1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
|
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//go:build go1.18
package exec
import (
"context"
"fmt"
"hash/maphash"
"strings"
"github.com/apache/arrow-go/v18/arrow"
"github.com/apache/arrow-go/v18/arrow/bitutil"
"github.com/apache/arrow-go/v18/arrow/internal/debug"
"github.com/apache/arrow-go/v18/arrow/memory"
"golang.org/x/exp/slices"
)
var hashSeed = maphash.MakeSeed()
type ctxAllocKey struct{}
// WithAllocator returns a new context with the provided allocator
// embedded into the context.
func WithAllocator(ctx context.Context, mem memory.Allocator) context.Context {
return context.WithValue(ctx, ctxAllocKey{}, mem)
}
// GetAllocator retrieves the allocator from the context, or returns
// memory.DefaultAllocator if there was no allocator in the provided
// context.
func GetAllocator(ctx context.Context) memory.Allocator {
mem, ok := ctx.Value(ctxAllocKey{}).(memory.Allocator)
if !ok {
return memory.DefaultAllocator
}
return mem
}
// Kernel defines the minimum interface required for the basic execution
// kernel. It will grow as the implementation requires.
type Kernel interface {
GetInitFn() KernelInitFn
GetSig() *KernelSignature
}
// NonAggKernel builds on the base Kernel interface for
// non aggregate execution kernels. Specifically this will
// represent Scalar and Vector kernels.
type NonAggKernel interface {
Kernel
Exec(*KernelCtx, *ExecSpan, *ExecResult) error
GetNullHandling() NullHandling
GetMemAlloc() MemAlloc
CanFillSlices() bool
}
// KernelCtx is a small struct holding the context for a kernel execution
// consisting of a pointer to the kernel, initialized state (if needed)
// and the context for this execution.
type KernelCtx struct {
Ctx context.Context
Kernel Kernel
State KernelState
}
func (k *KernelCtx) Allocate(bufsize int) *memory.Buffer {
buf := memory.NewResizableBuffer(GetAllocator(k.Ctx))
buf.Resize(bufsize)
return buf
}
func (k *KernelCtx) AllocateBitmap(nbits int64) *memory.Buffer {
nbytes := bitutil.BytesForBits(nbits)
return k.Allocate(int(nbytes))
}
// TypeMatcher define an interface for matching Input or Output types
// for execution kernels. There are multiple implementations of this
// interface provided by this package.
type TypeMatcher interface {
fmt.Stringer
Matches(typ arrow.DataType) bool
Equals(other TypeMatcher) bool
}
type sameTypeIDMatcher struct {
accepted arrow.Type
}
func (s sameTypeIDMatcher) Matches(typ arrow.DataType) bool { return s.accepted == typ.ID() }
func (s sameTypeIDMatcher) Equals(other TypeMatcher) bool {
if s == other {
return true
}
o, ok := other.(*sameTypeIDMatcher)
if !ok {
return false
}
return s.accepted == o.accepted
}
func (s sameTypeIDMatcher) String() string {
return "Type::" + s.accepted.String()
}
// SameTypeID returns a type matcher which will match
// any DataType that uses the same arrow.Type ID as the one
// passed in here.
func SameTypeID(id arrow.Type) TypeMatcher { return &sameTypeIDMatcher{id} }
type timeUnitMatcher struct {
id arrow.Type
unit arrow.TimeUnit
}
func (s timeUnitMatcher) Matches(typ arrow.DataType) bool {
if typ.ID() != s.id {
return false
}
return s.unit == typ.(arrow.TemporalWithUnit).TimeUnit()
}
func (s timeUnitMatcher) String() string {
return strings.ToLower(s.id.String()) + "(" + s.unit.String() + ")"
}
func (s *timeUnitMatcher) Equals(other TypeMatcher) bool {
if s == other {
return true
}
o, ok := other.(*timeUnitMatcher)
if !ok {
return false
}
return o.id == s.id && o.unit == s.unit
}
// TimestampTypeUnit returns a TypeMatcher that will match only
// a Timestamp datatype with the specified TimeUnit.
func TimestampTypeUnit(unit arrow.TimeUnit) TypeMatcher {
return &timeUnitMatcher{arrow.TIMESTAMP, unit}
}
// Time32TypeUnit returns a TypeMatcher that will match only
// a Time32 datatype with the specified TimeUnit.
func Time32TypeUnit(unit arrow.TimeUnit) TypeMatcher {
return &timeUnitMatcher{arrow.TIME32, unit}
}
// Time64TypeUnit returns a TypeMatcher that will match only
// a Time64 datatype with the specified TimeUnit.
func Time64TypeUnit(unit arrow.TimeUnit) TypeMatcher {
return &timeUnitMatcher{arrow.TIME64, unit}
}
// DurationTypeUnit returns a TypeMatcher that will match only
// a Duration datatype with the specified TimeUnit.
func DurationTypeUnit(unit arrow.TimeUnit) TypeMatcher {
return &timeUnitMatcher{arrow.DURATION, unit}
}
type integerMatcher struct{}
func (integerMatcher) String() string { return "integer" }
func (integerMatcher) Matches(typ arrow.DataType) bool { return arrow.IsInteger(typ.ID()) }
func (integerMatcher) Equals(other TypeMatcher) bool {
_, ok := other.(integerMatcher)
return ok
}
type binaryLikeMatcher struct{}
func (binaryLikeMatcher) String() string { return "binary-like" }
func (binaryLikeMatcher) Matches(typ arrow.DataType) bool { return arrow.IsBinaryLike(typ.ID()) }
func (binaryLikeMatcher) Equals(other TypeMatcher) bool {
_, ok := other.(binaryLikeMatcher)
return ok
}
type largeBinaryLikeMatcher struct{}
func (largeBinaryLikeMatcher) String() string { return "large-binary-like" }
func (largeBinaryLikeMatcher) Matches(typ arrow.DataType) bool {
return arrow.IsLargeBinaryLike(typ.ID())
}
func (largeBinaryLikeMatcher) Equals(other TypeMatcher) bool {
_, ok := other.(largeBinaryLikeMatcher)
return ok
}
type fsbLikeMatcher struct{}
func (fsbLikeMatcher) String() string { return "fixed-size-binary-like" }
func (fsbLikeMatcher) Matches(typ arrow.DataType) bool { return arrow.IsFixedSizeBinary(typ.ID()) }
func (fsbLikeMatcher) Equals(other TypeMatcher) bool {
_, ok := other.(fsbLikeMatcher)
return ok
}
// Integer returns a TypeMatcher which will match any integral type like int8 or uint16
func Integer() TypeMatcher { return integerMatcher{} }
// BinaryLike returns a TypeMatcher that will match Binary or String
func BinaryLike() TypeMatcher { return binaryLikeMatcher{} }
// LargeBinaryLike returns a TypeMatcher which will match LargeBinary or LargeString
func LargeBinaryLike() TypeMatcher { return largeBinaryLikeMatcher{} }
// FixedSizeBinaryLike returns a TypeMatcher that will match FixedSizeBinary
// or Decimal128/256
func FixedSizeBinaryLike() TypeMatcher { return fsbLikeMatcher{} }
type primitiveMatcher struct{}
func (primitiveMatcher) String() string { return "primitive" }
func (primitiveMatcher) Matches(typ arrow.DataType) bool { return arrow.IsPrimitive(typ.ID()) }
func (primitiveMatcher) Equals(other TypeMatcher) bool {
_, ok := other.(primitiveMatcher)
return ok
}
// Primitive returns a TypeMatcher that will match any type that arrow.IsPrimitive
// returns true for.
func Primitive() TypeMatcher { return primitiveMatcher{} }
type reeMatcher struct {
runEndsMatcher TypeMatcher
encodedMatcher TypeMatcher
}
func (r reeMatcher) Matches(typ arrow.DataType) bool {
if typ.ID() != arrow.RUN_END_ENCODED {
return false
}
dt := typ.(*arrow.RunEndEncodedType)
return r.runEndsMatcher.Matches(dt.RunEnds()) && r.encodedMatcher.Matches(dt.Encoded())
}
func (r reeMatcher) Equals(other TypeMatcher) bool {
o, ok := other.(reeMatcher)
if !ok {
return false
}
return r.runEndsMatcher.Equals(o.runEndsMatcher) && r.encodedMatcher.Equals(o.encodedMatcher)
}
func (r reeMatcher) String() string {
return "run_end_encoded(run_ends=" + r.runEndsMatcher.String() + ", values=" + r.encodedMatcher.String() + ")"
}
// RunEndEncoded returns a matcher which matches a RunEndEncoded
// type whose encoded type is matched by the passed in matcher.
func RunEndEncoded(runEndsMatcher, encodedMatcher TypeMatcher) TypeMatcher {
return reeMatcher{
runEndsMatcher: runEndsMatcher,
encodedMatcher: encodedMatcher}
}
// InputKind is an enum representing the type of Input matching
// that will be done. Either accepting any type, an exact specific type
// or using a TypeMatcher.
type InputKind int8
const (
InputAny InputKind = iota
InputExact
InputUseMatcher
)
// InputType is used for type checking arguments passed to a kernel
// and stored within a KernelSignature. The type-checking rule can
// be supplied either with an exact DataType instance or a custom
// TypeMatcher.
type InputType struct {
Kind InputKind
Type arrow.DataType
Matcher TypeMatcher
}
func NewExactInput(dt arrow.DataType) InputType { return InputType{Kind: InputExact, Type: dt} }
func NewMatchedInput(match TypeMatcher) InputType {
return InputType{Kind: InputUseMatcher, Matcher: match}
}
func NewIDInput(id arrow.Type) InputType { return NewMatchedInput(SameTypeID(id)) }
func (it InputType) MatchID() arrow.Type {
switch it.Kind {
case InputExact:
return it.Type.ID()
case InputUseMatcher:
if idMatch, ok := it.Matcher.(*sameTypeIDMatcher); ok {
return idMatch.accepted
}
}
debug.Assert(false, "MatchID called on non-id matching InputType")
return -1
}
func (it InputType) String() string {
switch it.Kind {
case InputAny:
return "any"
case InputUseMatcher:
return it.Matcher.String()
case InputExact:
return it.Type.String()
}
return ""
}
func (it *InputType) Equals(other *InputType) bool {
if it == other {
return true
}
if it.Kind != other.Kind {
return false
}
switch it.Kind {
case InputAny:
return true
case InputExact:
return arrow.TypeEqual(it.Type, other.Type)
case InputUseMatcher:
return it.Matcher.Equals(other.Matcher)
default:
return false
}
}
func (it InputType) Hash() uint64 {
var h maphash.Hash
h.SetSeed(hashSeed)
result := HashCombine(h.Sum64(), uint64(it.Kind))
switch it.Kind {
case InputExact:
result = HashCombine(result, arrow.HashType(hashSeed, it.Type))
}
return result
}
func (it InputType) Matches(dt arrow.DataType) bool {
switch it.Kind {
case InputExact:
return arrow.TypeEqual(it.Type, dt)
case InputUseMatcher:
return it.Matcher.Matches(dt)
case InputAny:
return true
default:
debug.Assert(false, "invalid InputKind")
return true
}
}
// ResolveKind defines the way that a particular OutputType resolves
// its type. Either it has a fixed type to resolve to or it contains
// a Resolver which will compute the resolved type based on
// the input types.
type ResolveKind int8
const (
ResolveFixed ResolveKind = iota
ResolveComputed
)
// TypeResolver is simply a function that takes a KernelCtx and a list of input types
// and returns the resolved type or an error.
type TypeResolver = func(*KernelCtx, []arrow.DataType) (arrow.DataType, error)
type OutputType struct {
Kind ResolveKind
Type arrow.DataType
Resolver TypeResolver
}
func NewOutputType(dt arrow.DataType) OutputType {
return OutputType{Kind: ResolveFixed, Type: dt}
}
func NewComputedOutputType(resolver TypeResolver) OutputType {
return OutputType{Kind: ResolveComputed, Resolver: resolver}
}
func (o OutputType) String() string {
if o.Kind == ResolveFixed {
return o.Type.String()
}
return "computed"
}
func (o OutputType) Resolve(ctx *KernelCtx, types []arrow.DataType) (arrow.DataType, error) {
switch o.Kind {
case ResolveFixed:
return o.Type, nil
}
return o.Resolver(ctx, types)
}
// NullHandling is an enum representing how a particular Kernel
// wants the executor to handle nulls.
type NullHandling int8
const (
// Compute the output validity bitmap by intersection the validity
// bitmaps of the arguments using bitwise-and operations. This means
// that values in the output are valid/non-null only if the corresponding
// values in all input arguments were valid/non-null. Kernels generally
// do not have to touch the bitmap afterwards, but a kernel's exec function
// is permitted to alter the bitmap after the null intersection is computed
// if necessary.
NullIntersection NullHandling = iota
// Kernel expects a pre-allocated buffer to write the result bitmap
// into.
NullComputedPrealloc
// Kernel will allocate and set the validity bitmap of the output
NullComputedNoPrealloc
// kernel output is never null and a validity bitmap doesn't need to
// be allocated
NullNoOutput
)
// MemAlloc is the preference for preallocating memory of fixed-width
// type outputs during kernel execution.
type MemAlloc int8
const (
// For data types that support pre-allocation (fixed-width), the
// kernel expects to be provided a pre-allocated buffer to write into.
// Non-fixed-width types must always allocate their own buffers.
// The allocation is made for the same length as the execution batch,
// so vector kernels yielding differently sized outputs should not
// use this.
//
// It is valid for the data to not be preallocated but the validity
// bitmap is (or is computed using intersection).
//
// For variable-size output types like Binary or String, or for nested
// types, this option has no effect.
MemPrealloc MemAlloc = iota
// The kernel is responsible for allocating its own data buffer
// for fixed-width output types.
MemNoPrealloc
)
type KernelState any
// KernelInitArgs are the arguments required to initialize an Kernel's
// state using the input types and any options.
type KernelInitArgs struct {
Kernel Kernel
Inputs []arrow.DataType
// Options are opaque and specific to the Kernel being initialized,
// may be nil if the kernel doesn't require options.
Options any
}
// KernelInitFn is any function that receives a KernelCtx and initialization
// arguments and returns the initialized state or an error.
type KernelInitFn = func(*KernelCtx, KernelInitArgs) (KernelState, error)
// KernelSignature holds the input and output types for a kernel.
//
// Variable argument functions with a minimum of N arguments should pass
// up to N input types to be used to validate for invocation. The first
// N-1 types will be matched against the first N-1 arguments and the last
// type will be matched against the remaining arguments.
type KernelSignature struct {
InputTypes []InputType
OutType OutputType
IsVarArgs bool
// store the hashcode after it is computed so we don't
// need to recompute it
hashCode uint64
}
func (k KernelSignature) String() string {
var b strings.Builder
if k.IsVarArgs {
b.WriteString("varargs[")
} else {
b.WriteByte('(')
}
for i, t := range k.InputTypes {
if i != 0 {
b.WriteString(", ")
}
b.WriteString(t.String())
}
if k.IsVarArgs {
b.WriteString("*]")
} else {
b.WriteByte(')')
}
b.WriteString(" -> ")
b.WriteString(k.OutType.String())
return b.String()
}
func (k KernelSignature) Equals(other KernelSignature) bool {
if k.IsVarArgs != other.IsVarArgs {
return false
}
return slices.EqualFunc(k.InputTypes, other.InputTypes, func(e1, e2 InputType) bool {
return e1.Equals(&e2)
})
}
func (k *KernelSignature) Hash() uint64 {
if k.hashCode != 0 {
return k.hashCode
}
var h maphash.Hash
h.SetSeed(hashSeed)
result := h.Sum64()
for _, typ := range k.InputTypes {
result = HashCombine(result, typ.Hash())
}
k.hashCode = result
return result
}
func (k KernelSignature) MatchesInputs(types []arrow.DataType) bool {
switch k.IsVarArgs {
case true:
// check that it has enough to match at least the non-vararg types
if len(types) < (len(k.InputTypes) - 1) {
return false
}
for i, t := range types {
if !k.InputTypes[Min(i, len(k.InputTypes)-1)].Matches(t) {
return false
}
}
case false:
if len(types) != len(k.InputTypes) {
return false
}
for i, t := range types {
if !k.InputTypes[i].Matches(t) {
return false
}
}
}
return true
}
// ArrayKernelExec is an alias definition for a kernel's execution function.
//
// This is used for both stateless and stateful kernels. If a kernel
// depends on some execution state, it can be accessed from the KernelCtx
// object, which also contains the context.Context object which can be
// used for shortcircuiting by checking context.Done / context.Err.
// This allows kernels to control handling timeouts or cancellation of
// computation.
type ArrayKernelExec = func(*KernelCtx, *ExecSpan, *ExecResult) error
type kernel struct {
Init KernelInitFn
Signature *KernelSignature
Data KernelState
Parallelizable bool
}
func (k kernel) GetInitFn() KernelInitFn { return k.Init }
func (k kernel) GetSig() *KernelSignature { return k.Signature }
// A ScalarKernel is the kernel implementation for a Scalar Function.
// In addition to the members found in the base Kernel, it contains
// the null handling and memory pre-allocation preferences.
type ScalarKernel struct {
kernel
ExecFn ArrayKernelExec
CanWriteIntoSlices bool
NullHandling NullHandling
MemAlloc MemAlloc
}
// NewScalarKernel constructs a new kernel for scalar execution, constructing
// a KernelSignature with the provided input types and output type, and using
// the passed in execution implementation and initialization function.
func NewScalarKernel(in []InputType, out OutputType, exec ArrayKernelExec, init KernelInitFn) ScalarKernel {
return NewScalarKernelWithSig(&KernelSignature{
InputTypes: in,
OutType: out,
}, exec, init)
}
// NewScalarKernelWithSig is a convenience when you already have a signature
// to use for constructing a kernel. It's equivalent to passing the components
// of the signature (input and output types) to NewScalarKernel.
func NewScalarKernelWithSig(sig *KernelSignature, exec ArrayKernelExec, init KernelInitFn) ScalarKernel {
return ScalarKernel{
kernel: kernel{Signature: sig, Init: init, Parallelizable: true},
ExecFn: exec,
CanWriteIntoSlices: true,
NullHandling: NullIntersection,
MemAlloc: MemPrealloc,
}
}
func (s *ScalarKernel) Exec(ctx *KernelCtx, sp *ExecSpan, out *ExecResult) error {
return s.ExecFn(ctx, sp, out)
}
func (s ScalarKernel) GetNullHandling() NullHandling { return s.NullHandling }
func (s ScalarKernel) GetMemAlloc() MemAlloc { return s.MemAlloc }
func (s ScalarKernel) CanFillSlices() bool { return s.CanWriteIntoSlices }
// ChunkedExec is the signature for executing a stateful vector kernel
// against a ChunkedArray input. It is optional
type ChunkedExec func(*KernelCtx, []*arrow.Chunked, *ExecResult) ([]*ExecResult, error)
// FinalizeFunc is an optional finalizer function for any postprocessing
// that may need to be done on data before returning it
type FinalizeFunc func(*KernelCtx, []*ArraySpan) ([]*ArraySpan, error)
// VectorKernel is a structure for implementations of vector functions.
// It can optionally contain a finalizer function, the null handling
// and memory pre-allocation preferences (different defaults from
// scalar kernels when using NewVectorKernel), and other execution related
// options.
type VectorKernel struct {
kernel
ExecFn ArrayKernelExec
ExecChunked ChunkedExec
Finalize FinalizeFunc
NullHandling NullHandling
MemAlloc MemAlloc
CanWriteIntoSlices bool
CanExecuteChunkWise bool
OutputChunked bool
}
// NewVectorKernel constructs a new kernel for execution of vector functions,
// which take into account more than just the individual scalar values
// of its input. Output of a vector kernel may be a different length
// than its inputs.
func NewVectorKernel(inTypes []InputType, outType OutputType, exec ArrayKernelExec, init KernelInitFn) VectorKernel {
return NewVectorKernelWithSig(&KernelSignature{
InputTypes: inTypes, OutType: outType}, exec, init)
}
// NewVectorKernelWithSig is a convenience function for creating a kernel
// when you already have a signature constructed.
func NewVectorKernelWithSig(sig *KernelSignature, exec ArrayKernelExec, init KernelInitFn) VectorKernel {
return VectorKernel{
kernel: kernel{Signature: sig, Init: init, Parallelizable: true},
ExecFn: exec,
CanWriteIntoSlices: true,
CanExecuteChunkWise: true,
OutputChunked: true,
NullHandling: NullComputedNoPrealloc,
MemAlloc: MemNoPrealloc,
}
}
func (s *VectorKernel) Exec(ctx *KernelCtx, sp *ExecSpan, out *ExecResult) error {
return s.ExecFn(ctx, sp, out)
}
func (s VectorKernel) GetNullHandling() NullHandling { return s.NullHandling }
func (s VectorKernel) GetMemAlloc() MemAlloc { return s.MemAlloc }
func (s VectorKernel) CanFillSlices() bool { return s.CanWriteIntoSlices }
|