1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
|
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package avro reads Avro OCF files and presents the extracted data as records
package avro
import (
"fmt"
"math"
"strconv"
"github.com/apache/arrow-go/v18/arrow"
"github.com/apache/arrow-go/v18/arrow/decimal128"
"github.com/apache/arrow-go/v18/arrow/extensions"
"github.com/apache/arrow-go/v18/internal/utils"
avro "github.com/hamba/avro/v2"
)
type schemaNode struct {
name string
parent *schemaNode
schema avro.Schema
union bool
nullable bool
childrens []*schemaNode
arrowField arrow.Field
schemaCache *avro.SchemaCache
index, depth int32
}
func newSchemaNode() *schemaNode {
var schemaCache avro.SchemaCache
return &schemaNode{name: "", index: -1, schemaCache: &schemaCache}
}
func (node *schemaNode) schemaPath() string {
var path string
n := node
for n.parent != nil {
path = "." + n.name + path
n = n.parent
}
return path
}
func (node *schemaNode) newChild(n string, s avro.Schema) *schemaNode {
child := &schemaNode{
name: n,
parent: node,
schema: s,
schemaCache: node.schemaCache,
index: int32(len(node.childrens)),
depth: node.depth + 1,
}
node.childrens = append(node.childrens, child)
return child
}
func (node *schemaNode) children() []*schemaNode { return node.childrens }
// func (node *schemaNode) nodeName() string { return node.name }
// ArrowSchemaFromAvro returns a new Arrow schema from an Avro schema
func ArrowSchemaFromAvro(schema avro.Schema) (s *arrow.Schema, err error) {
defer func() {
if r := recover(); r != nil {
s = nil
err = utils.FormatRecoveredError("invalid avro schema", r)
}
}()
n := newSchemaNode()
n.schema = schema
c := n.newChild(n.schema.(avro.NamedSchema).Name(), n.schema)
arrowSchemafromAvro(c)
var fields []arrow.Field
for _, g := range c.children() {
fields = append(fields, g.arrowField)
}
s = arrow.NewSchema(fields, nil)
return s, nil
}
func arrowSchemafromAvro(n *schemaNode) {
if ns, ok := n.schema.(avro.NamedSchema); ok {
n.schemaCache.Add(ns.Name(), ns)
}
switch st := n.schema.Type(); st {
case "record":
iterateFields(n)
case "enum":
n.schemaCache.Add(n.schema.(avro.NamedSchema).Name(), n.schema.(*avro.EnumSchema))
symbols := make(map[string]string)
for index, symbol := range n.schema.(avro.PropertySchema).(*avro.EnumSchema).Symbols() {
k := strconv.FormatInt(int64(index), 10)
symbols[k] = symbol
}
var dt arrow.DictionaryType = arrow.DictionaryType{IndexType: arrow.PrimitiveTypes.Uint64, ValueType: arrow.BinaryTypes.String, Ordered: false}
sl := int64(len(symbols))
switch {
case sl <= math.MaxUint8:
dt.IndexType = arrow.PrimitiveTypes.Uint8
case sl > math.MaxUint8 && sl <= math.MaxUint16:
dt.IndexType = arrow.PrimitiveTypes.Uint16
case sl > math.MaxUint16 && sl <= math.MaxUint32:
dt.IndexType = arrow.PrimitiveTypes.Uint32
}
n.arrowField = buildArrowField(n, &dt, arrow.MetadataFrom(symbols))
case "array":
// logical items type
c := n.newChild(n.name, n.schema.(*avro.ArraySchema).Items())
if isLogicalSchemaType(n.schema.(*avro.ArraySchema).Items()) {
avroLogicalToArrowField(c)
} else {
arrowSchemafromAvro(c)
}
switch c.arrowField.Nullable {
case true:
n.arrowField = arrow.Field{Name: n.name, Type: arrow.ListOfField(c.arrowField), Metadata: c.arrowField.Metadata}
case false:
n.arrowField = arrow.Field{Name: n.name, Type: arrow.ListOfNonNullable(c.arrowField.Type), Metadata: c.arrowField.Metadata}
}
case "map":
n.schemaCache.Add(n.schema.(*avro.MapSchema).Values().(avro.NamedSchema).Name(), n.schema.(*avro.MapSchema).Values())
c := n.newChild(n.name, n.schema.(*avro.MapSchema).Values())
arrowSchemafromAvro(c)
n.arrowField = buildArrowField(n, arrow.MapOf(arrow.BinaryTypes.String, c.arrowField.Type), c.arrowField.Metadata)
case "union":
if n.schema.(*avro.UnionSchema).Nullable() {
if len(n.schema.(*avro.UnionSchema).Types()) > 1 {
n.schema = n.schema.(*avro.UnionSchema).Types()[1]
n.union = true
n.nullable = true
arrowSchemafromAvro(n)
}
}
// Avro "fixed" field type = Arrow FixedSize Primitive BinaryType
case "fixed":
n.schemaCache.Add(n.schema.(avro.NamedSchema).Name(), n.schema.(*avro.FixedSchema))
if isLogicalSchemaType(n.schema) {
avroLogicalToArrowField(n)
} else {
n.arrowField = buildArrowField(n, &arrow.FixedSizeBinaryType{ByteWidth: n.schema.(*avro.FixedSchema).Size()}, arrow.Metadata{})
}
case "string", "bytes", "int", "long":
if isLogicalSchemaType(n.schema) {
avroLogicalToArrowField(n)
} else {
n.arrowField = buildArrowField(n, avroPrimitiveToArrowType(string(st)), arrow.Metadata{})
}
case "float", "double", "boolean":
n.arrowField = arrow.Field{Name: n.name, Type: avroPrimitiveToArrowType(string(st)), Nullable: n.nullable}
case "<ref>":
refSchema := n.schemaCache.Get(string(n.schema.(*avro.RefSchema).Schema().Name()))
if refSchema == nil {
panic(fmt.Errorf("could not find schema for '%v' in schema cache - %v", n.schemaPath(), n.schema.(*avro.RefSchema).Schema().Name()))
}
n.schema = refSchema
arrowSchemafromAvro(n)
case "null":
n.schemaCache.Add(n.schema.(*avro.MapSchema).Values().(avro.NamedSchema).Name(), &avro.NullSchema{})
n.nullable = true
n.arrowField = buildArrowField(n, arrow.Null, arrow.Metadata{})
}
}
// iterate record Fields()
func iterateFields(n *schemaNode) {
for _, f := range n.schema.(*avro.RecordSchema).Fields() {
switch ft := f.Type().(type) {
// Avro "array" field type
case *avro.ArraySchema:
n.schemaCache.Add(f.Name(), ft.Items())
// logical items type
c := n.newChild(f.Name(), ft.Items())
if isLogicalSchemaType(ft.Items()) {
avroLogicalToArrowField(c)
} else {
arrowSchemafromAvro(c)
}
switch c.arrowField.Nullable {
case true:
c.arrowField = arrow.Field{Name: c.name, Type: arrow.ListOfField(c.arrowField), Metadata: c.arrowField.Metadata}
case false:
c.arrowField = arrow.Field{Name: c.name, Type: arrow.ListOfNonNullable(c.arrowField.Type), Metadata: c.arrowField.Metadata}
}
// Avro "enum" field type = Arrow dictionary type
case *avro.EnumSchema:
n.schemaCache.Add(f.Type().(*avro.EnumSchema).Name(), f.Type())
c := n.newChild(f.Name(), f.Type())
symbols := make(map[string]string)
for index, symbol := range ft.Symbols() {
k := strconv.FormatInt(int64(index), 10)
symbols[k] = symbol
}
var dt arrow.DictionaryType = arrow.DictionaryType{IndexType: arrow.PrimitiveTypes.Uint64, ValueType: arrow.BinaryTypes.String, Ordered: false}
sl := len(symbols)
switch {
case sl <= math.MaxUint8:
dt.IndexType = arrow.PrimitiveTypes.Uint8
case sl > math.MaxUint8 && sl <= math.MaxUint16:
dt.IndexType = arrow.PrimitiveTypes.Uint16
case sl > math.MaxUint16 && sl <= math.MaxInt:
dt.IndexType = arrow.PrimitiveTypes.Uint32
}
c.arrowField = buildArrowField(c, &dt, arrow.MetadataFrom(symbols))
// Avro "fixed" field type = Arrow FixedSize Primitive BinaryType
case *avro.FixedSchema:
n.schemaCache.Add(f.Name(), f.Type())
c := n.newChild(f.Name(), f.Type())
if isLogicalSchemaType(f.Type()) {
avroLogicalToArrowField(c)
} else {
arrowSchemafromAvro(c)
}
case *avro.RecordSchema:
n.schemaCache.Add(f.Name(), f.Type())
c := n.newChild(f.Name(), f.Type())
iterateFields(c)
// Avro "map" field type - KVP with value of one type - keys are strings
case *avro.MapSchema:
n.schemaCache.Add(f.Name(), ft.Values())
c := n.newChild(f.Name(), ft.Values())
arrowSchemafromAvro(c)
c.arrowField = buildArrowField(c, arrow.MapOf(arrow.BinaryTypes.String, c.arrowField.Type), c.arrowField.Metadata)
case *avro.UnionSchema:
if ft.Nullable() {
if len(ft.Types()) > 1 {
n.schemaCache.Add(f.Name(), ft.Types()[1])
c := n.newChild(f.Name(), ft.Types()[1])
c.union = true
c.nullable = true
arrowSchemafromAvro(c)
}
}
default:
n.schemaCache.Add(f.Name(), f.Type())
if isLogicalSchemaType(f.Type()) {
c := n.newChild(f.Name(), f.Type())
avroLogicalToArrowField(c)
} else {
c := n.newChild(f.Name(), f.Type())
arrowSchemafromAvro(c)
}
}
}
var fields []arrow.Field
for _, child := range n.children() {
fields = append(fields, child.arrowField)
}
namedSchema, ok := isNamedSchema(n.schema)
var md arrow.Metadata
if ok && namedSchema != n.name+"_data" && n.union {
md = arrow.NewMetadata([]string{"typeName"}, []string{namedSchema})
}
n.arrowField = buildArrowField(n, arrow.StructOf(fields...), md)
}
func isLogicalSchemaType(s avro.Schema) bool {
lts, ok := s.(avro.LogicalTypeSchema)
if !ok {
return false
}
if lts.Logical() != nil {
return true
}
return false
}
func isNamedSchema(s avro.Schema) (string, bool) {
if ns, ok := s.(avro.NamedSchema); ok {
return ns.FullName(), ok
}
return "", false
}
func buildArrowField(n *schemaNode, t arrow.DataType, m arrow.Metadata) arrow.Field {
return arrow.Field{
Name: n.name,
Type: t,
Metadata: m,
Nullable: n.nullable,
}
}
// Avro primitive type.
//
// NOTE: Arrow Binary type is used as a catchall to avoid potential data loss.
func avroPrimitiveToArrowType(avroFieldType string) arrow.DataType {
switch avroFieldType {
// int: 32-bit signed integer
case "int":
return arrow.PrimitiveTypes.Int32
// long: 64-bit signed integer
case "long":
return arrow.PrimitiveTypes.Int64
// float: single precision (32-bit) IEEE 754 floating-point number
case "float":
return arrow.PrimitiveTypes.Float32
// double: double precision (64-bit) IEEE 754 floating-point number
case "double":
return arrow.PrimitiveTypes.Float64
// bytes: sequence of 8-bit unsigned bytes
case "bytes":
return arrow.BinaryTypes.Binary
// boolean: a binary value
case "boolean":
return arrow.FixedWidthTypes.Boolean
// string: unicode character sequence
case "string":
return arrow.BinaryTypes.String
}
return nil
}
func avroLogicalToArrowField(n *schemaNode) {
var dt arrow.DataType
// Avro logical types
switch lt := n.schema.(avro.LogicalTypeSchema).Logical(); lt.Type() {
// The decimal logical type represents an arbitrary-precision signed decimal number of the form unscaled × 10-scale.
// A decimal logical type annotates Avro bytes or fixed types. The byte array must contain the two’s-complement
// representation of the unscaled integer value in big-endian byte order. The scale is fixed, and is specified
// using an attribute.
//
// The following attributes are supported:
// scale, a JSON integer representing the scale (optional). If not specified the scale is 0.
// precision, a JSON integer representing the (maximum) precision of decimals stored in this type (required).
case "decimal":
id := arrow.DECIMAL128
if lt.(*avro.DecimalLogicalSchema).Precision() > decimal128.MaxPrecision {
id = arrow.DECIMAL256
}
dt, _ = arrow.NewDecimalType(id, int32(lt.(*avro.DecimalLogicalSchema).Precision()), int32(lt.(*avro.DecimalLogicalSchema).Scale()))
// The uuid logical type represents a random generated universally unique identifier (UUID).
// A uuid logical type annotates an Avro string. The string has to conform with RFC-4122
case "uuid":
dt = extensions.NewUUIDType()
// The date logical type represents a date within the calendar, with no reference to a particular
// time zone or time of day.
// A date logical type annotates an Avro int, where the int stores the number of days from the unix epoch,
// 1 January 1970 (ISO calendar).
case "date":
dt = arrow.FixedWidthTypes.Date32
// The time-millis logical type represents a time of day, with no reference to a particular calendar,
// time zone or date, with a precision of one millisecond.
// A time-millis logical type annotates an Avro int, where the int stores the number of milliseconds
// after midnight, 00:00:00.000.
case "time-millis":
dt = arrow.FixedWidthTypes.Time32ms
// The time-micros logical type represents a time of day, with no reference to a particular calendar,
// time zone or date, with a precision of one microsecond.
// A time-micros logical type annotates an Avro long, where the long stores the number of microseconds
// after midnight, 00:00:00.000000.
case "time-micros":
dt = arrow.FixedWidthTypes.Time64us
// The timestamp-millis logical type represents an instant on the global timeline, independent of a
// particular time zone or calendar, with a precision of one millisecond. Please note that time zone
// information gets lost in this process. Upon reading a value back, we can only reconstruct the instant,
// but not the original representation. In practice, such timestamps are typically displayed to users in
// their local time zones, therefore they may be displayed differently depending on the execution environment.
// A timestamp-millis logical type annotates an Avro long, where the long stores the number of milliseconds
// from the unix epoch, 1 January 1970 00:00:00.000 UTC.
case "timestamp-millis":
dt = arrow.FixedWidthTypes.Timestamp_ms
// The timestamp-micros logical type represents an instant on the global timeline, independent of a
// particular time zone or calendar, with a precision of one microsecond. Please note that time zone
// information gets lost in this process. Upon reading a value back, we can only reconstruct the instant,
// but not the original representation. In practice, such timestamps are typically displayed to users
// in their local time zones, therefore they may be displayed differently depending on the execution environment.
// A timestamp-micros logical type annotates an Avro long, where the long stores the number of microseconds
// from the unix epoch, 1 January 1970 00:00:00.000000 UTC.
case "timestamp-micros":
dt = arrow.FixedWidthTypes.Timestamp_us
// The local-timestamp-millis logical type represents a timestamp in a local timezone, regardless of
// what specific time zone is considered local, with a precision of one millisecond.
// A local-timestamp-millis logical type annotates an Avro long, where the long stores the number of
// milliseconds, from 1 January 1970 00:00:00.000.
// Note: not implemented in hamba/avro
// case "local-timestamp-millis":
// dt = &arrow.TimestampType{Unit: arrow.Millisecond}
// The local-timestamp-micros logical type represents a timestamp in a local timezone, regardless of
// what specific time zone is considered local, with a precision of one microsecond.
// A local-timestamp-micros logical type annotates an Avro long, where the long stores the number of
// microseconds, from 1 January 1970 00:00:00.000000.
// case "local-timestamp-micros":
// Note: not implemented in hamba/avro
// dt = &arrow.TimestampType{Unit: arrow.Microsecond}
// The duration logical type represents an amount of time defined by a number of months, days and milliseconds.
// This is not equivalent to a number of milliseconds, because, depending on the moment in time from which the
// duration is measured, the number of days in the month and number of milliseconds in a day may differ. Other
// standard periods such as years, quarters, hours and minutes can be expressed through these basic periods.
// A duration logical type annotates Avro fixed type of size 12, which stores three little-endian unsigned integers
// that represent durations at different granularities of time. The first stores a number in months, the second
// stores a number in days, and the third stores a number in milliseconds.
case "duration":
dt = arrow.FixedWidthTypes.MonthDayNanoInterval
}
n.arrowField = buildArrowField(n, dt, arrow.Metadata{})
}
|