeBuffers := gatherBuffersFixedWidthType(data, 2, offsetType)
	sizeBuffer := concatBuffers(sizeBuffers, mem)

	out.childData = []arrow.ArrayData{values}
	out.buffers[1] = offsetBuffer
	out.buffers[2] = sizeBuffer

	// To make sure the sizes don't reference values that are not in the new
	// concatenated values array, we zero the sizes of null list-view values.
	if offsetType.ID() == arrow.INT32 {
		zeroNullListViewSizes[int32](out)
	} else {
		zeroNullListViewSizes[int64](out)
	}

	return nil
}

// concat is the implementation for actually performing the concatenation of the arrow.ArrayData
// objects that we can call internally for nested types.
func concat(data []arrow.ArrayData, mem memory.Allocator) (arr arrow.ArrayData, err error) {
	out := &Data{refCount: 1, dtype: data[0].DataType(), nulls: 0}
	defer func() {
		if pErr := recover(); pErr != nil {
			err = utils.FormatRecoveredError("arrow/concat", pErr)
		}
		if err != nil {
			out.Release()
		}
	}()
	for _, d := range data {
		out.length += d.Len()
		if out.nulls == UnknownNullCount || d.NullN() == UnknownNullCount {
			out.nulls = UnknownNullCount
			continue
		}
		out.nulls += d.NullN()
	}

	out.buffers = make([]*memory.Buffer, len(data[0].Buffers()))
	if out.nulls != 0 && out.dtype.ID() != arrow.NULL {
		bm, err := concatBitmaps(gatherBitmaps(data, 0), mem)
		if err != nil {
			return nil, err
		}
		out.buffers[0] = bm
	}

	dt := out.dtype
	if dt.ID() == arrow.EXTENSION {
		dt = dt.(arrow.ExtensionType).StorageType()
	}

	switch dt := dt.(type) {
	case *arrow.NullType:
	case *arrow.BooleanType:
		bm, err := concatBitmaps(gatherBitmaps(data, 1), mem)
		if err != nil {
			return nil, err
		}
		out.buffers[1] = bm
	case *arrow.DictionaryType:
		idxType := dt.IndexType.(arrow.FixedWidthDataType)
		// two cases: all dictionaries are the same or we need to unify them
		dictsSame := true
		dict0 := MakeFromData(data[0].Dictionary())
		defer dict0.Release()
		for _, d := range data {
			dict := MakeFromData(d.Dictionary())
			if !Equal(dict0, dict) {
				dict.Release()
				dictsSame = false
				break
			}
			dict.Release()
		}

		indexBuffers := gatherBuffersFixedWidthType(data, 1, idxType)
		if dictsSame {
			out.dictionary = dict0.Data().(*Data)
			out.dictionary.Retain()
			out.buffers[1] = concatBuffers(indexBuffers, mem)
			break
		}

		indexLookup, unifiedDict, err := unifyDictionaries(mem, data, dt)
		if err != nil {
			return nil, err
		}
		defer unifiedDict.Release()
		out.dictionary = unifiedDict.Data().(*Data)
		out.dictionary.Retain()

		out.buffers[1], err = concatDictIndices(mem, data, idxType, indexLookup)
		if err != nil {
			return nil, err
		}
	case arrow.FixedWidthDataType:
		out.buffers[1] = concatBuffers(gatherBuffersFixedWidthType(data, 1, dt), mem)
	case arrow.BinaryViewDataType:
		out.buffers = out.buffers[:2]
		for _, d := range data {
			for _, buf := range d.Buffers()[2:] {
				buf.Retain()
				out.buffers = append(out.buffers, buf)
			}
		}

		out.buffers[1] = concatBuffers(gatherFixedBuffers(data, 1, arrow.ViewHeaderSizeBytes), mem)

		var (
			s                  = arrow.ViewHeaderTraits.CastFromBytes(out.buffers[1].Bytes())
			i                  = data[0].Len()
			precedingBufsCount int
		)

		for idx := 1; idx < len(data); idx++ {
			precedingBufsCount += len(data[idx-1].Buffers()) - 2

			for end := i + data[idx].Len(); i < end; i++ {
				if s[i].IsInline() {
					continue
				}

				bufIndex := s[i].BufferIndex() + int32(precedingBufsCount)
				s[i].SetIndexOffset(bufIndex, s[i].BufferOffset())
			}
		}
	case arrow.BinaryDataType:
		offsetWidth := dt.Layout().Buffers[1].ByteWidth
		offsetBuffer, valueRanges, err := concatOffsets(gatherFixedBuffers(data, 1, offsetWidth), offsetWidth, mem)
		if err != nil {
			return nil, err
		}
		out.buffers[1] = offsetBuffer
		out.buffers[2] = concatBuffers(gatherBufferRanges(data, 2, valueRanges), mem)
	case *arrow.ListType:
		offsetWidth := dt.Layout().Buffers[1].ByteWidth
		offsetBuffer, valueRanges, err := concatOffsets(gatherFixedBuffers(data, 1, offsetWidth), offsetWidth, mem)
		if err != nil {
			return nil, err
		}
		childData := gatherChildrenRanges(data, 0, valueRanges)
		for _, c := range childData {
			defer c.Release()
		}

		out.buffers[1] = offsetBuffer
		out.childData = make([]arrow.ArrayData, 1)
		out.childData[0], err = concat(childData, mem)
		if err != nil {
			return nil, err
		}
	case *arrow.LargeListType:
		offsetWidth := dt.Layout().Buffers[1].ByteWidth
		offsetBuffer, valueRanges, err := concatOffsets(gatherFixedBuffers(data, 1, offsetWidth), offsetWidth, mem)
		if err != nil {
			return nil, err
		}
		childData := gatherChildrenRanges(data, 0, valueRanges)
		for _, c := range childData {
			defer c.Release()
		}

		out.buffers[1] = offsetBuffer
		out.childData = make([]arrow.ArrayData, 1)
		out.childData[0], err = concat(childData, mem)
		if err != nil {
			return nil, err
		}
	case *arrow.ListViewType:
		offsetType := arrow.PrimitiveTypes.Int32.(arrow.FixedWidthDataType)
		err := concatListView(data, offsetType, out, mem)
		if err != nil {
			return nil, err
		}
	case *arrow.LargeListViewType:
		offsetType := arrow.PrimitiveTypes.Int64.(arrow.FixedWidthDataType)
		err := concatListView(data, offsetType, out, mem)
		if err != nil {
			return nil, err
		}
	case *arrow.FixedSizeListType:
		childData := gatherChildrenMultiplier(data, 0, int(dt.Len()))
		for _, c := range childData {
			defer c.Release()
		}

		children, err := concat(childData, mem)
		if err != nil {
			return nil, err
		}
		out.childData = []arrow.ArrayData{children}
	case *arrow.StructType:
		out.childData = make([]arrow.ArrayData, dt.NumFields())
		for i := range dt.Fields() {
			children := gatherChildren(data, i)
			for _, c := range children {
				defer c.Release()
			}

			childData, err := concat(children, mem)
			if err != nil {
				return nil, err
			}
			out.childData[i] = childData
		}
	case *arrow.MapType:
		offsetWidth := dt.Layout().Buffers[1].ByteWidth
		offsetBuffer, valueRanges, err := concatOffsets(gatherFixedBuffers(data, 1, offsetWidth), offsetWidth, mem)
		if err != nil {
			return nil, err
		}
		childData := gatherChildrenRanges(data, 0, valueRanges)
		for _, c := range childData {
			defer c.Release()
		}

		out.buffers[1] = offsetBuffer
		out.childData = make([]arrow.ArrayData, 1)
		out.childData[0], err = concat(childData, mem)
		if err != nil {
			return nil, err
		}
	case *arrow.RunEndEncodedType:
		physicalLength, overflow := int(0), false
		// we can't use gatherChildren because the Offset and Len of
		// data doesn't correspond to the physical length or offset
		runs := make([]arrow.ArrayData, len(data))
		values := make([]arrow.ArrayData, len(data))
		for i, d := range data {
			plen := encoded.GetPhysicalLength(d)
			off := encoded.FindPhysicalOffset(d)

			runs[i] = NewSliceData(d.Children()[0], int64(off), int64(off+plen))
			defer runs[i].Release()
			values[i] = NewSliceData(d.Children()[1], int64(off), int64(off+plen))
			defer values[i].Release()

			physicalLength, overflow = addOvf(physicalLength, plen)
			if overflow {
				return nil, fmt.Errorf("%w: run end encoded array length must fit into a 32-bit signed integer",
					arrow.ErrInvalid)
			}
		}

		runEndsByteWidth := runs[0].DataType().(arrow.FixedWidthDataType).Bytes()
		runEndsBuffers := gatherFixedBuffers(runs, 1, runEndsByteWidth)
		outRunEndsLen := physicalLength * runEndsByteWidth
		outRunEndsBuf := memory.NewResizableBuffer(mem)
		outRunEndsBuf.Resize(outRunEndsLen)
		defer outRunEndsBuf.Release()

		if err := updateRunEnds(runEndsByteWidth, data, runEndsBuffers, outRunEndsBuf); err != nil {
			return nil, err
		}

		out.childData = make([]arrow.ArrayData, 2)
		out.childData[0] = NewData(data[0].Children()[0].DataType(), int(physicalLength),
			[]*memory.Buffer{nil, outRunEndsBuf}, nil, 0, 0)

		var err error
		out.childData[1], err = concat(values, mem)
		if err != nil {
			out.childData[0].Release()
			return nil, err
		}
	default:
		return nil, fmt.Errorf("concatenate not implemented for type %s", dt)
	}

	return out, nil
}

// check overflow in the addition, taken from bits.Add but adapted for signed integers
// rather than unsigned integers. bits.UintSize will be either 32 or 64 based on
// whether our architecture is 32 bit or 64. The operation is the same for both cases,
// the only difference is how much we need to shift by 30 for 32 bit and 62 for 64 bit.
// Thus, bits.UintSize - 2 is how much we shift right by to check if we had an overflow
// in the signed addition.
//
// First return is the result of the sum, the second return is true if there was an overflow
func addOvf(x, y int) (int, bool) {
	sum := x + y
	return sum, ((x&y)|((x|y)&^sum))>>(bits.UintSize-2) == 1
}

// concatenate bitmaps together and return a buffer with the combined bitmaps
func concatBitmaps(bitmaps []bitmap, mem memory.Allocator) (*memory.Buffer, error) {
	var (
		outlen   int
		overflow bool
	)

	for _, bm := range bitmaps {
		if outlen, overflow = addOvf(outlen, bm.rng.len); overflow {
			return nil, errors.New("length overflow when concatenating arrays")
		}
	}

	out := memory.NewResizableBuffer(mem)
	out.Resize(int(bitutil.BytesForBits(int64(outlen))))
	dst := out.Bytes()

	offset := 0
	for _, bm := range bitmaps {
		if bm.data == nil { // if the bitmap is nil, that implies that the value is true for all elements
			bitutil.SetBitsTo(out.Bytes(), int64(offset), int64(bm.rng.len), true)
		} else {
			bitutil.CopyBitmap(bm.data, bm.rng.offset, bm.rng.len, dst, offset)
		}
		offset += bm.rng.len
	}
	return out, nil
}

func updateRunEnds(byteWidth int, inputData []arrow.ArrayData, inputBuffers []*memory.Buffer, outputBuffer *memory.Buffer) error {
	switch byteWidth {
	case 2:
		out := arrow.Int16Traits.CastFromBytes(outputBuffer.Bytes())
		return updateRunsInt16(inputData, inputBuffers, out)
	case 4:
		out := arrow.Int32Traits.CastFromBytes(outputBuffer.Bytes())
		return updateRunsInt32(inputData, inputBuffers, out)
	case 8:
		out := arrow.Int64Traits.CastFromBytes(outputBuffer.Bytes())
		return updateRunsInt64(inputData, inputBuffers, out)
	}
	return fmt.Errorf("%w: invalid dataType for RLE runEnds", arrow.ErrInvalid)
}

func updateRunsInt16(inputData []arrow.ArrayData, inputBuffers []*memory.Buffer, output []int16) error {
	// for now we will not attempt to optimize by checking if we
	// can fold the end and beginning of each array we're concatenating
	// into a single run
	pos := 0
	for i, buf := range inputBuffers {
		if buf.Len() == 0 {
			continue
		}
		src := arrow.Int16Traits.CastFromBytes(buf.Bytes())
		if pos == 0 {
			pos += copy(output, src)
			continue
		}

		lastEnd := output[pos-1]
		// we can check the last runEnd in the src and add it to the
		// last value that we're adjusting them all by to see if we
		// are going to overflow
		if int64(lastEnd)+int64(int(src[len(src)-1])-inputData[i].Offset()) > math.MaxInt16 {
			return fmt.Errorf("%w: overflow in run-length-encoded run ends concat", arrow.ErrInvalid)
		}

		// adjust all of the run ends by first normalizing them (e - data[i].offset)
		// then adding the previous value we ended on. Since the offset
		// is a logical length offset it should be accurate to just subtract
		// it from each value.
		for j, e := range src {
			output[pos+j] = lastEnd + int16(int(e)-inputData[i].Offset())
		}
		pos += len(src)
	}
	return nil
}

func updateRunsInt32(inputData []arrow.ArrayData, inputBuffers []*memory.Buffer, output []int32) error {
	// for now we will not attempt to optimize by checking if we
	// can fold the end and beginning of each array we're concatenating
	// into a single run
	pos := 0
	for i, buf := range inputBuffers {
		if buf.Len() == 0 {
			continue
		}
		src := arrow.Int32Traits.CastFromBytes(buf.Bytes())
		if pos == 0 {
			pos += copy(output, src)
			continue
		}

		lastEnd := output[pos-1]
		// we can check the last runEnd in the src and add it to the
		// last value that we're adjusting them all by to see if we
		// are going to overflow
		if int64(lastEnd)+int64(int(src[len(src)-1])-inputData[i].Offset()) > math.MaxInt32 {
			return fmt.Errorf("%w: overflow in run-length-encoded run ends concat", arrow.ErrInvalid)
		}

		// adjust all of the run ends by first normalizing them (e - data[i].offset)
		// then adding the previous value we ended on. Since the offset
		// is a logical length offset it should be accurate to just subtract
		// it from each value.
		for j, e := range src {
			output[pos+j] = lastEnd + int32(int(e)-inputData[i].Offset())
		}
		pos += len(src)
	}
	return nil
}

func updateRunsInt64(inputData []arrow.ArrayData, inputBuffers []*memory.Buffer, output []int64) error {
	// for now we will not attempt to optimize by checking if we
	// can fold the end and beginning of each array we're concatenating
	// into a single run
	pos := 0
	for i, buf := range inputBuffers {
		if buf.Len() == 0 {
			continue
		}
		src := arrow.Int64Traits.CastFromBytes(buf.Bytes())
		if pos == 0 {
			pos += copy(output, src)
			continue
		}

		lastEnd := output[pos-1]
		// we can check the last runEnd in the src and add it to the
		// last value that we're adjusting them all by to see if we
		// are going to overflow
		if uint64(lastEnd)+uint64(int(src[len(src)-1])-inputData[i].Offset()) > math.MaxInt64 {
			return fmt.Errorf("%w: overflow in run-length-encoded run ends concat", arrow.ErrInvalid)
		}

		// adjust all of the run ends by first normalizing them (e - data[i].offset)
		// then adding the previous value we ended on. Since the offset
		// is a logical length offset it should be accurate to just subtract
		// it from each value.
		for j, e := range src {
			output[pos+j] = lastEnd + e - int64(inputData[i].Offset())
		}
		pos += len(src)
	}
	return nil
}