1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
|
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package bitutil
import (
"bytes"
"errors"
"math/bits"
"unsafe"
"github.com/apache/arrow-go/v18/arrow/endian"
"github.com/apache/arrow-go/v18/arrow/internal/debug"
"github.com/apache/arrow-go/v18/arrow/memory"
)
// BitmapReader is a simple bitmap reader for a byte slice.
type BitmapReader struct {
bitmap []byte
pos int
len int
current byte
byteOffset int
bitOffset int
}
// NewBitmapReader creates and returns a new bitmap reader for the given bitmap
func NewBitmapReader(bitmap []byte, offset, length int) *BitmapReader {
curbyte := byte(0)
if length > 0 && bitmap != nil {
curbyte = bitmap[offset/8]
}
return &BitmapReader{
bitmap: bitmap,
byteOffset: offset / 8,
bitOffset: offset % 8,
current: curbyte,
len: length,
}
}
// Set returns true if the current bit is set
func (b *BitmapReader) Set() bool {
return (b.current & (1 << b.bitOffset)) != 0
}
// NotSet returns true if the current bit is not set
func (b *BitmapReader) NotSet() bool {
return (b.current & (1 << b.bitOffset)) == 0
}
// Next advances the reader to the next bit in the bitmap.
func (b *BitmapReader) Next() {
b.bitOffset++
b.pos++
if b.bitOffset == 8 {
b.bitOffset = 0
b.byteOffset++
if b.pos < b.len {
b.current = b.bitmap[int(b.byteOffset)]
}
}
}
// Pos returns the current bit position in the bitmap that the reader is looking at
func (b *BitmapReader) Pos() int { return b.pos }
// Len returns the total number of bits in the bitmap
func (b *BitmapReader) Len() int { return b.len }
// BitmapWriter is a simple writer for writing bitmaps to byte slices
type BitmapWriter struct {
buf []byte
pos int
length int
curByte uint8
bitMask uint8
byteOffset int
}
// NewBitmapWriter returns a sequential bitwise writer that preserves surrounding
// bit values as it writes.
func NewBitmapWriter(bitmap []byte, start, length int) *BitmapWriter {
ret := &BitmapWriter{
buf: bitmap,
length: length,
byteOffset: start / 8,
bitMask: BitMask[start%8],
}
if length > 0 {
ret.curByte = bitmap[int(ret.byteOffset)]
}
return ret
}
// Reset resets the position and view of the slice to restart writing a bitmap
// to the same byte slice.
func (b *BitmapWriter) Reset(start, length int) {
b.pos = 0
b.byteOffset = start / 8
b.bitMask = BitMask[start%8]
b.length = length
if b.length > 0 {
b.curByte = b.buf[int(b.byteOffset)]
}
}
func (b *BitmapWriter) Pos() int { return b.pos }
func (b *BitmapWriter) Set() { b.curByte |= b.bitMask }
func (b *BitmapWriter) Clear() { b.curByte &= ^b.bitMask }
// Next increments the writer to the next bit for writing.
func (b *BitmapWriter) Next() {
b.bitMask = b.bitMask << 1
b.pos++
if b.bitMask == 0 {
b.bitMask = 0x01
b.buf[b.byteOffset] = b.curByte
b.byteOffset++
if b.pos < b.length {
b.curByte = b.buf[int(b.byteOffset)]
}
}
}
// AppendBools writes a series of booleans to the bitmapwriter and returns
// the number of remaining bytes left in the buffer for writing.
func (b *BitmapWriter) AppendBools(in []bool) int {
space := min(b.length-b.pos, len(in))
if space == 0 {
return 0
}
bitOffset := bits.TrailingZeros32(uint32(b.bitMask))
// location that the first byte needs to be written to for appending
appslice := b.buf[int(b.byteOffset) : b.byteOffset+int(BytesForBits(int64(bitOffset+space)))]
// update everything but curByte
appslice[0] = b.curByte
for i, b := range in[:space] {
if b {
SetBit(appslice, i+bitOffset)
} else {
ClearBit(appslice, i+bitOffset)
}
}
b.pos += space
b.bitMask = BitMask[(bitOffset+space)%8]
b.byteOffset += (bitOffset + space) / 8
b.curByte = appslice[len(appslice)-1]
return space
}
// Finish flushes the final byte out to the byteslice in case it was not already
// on a byte aligned boundary.
func (b *BitmapWriter) Finish() {
if b.length > 0 && (b.bitMask != 0x01 || b.pos < b.length) {
b.buf[int(b.byteOffset)] = b.curByte
}
}
// BitmapWordReader is a reader for bitmaps that reads a word at a time (a word being an 8 byte uint64)
// and then provides functions to grab the individual trailing bytes after the last word
type BitmapWordReader struct {
bitmap []byte
offset int
nwords int
trailingBits int
trailingBytes int
curword uint64
}
// NewBitmapWordReader sets up a word reader, calculates the number of trailing bits and
// number of trailing bytes, along with the number of words.
func NewBitmapWordReader(bitmap []byte, offset, length int) *BitmapWordReader {
bitoffset := offset % 8
byteOffset := offset / 8
bm := &BitmapWordReader{
offset: bitoffset,
bitmap: bitmap[byteOffset : byteOffset+int(BytesForBits(int64(bitoffset+length)))],
// decrement wordcount by 1 as we may touch two adjacent words in one iteration
nwords: length/int(unsafe.Sizeof(uint64(0))*8) - 1,
}
if bm.nwords < 0 {
bm.nwords = 0
}
bm.trailingBits = length - bm.nwords*int(unsafe.Sizeof(uint64(0)))*8
bm.trailingBytes = int(BytesForBits(int64(bm.trailingBits)))
if bm.nwords > 0 {
bm.curword = toFromLEFunc(endian.Native.Uint64(bm.bitmap))
} else if length > 0 {
setLSB(&bm.curword, bm.bitmap[0])
}
return bm
}
// NextWord returns the next full word read from the bitmap, should not be called
// if Words() is 0 as it will step outside of the bounds of the bitmap slice and panic.
//
// We don't perform the bounds checking in order to improve performance.
func (bm *BitmapWordReader) NextWord() uint64 {
bm.bitmap = bm.bitmap[unsafe.Sizeof(bm.curword):]
word := bm.curword
nextWord := toFromLEFunc(endian.Native.Uint64(bm.bitmap))
if bm.offset != 0 {
// combine two adjacent words into one word
// |<------ next ----->|<---- current ---->|
// +-------------+-----+-------------+-----+
// | --- | A | B | --- |
// +-------------+-----+-------------+-----+
// | | offset
// v v
// +-----+-------------+
// | A | B |
// +-----+-------------+
// |<------ word ----->|
word >>= uint64(bm.offset)
word |= nextWord << (int64(unsafe.Sizeof(uint64(0))*8) - int64(bm.offset))
}
bm.curword = nextWord
return word
}
// NextTrailingByte returns the next trailing byte of the bitmap after the last word
// along with the number of valid bits in that byte. When validBits < 8, that
// is the last byte.
//
// If the bitmap ends on a byte alignment, then the last byte can also return 8 valid bits.
// Thus the TrailingBytes function should be used to know how many trailing bytes to read.
func (bm *BitmapWordReader) NextTrailingByte() (val byte, validBits int) {
debug.Assert(bm.trailingBits > 0, "next trailing byte called with no trailing bits")
if bm.trailingBits <= 8 {
// last byte
validBits = bm.trailingBits
bm.trailingBits = 0
rdr := NewBitmapReader(bm.bitmap, bm.offset, validBits)
for i := 0; i < validBits; i++ {
val >>= 1
if rdr.Set() {
val |= 0x80
}
rdr.Next()
}
val >>= (8 - validBits)
return
}
bm.bitmap = bm.bitmap[1:]
nextByte := bm.bitmap[0]
val = getLSB(bm.curword)
if bm.offset != 0 {
val >>= byte(bm.offset)
val |= nextByte << (8 - bm.offset)
}
setLSB(&bm.curword, nextByte)
bm.trailingBits -= 8
bm.trailingBytes--
validBits = 8
return
}
func (bm *BitmapWordReader) Words() int { return bm.nwords }
func (bm *BitmapWordReader) TrailingBytes() int { return bm.trailingBytes }
// BitmapWordWriter is a bitmap writer for writing a full word at a time (a word being
// a uint64). After the last full word is written, PutNextTrailingByte can be used to
// write the remaining trailing bytes.
type BitmapWordWriter struct {
bitmap []byte
offset int
len int
bitMask uint64
currentWord uint64
}
// NewBitmapWordWriter initializes a new bitmap word writer which will start writing
// into the byte slice at bit offset start, expecting to write len bits.
func NewBitmapWordWriter(bitmap []byte, start, len int) *BitmapWordWriter {
ret := &BitmapWordWriter{
bitmap: bitmap[start/8:],
len: len,
offset: start % 8,
bitMask: (uint64(1) << uint64(start%8)) - 1,
}
if ret.offset != 0 {
if ret.len >= int(unsafe.Sizeof(uint64(0))*8) {
ret.currentWord = toFromLEFunc(endian.Native.Uint64(ret.bitmap))
} else if ret.len > 0 {
setLSB(&ret.currentWord, ret.bitmap[0])
}
}
return ret
}
// PutNextWord writes the given word to the bitmap, potentially splitting across
// two adjacent words.
func (bm *BitmapWordWriter) PutNextWord(word uint64) {
sz := int(unsafe.Sizeof(word))
if bm.offset != 0 {
// split one word into two adjacent words, don't touch unused bits
// |<------ word ----->|
// +-----+-------------+
// | A | B |
// +-----+-------------+
// | |
// v v offset
// +-------------+-----+-------------+-----+
// | --- | A | B | --- |
// +-------------+-----+-------------+-----+
// |<------ next ----->|<---- current ---->|
word = (word << uint64(bm.offset)) | (word >> (int64(sz*8) - int64(bm.offset)))
next := toFromLEFunc(endian.Native.Uint64(bm.bitmap[sz:]))
bm.currentWord = (bm.currentWord & bm.bitMask) | (word &^ bm.bitMask)
next = (next &^ bm.bitMask) | (word & bm.bitMask)
endian.Native.PutUint64(bm.bitmap, toFromLEFunc(bm.currentWord))
endian.Native.PutUint64(bm.bitmap[sz:], toFromLEFunc(next))
bm.currentWord = next
} else {
endian.Native.PutUint64(bm.bitmap, toFromLEFunc(word))
}
bm.bitmap = bm.bitmap[sz:]
}
// PutNextTrailingByte writes the number of bits indicated by validBits from b to
// the bitmap.
func (bm *BitmapWordWriter) PutNextTrailingByte(b byte, validBits int) {
curbyte := getLSB(bm.currentWord)
if validBits == 8 {
if bm.offset != 0 {
b = (b << bm.offset) | (b >> (8 - bm.offset))
next := bm.bitmap[1]
curbyte = (curbyte & byte(bm.bitMask)) | (b &^ byte(bm.bitMask))
next = (next &^ byte(bm.bitMask)) | (b & byte(bm.bitMask))
bm.bitmap[0] = curbyte
bm.bitmap[1] = next
bm.currentWord = uint64(next)
} else {
bm.bitmap[0] = b
}
bm.bitmap = bm.bitmap[1:]
} else {
debug.Assert(validBits > 0 && validBits < 8, "invalid valid bits in bitmap word writer")
debug.Assert(BytesForBits(int64(bm.offset+validBits)) <= int64(len(bm.bitmap)), "writing trailing byte outside of bounds of bitmap")
wr := NewBitmapWriter(bm.bitmap, int(bm.offset), validBits)
for i := 0; i < validBits; i++ {
if b&0x01 != 0 {
wr.Set()
} else {
wr.Clear()
}
wr.Next()
b >>= 1
}
wr.Finish()
}
}
type transferMode int8
const (
transferCopy transferMode = iota
transferInvert
)
func transferBitmap(mode transferMode, src []byte, srcOffset, length int, dst []byte, dstOffset int) {
if length == 0 {
// if there's nothing to write, end early.
return
}
bitOffset := srcOffset % 8
destBitOffset := dstOffset % 8
// slow path, one of the bitmaps are not byte aligned.
if bitOffset != 0 || destBitOffset != 0 {
rdr := NewBitmapWordReader(src, srcOffset, length)
wr := NewBitmapWordWriter(dst, dstOffset, length)
nwords := rdr.Words()
for nwords > 0 {
nwords--
if mode == transferInvert {
wr.PutNextWord(^rdr.NextWord())
} else {
wr.PutNextWord(rdr.NextWord())
}
}
nbytes := rdr.TrailingBytes()
for nbytes > 0 {
nbytes--
bt, validBits := rdr.NextTrailingByte()
if mode == transferInvert {
bt = ^bt
}
wr.PutNextTrailingByte(bt, validBits)
}
return
}
// fast path, both are starting with byte-aligned bitmaps
nbytes := int(BytesForBits(int64(length)))
// shift by its byte offset
src = src[srcOffset/8:]
dst = dst[dstOffset/8:]
// Take care of the trailing bits in the last byte
// E.g., if trailing_bits = 5, last byte should be
// - low 3 bits: new bits from last byte of data buffer
// - high 5 bits: old bits from last byte of dest buffer
trailingBits := nbytes*8 - length
trailMask := byte(uint(1)<<(8-trailingBits)) - 1
var lastData byte
if mode == transferInvert {
for i, b := range src[:nbytes-1] {
dst[i] = ^b
}
lastData = ^src[nbytes-1]
} else {
copy(dst, src[:nbytes-1])
lastData = src[nbytes-1]
}
dst[nbytes-1] &= ^trailMask
dst[nbytes-1] |= lastData & trailMask
}
// CopyBitmap copies the bitmap indicated by src, starting at bit offset srcOffset,
// and copying length bits into dst, starting at bit offset dstOffset.
func CopyBitmap(src []byte, srcOffset, length int, dst []byte, dstOffset int) {
transferBitmap(transferCopy, src, srcOffset, length, dst, dstOffset)
}
// InvertBitmap copies a bit range of a bitmap, inverting it as it copies
// over into the destination.
func InvertBitmap(src []byte, srcOffset, length int, dst []byte, dstOffset int) {
transferBitmap(transferInvert, src, srcOffset, length, dst, dstOffset)
}
type bitOp struct {
opWord func(uint64, uint64) uint64
opByte func(byte, byte) byte
opAligned func(l, r, o []byte)
}
var (
bitAndOp = bitOp{
opWord: func(l, r uint64) uint64 { return l & r },
opByte: func(l, r byte) byte { return l & r },
opAligned: alignedBitAndGo,
}
bitOrOp = bitOp{
opWord: func(l, r uint64) uint64 { return l | r },
opByte: func(l, r byte) byte { return l | r },
opAligned: alignedBitOrGo,
}
bitAndNotOp = bitOp{
opWord: func(l, r uint64) uint64 { return l &^ r },
opByte: func(l, r byte) byte { return l &^ r },
opAligned: alignedBitAndNotGo,
}
bitXorOp = bitOp{
opWord: func(l, r uint64) uint64 { return l ^ r },
opByte: func(l, r byte) byte { return l ^ r },
opAligned: alignedBitXorGo,
}
)
func alignedBitmapOp(op bitOp, left, right []byte, lOffset, rOffset int64, out []byte, outOffset int64, length int64) {
debug.Assert(lOffset%8 == rOffset%8, "aligned bitmap op called with unaligned offsets")
debug.Assert(lOffset%8 == outOffset%8, "aligned bitmap op called with unaligned output offset")
nbytes := BytesForBits(length + lOffset%8)
left = left[lOffset/8:]
right = right[rOffset/8:]
out = out[outOffset/8:]
endMask := (lOffset + length%8)
switch nbytes {
case 0:
return
case 1: // everything within a single byte
// (length+lOffset%8) <= 8
mask := PrecedingBitmask[lOffset%8]
if endMask != 0 {
mask |= TrailingBitmask[(lOffset+length)%8]
}
out[0] = (out[0] & mask) | (op.opByte(left[0], right[0]) &^ mask)
case 2: // don't send zero length to opAligned
firstByteMask := PrecedingBitmask[lOffset%8]
out[0] = (out[0] & firstByteMask) | (op.opByte(left[0], right[0]) &^ firstByteMask)
lastByteMask := byte(0)
if endMask != 0 {
lastByteMask = TrailingBitmask[(lOffset+length)%8]
}
out[1] = (out[1] & lastByteMask) | (op.opByte(left[1], right[1]) &^ lastByteMask)
default:
firstByteMask := PrecedingBitmask[lOffset%8]
out[0] = (out[0] & firstByteMask) | (op.opByte(left[0], right[0]) &^ firstByteMask)
op.opAligned(left[1:nbytes-1], right[1:nbytes-1], out[1:nbytes-1])
lastByteMask := byte(0)
if endMask != 0 {
lastByteMask = TrailingBitmask[(lOffset+length)%8]
}
out[nbytes-1] = (out[nbytes-1] & lastByteMask) | (op.opByte(left[nbytes-1], right[nbytes-1]) &^ lastByteMask)
}
}
func unalignedBitmapOp(op bitOp, left, right []byte, lOffset, rOffset int64, out []byte, outOffset int64, length int64) {
leftRdr := NewBitmapWordReader(left, int(lOffset), int(length))
rightRdr := NewBitmapWordReader(right, int(rOffset), int(length))
writer := NewBitmapWordWriter(out, int(outOffset), int(length))
for nwords := leftRdr.Words(); nwords > 0; nwords-- {
writer.PutNextWord(op.opWord(leftRdr.NextWord(), rightRdr.NextWord()))
}
for nbytes := leftRdr.TrailingBytes(); nbytes > 0; nbytes-- {
leftByte, leftValid := leftRdr.NextTrailingByte()
rightByte, rightValid := rightRdr.NextTrailingByte()
debug.Assert(leftValid == rightValid, "unexpected mismatch of valid bits")
writer.PutNextTrailingByte(op.opByte(leftByte, rightByte), leftValid)
}
}
func BitmapOp(op bitOp, left, right []byte, lOffset, rOffset int64, out []byte, outOffset, length int64) {
if (outOffset%8 == lOffset%8) && (outOffset%8 == rOffset%8) {
// fastcase!
alignedBitmapOp(op, left, right, lOffset, rOffset, out, outOffset, length)
} else {
unalignedBitmapOp(op, left, right, lOffset, rOffset, out, outOffset, length)
}
}
func BitmapOpAlloc(mem memory.Allocator, op bitOp, left, right []byte, lOffset, rOffset int64, length int64, outOffset int64) *memory.Buffer {
bits := length + outOffset
buf := memory.NewResizableBuffer(mem)
buf.Resize(int(BytesForBits(bits)))
BitmapOp(op, left, right, lOffset, rOffset, buf.Bytes(), outOffset, length)
return buf
}
func BitmapAnd(left, right []byte, lOffset, rOffset int64, out []byte, outOffset int64, length int64) {
BitmapOp(bitAndOp, left, right, lOffset, rOffset, out, outOffset, length)
}
func BitmapOr(left, right []byte, lOffset, rOffset int64, out []byte, outOffset int64, length int64) {
BitmapOp(bitOrOp, left, right, lOffset, rOffset, out, outOffset, length)
}
func BitmapAndAlloc(mem memory.Allocator, left, right []byte, lOffset, rOffset int64, length, outOffset int64) *memory.Buffer {
return BitmapOpAlloc(mem, bitAndOp, left, right, lOffset, rOffset, length, outOffset)
}
func BitmapOrAlloc(mem memory.Allocator, left, right []byte, lOffset, rOffset int64, length, outOffset int64) *memory.Buffer {
return BitmapOpAlloc(mem, bitOrOp, left, right, lOffset, rOffset, length, outOffset)
}
func BitmapAndNot(left, right []byte, lOffset, rOffset int64, out []byte, outOffset int64, length int64) {
BitmapOp(bitAndNotOp, left, right, lOffset, rOffset, out, outOffset, length)
}
func BitmapAndNotAlloc(mem memory.Allocator, left, right []byte, lOffset, rOffset int64, length, outOffset int64) *memory.Buffer {
return BitmapOpAlloc(mem, bitAndNotOp, left, right, lOffset, rOffset, length, outOffset)
}
func BitmapXor(left, right []byte, lOffset, rOffset int64, out []byte, outOffset int64, length int64) {
BitmapOp(bitXorOp, left, right, lOffset, rOffset, out, outOffset, length)
}
func BitmapXorAlloc(mem memory.Allocator, left, right []byte, lOffset, rOffset int64, length, outOffset int64) *memory.Buffer {
return BitmapOpAlloc(mem, bitXorOp, left, right, lOffset, rOffset, length, outOffset)
}
func BitmapEquals(left, right []byte, lOffset, rOffset int64, length int64) bool {
if lOffset%8 == 0 && rOffset%8 == 0 {
// byte aligned, fast path, can use bytes.Equal (memcmp)
byteLen := length / 8
lStart := lOffset / 8
rStart := rOffset / 8
if !bytes.Equal(left[lStart:lStart+byteLen], right[rStart:rStart+byteLen]) {
return false
}
// check trailing bits
for i := (length / 8) * 8; i < length; i++ {
if BitIsSet(left, int(lOffset+i)) != BitIsSet(right, int(rOffset+i)) {
return false
}
}
return true
}
lrdr := NewBitmapWordReader(left, int(lOffset), int(length))
rrdr := NewBitmapWordReader(right, int(rOffset), int(length))
nwords := lrdr.Words()
for nwords > 0 {
nwords--
if lrdr.NextWord() != rrdr.NextWord() {
return false
}
}
nbytes := lrdr.TrailingBytes()
for nbytes > 0 {
nbytes--
lbt, _ := lrdr.NextTrailingByte()
rbt, _ := rrdr.NextTrailingByte()
if lbt != rbt {
return false
}
}
return true
}
// OptionalBitIndexer is a convenience wrapper for getting bits from
// a bitmap which may or may not be nil.
type OptionalBitIndexer struct {
Bitmap []byte
Offset int
}
func (b *OptionalBitIndexer) GetBit(i int) bool {
return b.Bitmap == nil || BitIsSet(b.Bitmap, b.Offset+i)
}
type Bitmap struct {
Data []byte
Offset, Len int64
}
func bitLength(bitmaps []Bitmap) (int64, error) {
for _, b := range bitmaps[1:] {
if b.Len != bitmaps[0].Len {
return -1, errors.New("bitmaps must be same length")
}
}
return bitmaps[0].Len, nil
}
func runVisitWordsAndWriteLoop(bitLen int64, rdrs []*BitmapWordReader, wrs []*BitmapWordWriter, visitor func(in, out []uint64)) {
const bitWidth int64 = int64(uint64SizeBits)
visited := make([]uint64, len(rdrs))
output := make([]uint64, len(wrs))
// every reader will have same number of words, since they are same
// length'ed. This will be inefficient in some cases. When there's
// offsets beyond the Word boundary, every word would have to be
// created from 2 adjoining words
nwords := int64(rdrs[0].Words())
bitLen -= nwords * bitWidth
for nwords > 0 {
nwords--
for i := range visited {
visited[i] = rdrs[i].NextWord()
}
visitor(visited, output)
for i := range output {
wrs[i].PutNextWord(output[i])
}
}
// every reader will have the same number of trailing bytes, because
// we already confirmed they have the same length. Because
// offsets beyond the Word boundary can cause adjoining words, the
// tailing portion could be more than one word remaining full/partial
// words to write.
if bitLen == 0 {
return
}
// convert the word visitor to a bytevisitor
byteVisitor := func(in, out []byte) {
for i, w := range in {
visited[i] = uint64(w)
}
visitor(visited, output)
for i, w := range output {
out[i] = byte(w)
}
}
visitedBytes := make([]byte, len(rdrs))
outputBytes := make([]byte, len(wrs))
nbytes := rdrs[0].trailingBytes
for nbytes > 0 {
nbytes--
memory.Set(visitedBytes, 0)
memory.Set(outputBytes, 0)
var validBits int
for i := range rdrs {
visitedBytes[i], validBits = rdrs[i].NextTrailingByte()
}
byteVisitor(visitedBytes, outputBytes)
for i, w := range outputBytes {
wrs[i].PutNextTrailingByte(w, validBits)
}
}
}
// VisitWordsAndWrite visits words of bits from each input bitmap and
// collects outputs to a slice of output Bitmaps.
//
// All bitmaps must have identical lengths. The first bit in a visited
// bitmap may be offset within the first visited word, but words will
// otherwise contain densely packed bits loaded from the bitmap. That
// offset within the first word is returned.
//
// NOTE: this function is efficient on 3+ sufficiently large bitmaps.
// It also has a large prolog/epilog overhead and should be used
// carefully in other cases. For 2 or fewer bitmaps, and/or smaller
// bitmaps, try BitmapReader and or other utilities.
func VisitWordsAndWrite(args []Bitmap, out []Bitmap, visitor func(in, out []uint64)) error {
bitLen, err := bitLength(args)
if err != nil {
return err
}
rdrs, wrs := make([]*BitmapWordReader, len(args)), make([]*BitmapWordWriter, len(out))
for i, in := range args {
rdrs[i] = NewBitmapWordReader(in.Data, int(in.Offset), int(in.Len))
}
for i, o := range out {
wrs[i] = NewBitmapWordWriter(o.Data, int(o.Offset), int(o.Len))
}
runVisitWordsAndWriteLoop(bitLen, rdrs, wrs, visitor)
return nil
}
|