1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
|
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//go:build go1.18
package exec
import (
"sync/atomic"
"unsafe"
"github.com/apache/arrow-go/v18/arrow"
"github.com/apache/arrow-go/v18/arrow/array"
"github.com/apache/arrow-go/v18/arrow/bitutil"
"github.com/apache/arrow-go/v18/arrow/memory"
"github.com/apache/arrow-go/v18/arrow/scalar"
)
// BufferSpan is a lightweight Buffer holder for ArraySpans that does not
// take ownership of the underlying memory.Buffer at all or could be
// used to reference raw byte slices instead.
type BufferSpan struct {
// Buf should be the byte slice representing this buffer, if this is
// nil then this bufferspan should be considered empty.
Buf []byte
// Owner should point to an underlying parent memory.Buffer if this
// memory is owned by a different, existing, buffer. Retain is not
// called on this buffer, so it must not be released as long as
// this BufferSpan refers to it.
Owner *memory.Buffer
// SelfAlloc tracks whether or not this bufferspan is the only owner
// of the Owning memory.Buffer. This happens when preallocating
// memory or if a kernel allocates it's own buffer for a result.
// In these cases, we have to know so we can properly maintain the
// refcount if this is later turned into an ArrayData object.
SelfAlloc bool
}
// SetBuffer sets the given buffer into this BufferSpan and marks
// SelfAlloc as false. This should be called when setting a buffer
// that is externally owned/created.
func (b *BufferSpan) SetBuffer(buf *memory.Buffer) {
b.Buf = buf.Bytes()
b.Owner = buf
b.SelfAlloc = false
}
// WrapBuffer wraps this bufferspan around a buffer and marks
// SelfAlloc as true. This should be called when setting a buffer
// that was allocated as part of an execution rather than just
// re-using an existing buffer from an input array.
func (b *BufferSpan) WrapBuffer(buf *memory.Buffer) {
b.Buf = buf.Bytes()
b.Owner = buf
b.SelfAlloc = true
}
// ArraySpan is a light-weight, non-owning version of arrow.ArrayData
// for more efficient handling with computation and engines. We use
// explicit go Arrays to define the buffers and some scratch space
// for easily populating and shifting around pointers to memory without
// having to worry about and deal with retain/release during calculations.
type ArraySpan struct {
Type arrow.DataType
Len int64
Nulls int64
Offset int64
Buffers [3]BufferSpan
// Scratch is a holding spot for things such as
// offsets or union type codes when converting from scalars
Scratch [2]uint64
Children []ArraySpan
}
// if an error is encountered, call Release on a preallocated span
// to ensure it releases any self-allocated buffers, it will
// not call release on buffers it doesn't own (SelfAlloc != true)
func (a *ArraySpan) Release() {
for _, c := range a.Children {
c.Release()
}
for _, b := range a.Buffers {
if b.SelfAlloc {
b.Owner.Release()
}
}
}
func (a *ArraySpan) MayHaveNulls() bool {
return atomic.LoadInt64(&a.Nulls) != 0 && a.Buffers[0].Buf != nil
}
// UpdateNullCount will count the bits in the null bitmap and update the
// number of nulls if the current null count is unknown, otherwise it just
// returns the value of a.Nulls
func (a *ArraySpan) UpdateNullCount() int64 {
curNulls := atomic.LoadInt64(&a.Nulls)
if curNulls != array.UnknownNullCount {
return curNulls
}
newNulls := a.Len - int64(bitutil.CountSetBits(a.Buffers[0].Buf, int(a.Offset), int(a.Len)))
atomic.StoreInt64(&a.Nulls, newNulls)
return newNulls
}
// Dictionary returns a pointer to the array span for the dictionary which
// we will always place as the first (and only) child if it exists.
func (a *ArraySpan) Dictionary() *ArraySpan { return &a.Children[0] }
// NumBuffers returns the number of expected buffers for this type
func (a *ArraySpan) NumBuffers() int { return getNumBuffers(a.Type) }
// MakeData generates an arrow.ArrayData object for this ArraySpan,
// properly updating the buffer ref count if necessary.
func (a *ArraySpan) MakeData() arrow.ArrayData {
var bufs [3]*memory.Buffer
for i := range bufs {
b := a.GetBuffer(i)
bufs[i] = b
if b != nil && a.Buffers[i].SelfAlloc {
// if this buffer is just a pointer to another existing buffer
// then we never bumped the refcount for that buffer.
// As a result, we won't call release here so that the call
// to array.NewData properly updates the ref counts of the buffers.
// If instead this buffer was allocated during calculation
// (such as during prealloc or by a kernel itself)
// then we need to release after we create the ArrayData so that it
// maintains the correct refcount of 1, giving the resulting
// ArrayData object ownership of this buffer.
defer b.Release()
}
}
var (
nulls = int(atomic.LoadInt64(&a.Nulls))
length = int(a.Len)
off = int(a.Offset)
dt = a.Type
children []arrow.ArrayData
)
if a.Type.ID() == arrow.NULL {
nulls = length
} else if len(a.Buffers[0].Buf) == 0 {
nulls = 0
}
// we use a.Type for the NewData call at the end, so we can
// handle extension types by using dt to point to the storage type
// and let the proper extension type get set into the ArrayData
// object we return.
if dt.ID() == arrow.EXTENSION {
dt = dt.(arrow.ExtensionType).StorageType()
}
if dt.ID() == arrow.DICTIONARY {
result := array.NewData(a.Type, length, bufs[:a.NumBuffers()], nil, nulls, off)
dict := a.Dictionary().MakeData()
defer dict.Release()
result.SetDictionary(dict)
return result
} else if dt.ID() == arrow.DENSE_UNION || dt.ID() == arrow.SPARSE_UNION {
bufs[0] = nil
nulls = 0
}
if len(a.Children) > 0 {
children = make([]arrow.ArrayData, len(a.Children))
for i, c := range a.Children {
d := c.MakeData()
defer d.Release()
children[i] = d
}
}
return array.NewData(a.Type, length, bufs[:a.NumBuffers()], children, nulls, off)
}
// MakeArray is a convenience function for calling array.MakeFromData(a.MakeData())
func (a *ArraySpan) MakeArray() arrow.Array {
d := a.MakeData()
defer d.Release()
return array.MakeFromData(d)
}
// SetSlice updates the offset and length of this ArraySpan to refer to
// a specific slice of the underlying buffers.
func (a *ArraySpan) SetSlice(off, length int64) {
if off == a.Offset && length == a.Len {
// don't modify the nulls if the slice is the entire span
return
}
if a.Type.ID() != arrow.NULL {
if a.Nulls != 0 {
if a.Nulls == a.Len {
a.Nulls = length
} else {
a.Nulls = array.UnknownNullCount
}
}
} else {
a.Nulls = length
}
a.Offset, a.Len = off, length
}
// GetBuffer returns the buffer for the requested index. If this buffer
// is owned by another array/arrayspan the Owning buffer is returned,
// otherwise if this slice has no owning buffer, we call NewBufferBytes
// to wrap it as a memory.Buffer. Can also return nil if there is no
// buffer in this index.
func (a *ArraySpan) GetBuffer(idx int) *memory.Buffer {
buf := a.Buffers[idx]
switch {
case buf.Owner != nil:
return buf.Owner
case buf.Buf != nil:
return memory.NewBufferBytes(buf.Buf)
}
return nil
}
// convenience function to resize the children slice if necessary,
// or just shrink the slice without re-allocating if there's enough
// capacity already.
func (a *ArraySpan) resizeChildren(i int) {
if cap(a.Children) >= i {
a.Children = a.Children[:i]
} else {
a.Children = make([]ArraySpan, i)
}
}
// FillFromScalar populates this ArraySpan as if it were a 1 length array
// with the single value equal to the passed in Scalar.
func (a *ArraySpan) FillFromScalar(val scalar.Scalar) {
var (
trueBit byte = 0x01
falseBit byte = 0x00
)
a.Type = val.DataType()
a.Len = 1
typeID := a.Type.ID()
if val.IsValid() {
a.Nulls = 0
} else {
a.Nulls = 1
}
if !arrow.IsUnion(typeID) && typeID != arrow.NULL {
if val.IsValid() {
a.Buffers[0].Buf = []byte{trueBit}
} else {
a.Buffers[0].Buf = []byte{falseBit}
}
a.Buffers[0].Owner = nil
a.Buffers[0].SelfAlloc = false
}
switch {
case typeID == arrow.BOOL:
if val.(*scalar.Boolean).Value {
a.Buffers[1].Buf = []byte{trueBit}
} else {
a.Buffers[1].Buf = []byte{falseBit}
}
a.Buffers[1].Owner = nil
a.Buffers[1].SelfAlloc = false
case arrow.IsPrimitive(typeID) || arrow.IsDecimal(typeID):
sc := val.(scalar.PrimitiveScalar)
a.Buffers[1].Buf = sc.Data()
a.Buffers[1].Owner = nil
a.Buffers[1].SelfAlloc = false
case typeID == arrow.DICTIONARY:
sc := val.(scalar.PrimitiveScalar)
a.Buffers[1].Buf = sc.Data()
a.Buffers[1].Owner = nil
a.Buffers[1].SelfAlloc = false
a.resizeChildren(1)
a.Children[0].SetMembers(val.(*scalar.Dictionary).Value.Dict.Data())
case arrow.IsBaseBinary(typeID):
sc := val.(scalar.BinaryScalar)
a.Buffers[1].Buf = arrow.Uint64Traits.CastToBytes(a.Scratch[:])
a.Buffers[1].Owner = nil
a.Buffers[1].SelfAlloc = false
var dataBuffer []byte
if sc.IsValid() {
dataBuffer = sc.Data()
a.Buffers[2].Owner = sc.Buffer()
a.Buffers[2].SelfAlloc = false
}
if arrow.IsBinaryLike(typeID) {
setOffsetsForScalar(a,
unsafe.Slice((*int32)(unsafe.Pointer(&a.Scratch[0])), 2),
int64(len(dataBuffer)), 1)
} else {
// large_binary_like
setOffsetsForScalar(a,
unsafe.Slice((*int64)(unsafe.Pointer(&a.Scratch[0])), 2),
int64(len(dataBuffer)), 1)
}
a.Buffers[2].Buf = dataBuffer
case typeID == arrow.FIXED_SIZE_BINARY:
sc := val.(scalar.BinaryScalar)
if !sc.IsValid() {
a.Buffers[1].Buf = make([]byte, sc.DataType().(*arrow.FixedSizeBinaryType).ByteWidth)
a.Buffers[1].Owner = nil
a.Buffers[1].SelfAlloc = false
break
}
a.Buffers[1].Buf = sc.Data()
a.Buffers[1].Owner = sc.Buffer()
a.Buffers[1].SelfAlloc = false
case arrow.IsListLike(typeID):
sc := val.(scalar.ListScalar)
valueLen := 0
a.resizeChildren(1)
if sc.GetList() != nil {
a.Children[0].SetMembers(sc.GetList().Data())
valueLen = sc.GetList().Len()
} else {
// even when the value is null, we must populate
// child data to yield a valid array. ugh
FillZeroLength(sc.DataType().(arrow.NestedType).Fields()[0].Type, &a.Children[0])
}
switch typeID {
case arrow.LIST, arrow.MAP:
setOffsetsForScalar(a,
unsafe.Slice((*int32)(unsafe.Pointer(&a.Scratch[0])), 2),
int64(valueLen), 1)
case arrow.LARGE_LIST:
setOffsetsForScalar(a,
unsafe.Slice((*int64)(unsafe.Pointer(&a.Scratch[0])), 2),
int64(valueLen), 1)
default:
// fixed size list has no second buffer
a.Buffers[1].Buf, a.Buffers[1].Owner = nil, nil
a.Buffers[1].SelfAlloc = false
}
case typeID == arrow.STRUCT:
sc := val.(*scalar.Struct)
a.Buffers[1].Buf = nil
a.Buffers[1].Owner = nil
a.Buffers[1].SelfAlloc = false
a.resizeChildren(len(sc.Value))
for i, v := range sc.Value {
a.Children[i].FillFromScalar(v)
}
case arrow.IsUnion(typeID):
// first buffer is kept null since unions have no validity vector
a.Buffers[0].Buf, a.Buffers[0].Owner = nil, nil
a.Buffers[0].SelfAlloc = false
a.Buffers[1].Buf = arrow.Uint64Traits.CastToBytes(a.Scratch[:])[:1]
a.Buffers[1].Owner = nil
a.Buffers[1].SelfAlloc = false
codes := unsafe.Slice((*arrow.UnionTypeCode)(unsafe.Pointer(&a.Buffers[1].Buf[0])), 1)
a.resizeChildren(len(a.Type.(arrow.UnionType).Fields()))
switch sc := val.(type) {
case *scalar.DenseUnion:
codes[0] = sc.TypeCode
// has offset, start 4 bytes in so it's aligned to the 32-bit boundaries
off := unsafe.Slice((*int32)(unsafe.Add(unsafe.Pointer(&a.Scratch[0]), arrow.Int32SizeBytes)), 2)
setOffsetsForScalar(a, off, 1, 2)
// we can't "see" the other arrays in the union, but we put the "active"
// union array in the right place and fill zero-length arrays for
// the others.
childIDS := a.Type.(arrow.UnionType).ChildIDs()
for i, f := range a.Type.(arrow.UnionType).Fields() {
if i == childIDS[sc.TypeCode] {
a.Children[i].FillFromScalar(sc.Value)
} else {
FillZeroLength(f.Type, &a.Children[i])
}
}
case *scalar.SparseUnion:
codes[0] = sc.TypeCode
// sparse union scalars have a full complement of child values
// even though only one of them is relevant, so we just fill them
// in here
for i, v := range sc.Value {
a.Children[i].FillFromScalar(v)
}
}
case typeID == arrow.EXTENSION:
// pass through storage
sc := val.(*scalar.Extension)
a.FillFromScalar(sc.Value)
// restore the extension type
a.Type = val.DataType()
case typeID == arrow.NULL:
for i := range a.Buffers {
a.Buffers[i].Buf = nil
a.Buffers[i].Owner = nil
a.Buffers[i].SelfAlloc = false
}
}
}
func (a *ArraySpan) SetDictionary(span *ArraySpan) {
a.resizeChildren(1)
a.Children[0].Release()
a.Children[0] = *span
}
// TakeOwnership is like SetMembers only this takes ownership of
// the buffers by calling Retain on them so that the passed in
// ArrayData can be released without negatively affecting this
// ArraySpan
func (a *ArraySpan) TakeOwnership(data arrow.ArrayData) {
a.Type = data.DataType()
a.Len = int64(data.Len())
if a.Type.ID() == arrow.NULL {
a.Nulls = a.Len
} else {
a.Nulls = int64(data.NullN())
}
a.Offset = int64(data.Offset())
for i, b := range data.Buffers() {
if b != nil {
a.Buffers[i].WrapBuffer(b)
b.Retain()
} else {
a.Buffers[i].Buf = nil
a.Buffers[i].Owner = nil
a.Buffers[i].SelfAlloc = false
}
}
typeID := a.Type.ID()
if a.Buffers[0].Buf == nil {
switch typeID {
case arrow.NULL, arrow.SPARSE_UNION, arrow.DENSE_UNION:
default:
// should already be zero, but we make sure
a.Nulls = 0
}
}
for i := len(data.Buffers()); i < 3; i++ {
a.Buffers[i].Buf = nil
a.Buffers[i].Owner = nil
a.Buffers[i].SelfAlloc = false
}
if typeID == arrow.DICTIONARY {
a.resizeChildren(1)
dict := data.Dictionary()
if dict != (*array.Data)(nil) {
a.Children[0].TakeOwnership(dict)
}
} else {
a.resizeChildren(len(data.Children()))
for i, c := range data.Children() {
a.Children[i].TakeOwnership(c)
}
}
}
// SetMembers populates this ArraySpan from the given ArrayData object.
// As this is a non-owning reference, the ArrayData object must not
// be fully released while this ArraySpan is in use, otherwise any buffers
// referenced will be released too
func (a *ArraySpan) SetMembers(data arrow.ArrayData) {
a.Type = data.DataType()
a.Len = int64(data.Len())
if a.Type.ID() == arrow.NULL {
a.Nulls = a.Len
} else {
a.Nulls = int64(data.NullN())
}
a.Offset = int64(data.Offset())
for i, b := range data.Buffers() {
if b != nil {
a.Buffers[i].SetBuffer(b)
} else {
a.Buffers[i].Buf = nil
a.Buffers[i].Owner = nil
a.Buffers[i].SelfAlloc = false
}
}
typeID := a.Type.ID()
if a.Buffers[0].Buf == nil {
switch typeID {
case arrow.NULL, arrow.SPARSE_UNION, arrow.DENSE_UNION:
default:
// should already be zero, but we make sure
a.Nulls = 0
}
}
for i := len(data.Buffers()); i < 3; i++ {
a.Buffers[i].Buf = nil
a.Buffers[i].Owner = nil
a.Buffers[i].SelfAlloc = false
}
if typeID == arrow.DICTIONARY {
a.resizeChildren(1)
dict := data.Dictionary()
if dict != (*array.Data)(nil) {
a.Children[0].SetMembers(dict)
}
} else {
if cap(a.Children) >= len(data.Children()) {
a.Children = a.Children[:len(data.Children())]
} else {
a.Children = make([]ArraySpan, len(data.Children()))
}
for i, c := range data.Children() {
a.Children[i].SetMembers(c)
}
}
}
// ExecValue represents a single input to an execution which could
// be either an Array (ArraySpan) or a Scalar value
type ExecValue struct {
Array ArraySpan
Scalar scalar.Scalar
}
func (e *ExecValue) IsArray() bool { return e.Scalar == nil }
func (e *ExecValue) IsScalar() bool { return !e.IsArray() }
func (e *ExecValue) Type() arrow.DataType {
if e.IsArray() {
return e.Array.Type
}
return e.Scalar.DataType()
}
// ExecResult is the result of a kernel execution and should be populated
// by the execution functions and/or a kernel. For now we're just going to
// alias an ArraySpan.
type ExecResult = ArraySpan
// ExecSpan represents a slice of inputs and is used to provide slices
// of input values to iterate over.
//
// Len is the length of the span (all elements in Values should either
// be scalar or an array with a length + offset of at least Len).
type ExecSpan struct {
Len int64
Values []ExecValue
}
func getNumBuffers(dt arrow.DataType) int {
switch dt.ID() {
case arrow.RUN_END_ENCODED:
return 0
case arrow.NULL, arrow.STRUCT, arrow.FIXED_SIZE_LIST:
return 1
case arrow.BINARY, arrow.LARGE_BINARY, arrow.STRING, arrow.LARGE_STRING, arrow.DENSE_UNION:
return 3
case arrow.EXTENSION:
return getNumBuffers(dt.(arrow.ExtensionType).StorageType())
default:
return 2
}
}
// FillZeroLength fills an ArraySpan with the appropriate information for
// a Zero Length Array of the provided type.
func FillZeroLength(dt arrow.DataType, span *ArraySpan) {
span.Scratch[0], span.Scratch[1] = 0, 0
span.Type = dt
span.Len = 0
numBufs := getNumBuffers(dt)
for i := 0; i < numBufs; i++ {
span.Buffers[i].Buf = arrow.Uint64Traits.CastToBytes(span.Scratch[:])[:0]
span.Buffers[i].Owner = nil
}
for i := numBufs; i < 3; i++ {
span.Buffers[i].Buf, span.Buffers[i].Owner = nil, nil
}
if dt.ID() == arrow.DICTIONARY {
span.resizeChildren(1)
FillZeroLength(dt.(*arrow.DictionaryType).ValueType, &span.Children[0])
return
}
nt, ok := dt.(arrow.NestedType)
if !ok {
if len(span.Children) > 0 {
span.Children = span.Children[:0]
}
return
}
span.resizeChildren(nt.NumFields())
for i, f := range nt.Fields() {
FillZeroLength(f.Type, &span.Children[i])
}
}
// PromoteExecSpanScalars promotes the values of the passed in ExecSpan
// from scalars to Arrays of length 1 for each value.
func PromoteExecSpanScalars(span ExecSpan) {
for i := range span.Values {
if span.Values[i].Scalar != nil {
span.Values[i].Array.FillFromScalar(span.Values[i].Scalar)
span.Values[i].Scalar = nil
}
}
}
|