1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
|
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package array
import (
"errors"
"fmt"
"io"
"strings"
"github.com/apache/arrow-go/v18/arrow"
"github.com/apache/arrow-go/v18/arrow/bitutil"
"github.com/apache/arrow-go/v18/arrow/memory"
"github.com/apache/arrow-go/v18/internal/hashing"
"github.com/apache/arrow-go/v18/internal/json"
)
func min(a, b int) int {
if a < b {
return a
}
return b
}
type fromJSONCfg struct {
multiDocument bool
startOffset int64
useNumber bool
}
type FromJSONOption func(*fromJSONCfg)
func WithMultipleDocs() FromJSONOption {
return func(c *fromJSONCfg) {
c.multiDocument = true
}
}
// WithStartOffset attempts to start decoding from the reader at the offset
// passed in. If using this option the reader must fulfill the io.ReadSeeker
// interface, or else an error will be returned.
//
// It will call Seek(off, io.SeekStart) on the reader
func WithStartOffset(off int64) FromJSONOption {
return func(c *fromJSONCfg) {
c.startOffset = off
}
}
// WithUseNumber enables the 'UseNumber' option on the json decoder, using
// the json.Number type instead of assuming float64 for numbers. This is critical
// if you have numbers that are larger than what can fit into the 53 bits of
// an IEEE float64 mantissa and want to preserve its value.
func WithUseNumber() FromJSONOption {
return func(c *fromJSONCfg) {
c.useNumber = true
}
}
// FromJSON creates an arrow.Array from a corresponding JSON stream and defined data type. If the types in the
// json do not match the type provided, it will return errors. This is *not* the integration test format
// and should not be used as such. This intended to be used by consumers more similarly to the current exposing of
// the csv reader/writer. It also returns the input offset in the reader where it finished decoding since buffering
// by the decoder could leave the reader's cursor past where the parsing finished if attempting to parse multiple json
// arrays from one stream.
//
// All the Array types implement json.Marshaller and thus can be written to json
// using the json.Marshal function
//
// The JSON provided must be formatted in one of two ways:
//
// Default: the top level of the json must be a list which matches the type specified exactly
// Example: `[1, 2, 3, 4, 5]` for any integer type or `[[...], null, [], .....]` for a List type
// Struct arrays are represented a list of objects: `[{"foo": 1, "bar": "moo"}, {"foo": 5, "bar": "baz"}]`
//
// Using WithMultipleDocs:
// If the JSON provided is multiple newline separated json documents, then use this option
// and each json document will be treated as a single row of the array. This is most useful for record batches
// and interacting with other processes that use json. For example:
// `{"col1": 1, "col2": "row1", "col3": ...}\n{"col1": 2, "col2": "row2", "col3": ...}\n.....`
//
// Duration values get formated upon marshalling as a string consisting of their numeric
// value followed by the unit suffix such as "10s" for a value of 10 and unit of Seconds.
// with "ms" for millisecond, "us" for microsecond, and "ns" for nanosecond as the suffixes.
// Unmarshalling duration values is more permissive since it first tries to use Go's
// time.ParseDuration function which means it allows values in the form 3h25m0.3s in addition
// to the same values which are output.
//
// Interval types are marshalled / unmarshalled as follows:
//
// MonthInterval is marshalled as an object with the format:
// { "months": #}
// DayTimeInterval is marshalled using Go's regular marshalling of structs:
// { "days": #, "milliseconds": # }
// MonthDayNanoInterval values are marshalled the same as DayTime using Go's struct marshalling:
// { "months": #, "days": #, "nanoseconds": # }
//
// Times use a format of HH:MM or HH:MM:SS[.zzz] where the fractions of a second cannot
// exceed the precision allowed by the time unit, otherwise unmarshalling will error.
//
// # Dates use YYYY-MM-DD format
//
// Timestamps use RFC3339Nano format except without a timezone, all of the following are valid:
//
// YYYY-MM-DD
// YYYY-MM-DD[T]HH
// YYYY-MM-DD[T]HH:MM
// YYYY-MM-DD[T]HH:MM:SS[.zzzzzzzzzz]
//
// The fractions of a second cannot exceed the precision allowed by the timeunit of the datatype.
//
// When processing structs as objects order of keys does not matter, but keys cannot be repeated.
func FromJSON(mem memory.Allocator, dt arrow.DataType, r io.Reader, opts ...FromJSONOption) (arr arrow.Array, offset int64, err error) {
var cfg fromJSONCfg
for _, o := range opts {
o(&cfg)
}
if cfg.startOffset != 0 {
seeker, ok := r.(io.ReadSeeker)
if !ok {
return nil, 0, errors.New("using StartOffset option requires reader to be a ReadSeeker, cannot seek")
}
seeker.Seek(cfg.startOffset, io.SeekStart)
}
bldr := NewBuilder(mem, dt)
defer bldr.Release()
dec := json.NewDecoder(r)
defer func() {
if errors.Is(err, io.EOF) {
err = fmt.Errorf("failed parsing json: %w", io.ErrUnexpectedEOF)
}
}()
if cfg.useNumber {
dec.UseNumber()
}
if !cfg.multiDocument {
t, err := dec.Token()
if err != nil {
return nil, dec.InputOffset(), err
}
if delim, ok := t.(json.Delim); !ok || delim != '[' {
return nil, dec.InputOffset(), fmt.Errorf("json doc must be an array, found %s", delim)
}
}
if err = bldr.Unmarshal(dec); err != nil {
return nil, dec.InputOffset(), err
}
if !cfg.multiDocument {
// consume the last ']'
if _, err = dec.Token(); err != nil {
return nil, dec.InputOffset(), err
}
}
return bldr.NewArray(), dec.InputOffset(), nil
}
// RecordToStructArray constructs a struct array from the columns of the record batch
// by referencing them, zero-copy.
func RecordToStructArray(rec arrow.Record) *Struct {
cols := make([]arrow.ArrayData, rec.NumCols())
for i, c := range rec.Columns() {
cols[i] = c.Data()
}
data := NewData(arrow.StructOf(rec.Schema().Fields()...), int(rec.NumRows()), []*memory.Buffer{nil}, cols, 0, 0)
defer data.Release()
return NewStructData(data)
}
// RecordFromStructArray is a convenience function for converting a struct array into
// a record batch without copying the data. If the passed in schema is nil, the fields
// of the struct will be used to define the record batch. Otherwise the passed in
// schema will be used to create the record batch. If passed in, the schema must match
// the fields of the struct column.
func RecordFromStructArray(in *Struct, schema *arrow.Schema) arrow.Record {
if schema == nil {
schema = arrow.NewSchema(in.DataType().(*arrow.StructType).Fields(), nil)
}
return NewRecord(schema, in.fields, int64(in.Len()))
}
// RecordFromJSON creates a record batch from JSON data. See array.FromJSON for the details
// of formatting and logic.
//
// A record batch from JSON is equivalent to reading a struct array in from json and then
// converting it to a record batch.
func RecordFromJSON(mem memory.Allocator, schema *arrow.Schema, r io.Reader, opts ...FromJSONOption) (arrow.Record, int64, error) {
st := arrow.StructOf(schema.Fields()...)
arr, off, err := FromJSON(mem, st, r, opts...)
if err != nil {
return nil, off, err
}
defer arr.Release()
return RecordFromStructArray(arr.(*Struct), schema), off, nil
}
// RecordToJSON writes out the given record following the format of each row is a single object
// on a single line of the output.
func RecordToJSON(rec arrow.Record, w io.Writer) error {
enc := json.NewEncoder(w)
fields := rec.Schema().Fields()
cols := make(map[string]interface{})
for i := 0; int64(i) < rec.NumRows(); i++ {
for j, c := range rec.Columns() {
cols[fields[j].Name] = c.GetOneForMarshal(i)
}
if err := enc.Encode(cols); err != nil {
return err
}
}
return nil
}
func TableFromJSON(mem memory.Allocator, sc *arrow.Schema, recJSON []string, opt ...FromJSONOption) (arrow.Table, error) {
batches := make([]arrow.Record, len(recJSON))
for i, batchJSON := range recJSON {
batch, _, err := RecordFromJSON(mem, sc, strings.NewReader(batchJSON), opt...)
if err != nil {
return nil, err
}
defer batch.Release()
batches[i] = batch
}
return NewTableFromRecords(sc, batches), nil
}
func GetDictArrayData(mem memory.Allocator, valueType arrow.DataType, memoTable hashing.MemoTable, startOffset int) (*Data, error) {
dictLen := memoTable.Size() - startOffset
buffers := []*memory.Buffer{nil, nil}
buffers[1] = memory.NewResizableBuffer(mem)
defer buffers[1].Release()
switch tbl := memoTable.(type) {
case hashing.NumericMemoTable:
nbytes := tbl.TypeTraits().BytesRequired(dictLen)
buffers[1].Resize(nbytes)
tbl.WriteOutSubset(startOffset, buffers[1].Bytes())
case *hashing.BinaryMemoTable:
switch valueType.ID() {
case arrow.BINARY, arrow.STRING:
buffers = append(buffers, memory.NewResizableBuffer(mem))
defer buffers[2].Release()
buffers[1].Resize(arrow.Int32Traits.BytesRequired(dictLen + 1))
offsets := arrow.Int32Traits.CastFromBytes(buffers[1].Bytes())
tbl.CopyOffsetsSubset(startOffset, offsets)
valuesz := offsets[len(offsets)-1] - offsets[0]
buffers[2].Resize(int(valuesz))
tbl.CopyValuesSubset(startOffset, buffers[2].Bytes())
case arrow.LARGE_BINARY, arrow.LARGE_STRING:
buffers = append(buffers, memory.NewResizableBuffer(mem))
defer buffers[2].Release()
buffers[1].Resize(arrow.Int64Traits.BytesRequired(dictLen + 1))
offsets := arrow.Int64Traits.CastFromBytes(buffers[1].Bytes())
tbl.CopyLargeOffsetsSubset(startOffset, offsets)
valuesz := offsets[len(offsets)-1] - offsets[0]
buffers[2].Resize(int(valuesz))
tbl.CopyValuesSubset(startOffset, buffers[2].Bytes())
default: // fixed size
bw := int(bitutil.BytesForBits(int64(valueType.(arrow.FixedWidthDataType).BitWidth())))
buffers[1].Resize(dictLen * bw)
tbl.CopyFixedWidthValues(startOffset, bw, buffers[1].Bytes())
}
default:
return nil, fmt.Errorf("arrow/array: dictionary unifier unimplemented type: %s", valueType)
}
var nullcount int
if idx, ok := memoTable.GetNull(); ok && idx >= startOffset {
buffers[0] = memory.NewResizableBuffer(mem)
defer buffers[0].Release()
nullcount = 1
buffers[0].Resize(int(bitutil.BytesForBits(int64(dictLen))))
memory.Set(buffers[0].Bytes(), 0xFF)
bitutil.ClearBit(buffers[0].Bytes(), idx)
}
return NewData(valueType, dictLen, buffers, nil, nullcount, 0), nil
}
func DictArrayFromJSON(mem memory.Allocator, dt *arrow.DictionaryType, indicesJSON, dictJSON string) (arrow.Array, error) {
indices, _, err := FromJSON(mem, dt.IndexType, strings.NewReader(indicesJSON))
if err != nil {
return nil, err
}
defer indices.Release()
dict, _, err := FromJSON(mem, dt.ValueType, strings.NewReader(dictJSON))
if err != nil {
return nil, err
}
defer dict.Release()
return NewDictionaryArray(dt, indices, dict), nil
}
func ChunkedFromJSON(mem memory.Allocator, dt arrow.DataType, chunkStrs []string, opts ...FromJSONOption) (*arrow.Chunked, error) {
chunks := make([]arrow.Array, len(chunkStrs))
defer func() {
for _, c := range chunks {
if c != nil {
c.Release()
}
}
}()
var err error
for i, c := range chunkStrs {
chunks[i], _, err = FromJSON(mem, dt, strings.NewReader(c), opts...)
if err != nil {
return nil, err
}
}
return arrow.NewChunked(dt, chunks), nil
}
func getMaxBufferLen(dt arrow.DataType, length int) int {
bufferLen := int(bitutil.BytesForBits(int64(length)))
maxOf := func(bl int) int {
if bl > bufferLen {
return bl
}
return bufferLen
}
switch dt := dt.(type) {
case *arrow.DictionaryType:
bufferLen = maxOf(getMaxBufferLen(dt.ValueType, length))
return maxOf(getMaxBufferLen(dt.IndexType, length))
case *arrow.FixedSizeBinaryType:
return maxOf(dt.ByteWidth * length)
case arrow.FixedWidthDataType:
return maxOf(int(bitutil.BytesForBits(int64(dt.BitWidth()))) * length)
case *arrow.StructType:
for _, f := range dt.Fields() {
bufferLen = maxOf(getMaxBufferLen(f.Type, length))
}
return bufferLen
case *arrow.SparseUnionType:
// type codes
bufferLen = maxOf(length)
// creates children of the same length of the union
for _, f := range dt.Fields() {
bufferLen = maxOf(getMaxBufferLen(f.Type, length))
}
return bufferLen
case *arrow.DenseUnionType:
// type codes
bufferLen = maxOf(length)
// offsets
bufferLen = maxOf(arrow.Int32SizeBytes * length)
// create children of length 1
for _, f := range dt.Fields() {
bufferLen = maxOf(getMaxBufferLen(f.Type, 1))
}
return bufferLen
case arrow.OffsetsDataType:
return maxOf(dt.OffsetTypeTraits().BytesRequired(length + 1))
case *arrow.FixedSizeListType:
return maxOf(getMaxBufferLen(dt.Elem(), int(dt.Len())*length))
case arrow.ExtensionType:
return maxOf(getMaxBufferLen(dt.StorageType(), length))
default:
panic(fmt.Errorf("arrow/array: arrayofnull not implemented for type %s", dt))
}
}
type nullArrayFactory struct {
mem memory.Allocator
dt arrow.DataType
len int
buf *memory.Buffer
}
func (n *nullArrayFactory) create() *Data {
if n.buf == nil {
bufLen := getMaxBufferLen(n.dt, n.len)
n.buf = memory.NewResizableBuffer(n.mem)
n.buf.Resize(bufLen)
defer n.buf.Release()
}
var (
dt = n.dt
bufs = []*memory.Buffer{memory.SliceBuffer(n.buf, 0, int(bitutil.BytesForBits(int64(n.len))))}
childData []arrow.ArrayData
dictData arrow.ArrayData
)
defer bufs[0].Release()
if ex, ok := dt.(arrow.ExtensionType); ok {
dt = ex.StorageType()
}
if nf, ok := dt.(arrow.NestedType); ok {
childData = make([]arrow.ArrayData, nf.NumFields())
}
switch dt := dt.(type) {
case *arrow.NullType:
case *arrow.DictionaryType:
bufs = append(bufs, n.buf)
arr := MakeArrayOfNull(n.mem, dt.ValueType, 0)
defer arr.Release()
dictData = arr.Data()
case arrow.FixedWidthDataType:
bufs = append(bufs, n.buf)
case arrow.BinaryDataType:
bufs = append(bufs, n.buf, n.buf)
case arrow.OffsetsDataType:
bufs = append(bufs, n.buf)
childData[0] = n.createChild(dt, 0, 0)
defer childData[0].Release()
case *arrow.FixedSizeListType:
childData[0] = n.createChild(dt, 0, n.len*int(dt.Len()))
defer childData[0].Release()
case *arrow.StructType:
for i := range dt.Fields() {
childData[i] = n.createChild(dt, i, n.len)
defer childData[i].Release()
}
case *arrow.RunEndEncodedType:
bldr := NewBuilder(n.mem, dt.RunEnds())
defer bldr.Release()
switch b := bldr.(type) {
case *Int16Builder:
b.Append(int16(n.len))
case *Int32Builder:
b.Append(int32(n.len))
case *Int64Builder:
b.Append(int64(n.len))
}
childData[0] = bldr.newData()
defer childData[0].Release()
childData[1] = n.createChild(dt.Encoded(), 1, 1)
defer childData[1].Release()
case arrow.UnionType:
bufs[0].Release()
bufs[0] = nil
bufs = append(bufs, n.buf)
// buffer is zeroed, but 0 may not be a valid type code
if dt.TypeCodes()[0] != 0 {
bufs[1] = memory.NewResizableBuffer(n.mem)
bufs[1].Resize(n.len)
defer bufs[1].Release()
memory.Set(bufs[1].Bytes(), byte(dt.TypeCodes()[0]))
}
// for sparse unions we create children with the same length
childLen := n.len
if dt.Mode() == arrow.DenseMode {
// for dense unions, offsets are all 0 and make children
// with length 1
bufs = append(bufs, n.buf)
childLen = 1
}
for i := range dt.Fields() {
childData[i] = n.createChild(dt, i, childLen)
defer childData[i].Release()
}
}
out := NewData(n.dt, n.len, bufs, childData, n.len, 0)
if dictData != nil {
out.SetDictionary(dictData)
}
return out
}
func (n *nullArrayFactory) createChild(_ arrow.DataType, i, length int) *Data {
childFactory := &nullArrayFactory{
mem: n.mem, dt: n.dt.(arrow.NestedType).Fields()[i].Type,
len: length, buf: n.buf}
return childFactory.create()
}
// MakeArrayOfNull creates an array of size length which is all null of the given data type.
func MakeArrayOfNull(mem memory.Allocator, dt arrow.DataType, length int) arrow.Array {
if dt.ID() == arrow.NULL {
return NewNull(length)
}
data := (&nullArrayFactory{mem: mem, dt: dt, len: length}).create()
defer data.Release()
return MakeFromData(data)
}
func stripNulls(s string) string {
return strings.TrimRight(s, "\x00")
}
|