1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
|
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//go:build go1.18
package compute
import (
"context"
"fmt"
"math"
"runtime"
"sync"
"github.com/apache/arrow-go/v18/arrow"
"github.com/apache/arrow-go/v18/arrow/array"
"github.com/apache/arrow-go/v18/arrow/bitutil"
"github.com/apache/arrow-go/v18/arrow/compute/exec"
"github.com/apache/arrow-go/v18/arrow/internal"
"github.com/apache/arrow-go/v18/arrow/internal/debug"
"github.com/apache/arrow-go/v18/arrow/memory"
"github.com/apache/arrow-go/v18/arrow/scalar"
)
// ExecCtx holds simple contextual information for execution
// such as the default ChunkSize for batch iteration, whether or not
// to ensure contiguous preallocations for kernels that want preallocation,
// and a reference to the desired function registry to use.
//
// An ExecCtx should be placed into a context.Context by using
// SetExecCtx and GetExecCtx to pass it along for execution.
type ExecCtx struct {
// ChunkSize is the size used when iterating batches for execution
// ChunkSize elements will be operated on as a time unless an argument
// is a chunkedarray with a chunk that is smaller
ChunkSize int64
// PreallocContiguous determines whether preallocating memory for
// execution of compute attempts to preallocate a full contiguous
// buffer for all of the chunks beforehand.
PreallocContiguous bool
// Registry allows specifying the Function Registry to utilize
// when searching for kernel implementations.
Registry FunctionRegistry
// ExecChannelSize is the size of the channel used for passing
// exec results to the WrapResults function.
ExecChannelSize int
// NumParallel determines the number of parallel goroutines
// allowed for parallel executions.
NumParallel int
}
type ctxExecKey struct{}
const DefaultMaxChunkSize = math.MaxInt64
var (
// global default ExecCtx object, initialized with the
// default max chunk size, contiguous preallocations, and
// the default function registry.
defaultExecCtx ExecCtx
// WithAllocator returns a new context with the provided allocator
// embedded into the context.
WithAllocator = exec.WithAllocator
// GetAllocator retrieves the allocator from the context, or returns
// memory.DefaultAllocator if there was no allocator in the provided
// context.
GetAllocator = exec.GetAllocator
)
// DefaultExecCtx returns the default exec context which will be used
// if there is no ExecCtx set into the context for execution.
//
// This can be called to get a copy of the default values which can
// then be modified to set into a context.
//
// The default exec context uses the following values:
// - ChunkSize = DefaultMaxChunkSize (MaxInt64)
// - PreallocContiguous = true
// - Registry = GetFunctionRegistry()
// - ExecChannelSize = 10
// - NumParallel = runtime.NumCPU()
func DefaultExecCtx() ExecCtx { return defaultExecCtx }
func init() {
defaultExecCtx.ChunkSize = DefaultMaxChunkSize
defaultExecCtx.PreallocContiguous = true
defaultExecCtx.Registry = GetFunctionRegistry()
defaultExecCtx.ExecChannelSize = 10
// default level of parallelism
// set to 1 to disable parallelization
defaultExecCtx.NumParallel = runtime.NumCPU()
}
// SetExecCtx returns a new child context containing the passed in ExecCtx
func SetExecCtx(ctx context.Context, e ExecCtx) context.Context {
return context.WithValue(ctx, ctxExecKey{}, e)
}
// GetExecCtx returns an embedded ExecCtx from the provided context.
// If it does not contain an ExecCtx, then the default one is returned.
func GetExecCtx(ctx context.Context) ExecCtx {
e, ok := ctx.Value(ctxExecKey{}).(ExecCtx)
if ok {
return e
}
return defaultExecCtx
}
// ExecBatch is a unit of work for kernel execution. It contains a collection
// of Array and Scalar values.
//
// ExecBatch is semantically similar to a RecordBatch but for a SQL-style
// execution context. It represents a collection or records, but constant
// "columns" are represented by Scalar values rather than having to be
// converted into arrays with repeated values.
type ExecBatch struct {
Values []Datum
// Guarantee is a predicate Expression guaranteed to evaluate to true for
// all rows in this batch.
// Guarantee Expression
// Len is the semantic length of this ExecBatch. When the values are
// all scalars, the length should be set to 1 for non-aggregate kernels.
// Otherwise the length is taken from the array values. Aggregate kernels
// can have an ExecBatch formed by projecting just the partition columns
// from a batch in which case it would have scalar rows with length > 1
//
// If the array values are of length 0, then the length is 0 regardless of
// whether any values are Scalar.
Len int64
}
func (e ExecBatch) NumValues() int { return len(e.Values) }
// simple struct for defining how to preallocate a particular buffer.
type bufferPrealloc struct {
bitWidth int
addLen int
}
func allocateDataBuffer(ctx *exec.KernelCtx, length, bitWidth int) *memory.Buffer {
switch bitWidth {
case 1:
return ctx.AllocateBitmap(int64(length))
default:
bufsiz := int(bitutil.BytesForBits(int64(length * bitWidth)))
return ctx.Allocate(bufsiz)
}
}
func addComputeDataPrealloc(dt arrow.DataType, widths []bufferPrealloc) []bufferPrealloc {
if typ, ok := dt.(arrow.FixedWidthDataType); ok {
return append(widths, bufferPrealloc{bitWidth: typ.BitWidth()})
}
switch dt.ID() {
case arrow.BINARY, arrow.STRING, arrow.LIST, arrow.MAP:
return append(widths, bufferPrealloc{bitWidth: 32, addLen: 1})
case arrow.LARGE_BINARY, arrow.LARGE_STRING, arrow.LARGE_LIST:
return append(widths, bufferPrealloc{bitWidth: 64, addLen: 1})
case arrow.STRING_VIEW, arrow.BINARY_VIEW:
return append(widths, bufferPrealloc{bitWidth: arrow.ViewHeaderSizeBytes * 8})
}
return widths
}
// enum to define a generalized assumption of the nulls in the inputs
type nullGeneralization int8
const (
nullGenPerhapsNull nullGeneralization = iota
nullGenAllValid
nullGenAllNull
)
func getNullGen(val *exec.ExecValue) nullGeneralization {
dtID := val.Type().ID()
switch {
case dtID == arrow.NULL:
return nullGenAllNull
case !internal.DefaultHasValidityBitmap(dtID):
return nullGenAllValid
case val.IsScalar():
if val.Scalar.IsValid() {
return nullGenAllValid
}
return nullGenAllNull
default:
arr := val.Array
// do not count if they haven't been counted already
if arr.Nulls == 0 || arr.Buffers[0].Buf == nil {
return nullGenAllValid
}
if arr.Nulls == arr.Len {
return nullGenAllNull
}
}
return nullGenPerhapsNull
}
func getNullGenDatum(datum Datum) nullGeneralization {
var val exec.ExecValue
switch datum.Kind() {
case KindArray:
val.Array.SetMembers(datum.(*ArrayDatum).Value)
case KindScalar:
val.Scalar = datum.(*ScalarDatum).Value
case KindChunked:
return nullGenPerhapsNull
default:
debug.Assert(false, "should be array, scalar, or chunked!")
return nullGenPerhapsNull
}
return getNullGen(&val)
}
// populate the validity bitmaps with the intersection of the nullity
// of the arguments. If a preallocated bitmap is not provided, then one
// will be allocated if needed (in some cases a bitmap can be zero-copied
// from the arguments). If any Scalar value is null, then the entire
// validity bitmap will be set to null.
func propagateNulls(ctx *exec.KernelCtx, batch *exec.ExecSpan, out *exec.ArraySpan) (err error) {
if out.Type.ID() == arrow.NULL {
// null output type is a no-op (rare but it happens)
return
}
// this function is ONLY able to write into output with non-zero offset
// when the bitmap is preallocated.
if out.Offset != 0 && out.Buffers[0].Buf == nil {
return fmt.Errorf("%w: can only propagate nulls into pre-allocated memory when output offset is non-zero", arrow.ErrInvalid)
}
var (
arrsWithNulls = make([]*exec.ArraySpan, 0, len(batch.Values))
isAllNull bool
prealloc bool = out.Buffers[0].Buf != nil
)
for i := range batch.Values {
v := &batch.Values[i]
nullGen := getNullGen(v)
if nullGen == nullGenAllNull {
isAllNull = true
}
if nullGen != nullGenAllValid && v.IsArray() {
arrsWithNulls = append(arrsWithNulls, &v.Array)
}
}
outBitmap := out.Buffers[0].Buf
if isAllNull {
// an all-null value gives us a short circuit opportunity
// output should all be null
out.Nulls = out.Len
if prealloc {
bitutil.SetBitsTo(outBitmap, out.Offset, out.Len, false)
return
}
// walk all the values with nulls instead of breaking on the first
// in case we find a bitmap that can be reused in the non-preallocated case
for _, arr := range arrsWithNulls {
if arr.Nulls == arr.Len && arr.Buffers[0].Owner != nil {
buf := arr.GetBuffer(0)
buf.Retain()
out.Buffers[0].Buf = buf.Bytes()
out.Buffers[0].Owner = buf
return
}
}
buf := ctx.AllocateBitmap(int64(out.Len))
out.Buffers[0].Owner = buf
out.Buffers[0].Buf = buf.Bytes()
out.Buffers[0].SelfAlloc = true
bitutil.SetBitsTo(out.Buffers[0].Buf, out.Offset, out.Len, false)
return
}
out.Nulls = array.UnknownNullCount
switch len(arrsWithNulls) {
case 0:
out.Nulls = 0
if prealloc {
bitutil.SetBitsTo(outBitmap, out.Offset, out.Len, true)
}
case 1:
arr := arrsWithNulls[0]
out.Nulls = arr.Nulls
if prealloc {
bitutil.CopyBitmap(arr.Buffers[0].Buf, int(arr.Offset), int(arr.Len), outBitmap, int(out.Offset))
return
}
switch {
case arr.Offset == 0:
out.Buffers[0] = arr.Buffers[0]
out.Buffers[0].Owner.Retain()
case arr.Offset%8 == 0:
buf := memory.SliceBuffer(arr.GetBuffer(0), int(arr.Offset)/8, int(bitutil.BytesForBits(arr.Len)))
out.Buffers[0].Buf = buf.Bytes()
out.Buffers[0].Owner = buf
default:
buf := ctx.AllocateBitmap(int64(out.Len))
out.Buffers[0].Owner = buf
out.Buffers[0].Buf = buf.Bytes()
out.Buffers[0].SelfAlloc = true
bitutil.CopyBitmap(arr.Buffers[0].Buf, int(arr.Offset), int(arr.Len), out.Buffers[0].Buf, 0)
}
return
default:
if !prealloc {
buf := ctx.AllocateBitmap(int64(out.Len))
out.Buffers[0].Owner = buf
out.Buffers[0].Buf = buf.Bytes()
out.Buffers[0].SelfAlloc = true
outBitmap = out.Buffers[0].Buf
}
acc := func(left, right *exec.ArraySpan) {
debug.Assert(left.Buffers[0].Buf != nil, "invalid intersection for null propagation")
debug.Assert(right.Buffers[0].Buf != nil, "invalid intersection for null propagation")
bitutil.BitmapAnd(left.Buffers[0].Buf, right.Buffers[0].Buf, left.Offset, right.Offset, outBitmap, out.Offset, out.Len)
}
acc(arrsWithNulls[0], arrsWithNulls[1])
for _, arr := range arrsWithNulls[2:] {
acc(out, arr)
}
}
return
}
func inferBatchLength(values []Datum) (length int64, allSame bool) {
length, allSame = -1, true
areAllScalar := true
for _, arg := range values {
switch arg := arg.(type) {
case *ArrayDatum:
argLength := arg.Len()
if length < 0 {
length = argLength
} else {
if length != argLength {
allSame = false
return
}
}
areAllScalar = false
case *ChunkedDatum:
argLength := arg.Len()
if length < 0 {
length = argLength
} else {
if length != argLength {
allSame = false
return
}
}
areAllScalar = false
}
}
if areAllScalar && len(values) > 0 {
length = 1
} else if length < 0 {
length = 0
}
allSame = true
return
}
// KernelExecutor is the interface for all executors to initialize and
// call kernel execution functions on batches.
type KernelExecutor interface {
// Init must be called *after* the kernel's init method and any
// KernelState must be set into the KernelCtx *before* calling
// this Init method. This is to facilitate the case where
// Init may be expensive and does not need to be called
// again for each execution of the kernel. For example,
// the same lookup table can be re-used for all scanned batches
// in a dataset filter.
Init(*exec.KernelCtx, exec.KernelInitArgs) error
// Execute the kernel for the provided batch and pass the resulting
// Datum values to the provided channel.
Execute(context.Context, *ExecBatch, chan<- Datum) error
// WrapResults exists for the case where an executor wants to post process
// the batches of result datums. Such as creating a ChunkedArray from
// multiple output batches or so on. Results from individual batch
// executions should be read from the out channel, and WrapResults should
// return the final Datum result.
WrapResults(ctx context.Context, out <-chan Datum, chunkedArgs bool) Datum
// CheckResultType checks the actual result type against the resolved
// output type. If the types don't match an error is returned
CheckResultType(out Datum) error
// Clear resets the state in the executor so that it can be reused.
Clear()
}
// the base implementation for executing non-aggregate kernels.
type nonAggExecImpl struct {
ctx *exec.KernelCtx
ectx ExecCtx
kernel exec.NonAggKernel
outType arrow.DataType
numOutBuf int
dataPrealloc []bufferPrealloc
preallocValidity bool
}
func (e *nonAggExecImpl) Clear() {
e.ctx, e.kernel, e.outType = nil, nil, nil
if e.dataPrealloc != nil {
e.dataPrealloc = e.dataPrealloc[:0]
}
}
func (e *nonAggExecImpl) Init(ctx *exec.KernelCtx, args exec.KernelInitArgs) (err error) {
e.ctx, e.kernel = ctx, args.Kernel.(exec.NonAggKernel)
e.outType, err = e.kernel.GetSig().OutType.Resolve(ctx, args.Inputs)
e.ectx = GetExecCtx(ctx.Ctx)
return
}
func (e *nonAggExecImpl) prepareOutput(length int) *exec.ExecResult {
var nullCount int = array.UnknownNullCount
if e.kernel.GetNullHandling() == exec.NullNoOutput {
nullCount = 0
}
output := &exec.ArraySpan{
Type: e.outType,
Len: int64(length),
Nulls: int64(nullCount),
}
if e.preallocValidity {
buf := e.ctx.AllocateBitmap(int64(length))
output.Buffers[0].Owner = buf
output.Buffers[0].Buf = buf.Bytes()
output.Buffers[0].SelfAlloc = true
}
for i, pre := range e.dataPrealloc {
if pre.bitWidth >= 0 {
buf := allocateDataBuffer(e.ctx, length+pre.addLen, pre.bitWidth)
output.Buffers[i+1].Owner = buf
output.Buffers[i+1].Buf = buf.Bytes()
output.Buffers[i+1].SelfAlloc = true
}
}
return output
}
func (e *nonAggExecImpl) CheckResultType(out Datum) error {
typ := out.(ArrayLikeDatum).Type()
if typ != nil && !arrow.TypeEqual(e.outType, typ) {
return fmt.Errorf("%w: kernel type result mismatch: declared as %s, actual is %s",
arrow.ErrType, e.outType, typ)
}
return nil
}
type spanIterator func() (exec.ExecSpan, int64, bool)
func NewScalarExecutor() KernelExecutor { return &scalarExecutor{} }
type scalarExecutor struct {
nonAggExecImpl
elideValidityBitmap bool
preallocAllBufs bool
preallocContiguous bool
allScalars bool
iter spanIterator
iterLen int64
}
func (s *scalarExecutor) Execute(ctx context.Context, batch *ExecBatch, data chan<- Datum) (err error) {
s.allScalars, s.iter, err = iterateExecSpans(batch, s.ectx.ChunkSize, true)
if err != nil {
return
}
s.iterLen = batch.Len
if batch.Len == 0 {
result := array.MakeArrayOfNull(exec.GetAllocator(s.ctx.Ctx), s.outType, 0)
defer result.Release()
out := &exec.ArraySpan{}
out.SetMembers(result.Data())
return s.emitResult(out, data)
}
if err = s.setupPrealloc(batch.Len, batch.Values); err != nil {
return
}
return s.executeSpans(data)
}
func (s *scalarExecutor) WrapResults(ctx context.Context, out <-chan Datum, hasChunked bool) Datum {
var (
output Datum
acc []arrow.Array
)
toChunked := func() {
acc = output.(ArrayLikeDatum).Chunks()
output.Release()
output = nil
}
// get first output
select {
case <-ctx.Done():
return nil
case output = <-out:
// if the inputs contained at least one chunked array
// then we want to return chunked output
if hasChunked {
toChunked()
}
}
for {
select {
case <-ctx.Done():
// context is done, either cancelled or a timeout.
// either way, we end early and return what we've got so far.
return output
case o, ok := <-out:
if !ok { // channel closed, wrap it up
if output != nil {
return output
}
for _, c := range acc {
defer c.Release()
}
chkd := arrow.NewChunked(s.outType, acc)
defer chkd.Release()
return NewDatum(chkd)
}
// if we get multiple batches of output, then we need
// to return it as a chunked array.
if acc == nil {
toChunked()
}
defer o.Release()
if o.Len() == 0 { // skip any empty batches
continue
}
acc = append(acc, o.(*ArrayDatum).MakeArray())
}
}
}
func (s *scalarExecutor) executeSpans(data chan<- Datum) (err error) {
var (
input exec.ExecSpan
output exec.ExecResult
next bool
)
if s.preallocContiguous {
// make one big output alloc
output := s.prepareOutput(int(s.iterLen))
output.Offset = 0
var resultOffset int64
var nextOffset int64
for err == nil {
if input, nextOffset, next = s.iter(); !next {
break
}
output.SetSlice(resultOffset, input.Len)
err = s.executeSingleSpan(&input, output)
resultOffset = nextOffset
}
if err != nil {
output.Release()
return
}
if output.Offset != 0 {
output.SetSlice(0, s.iterLen)
}
return s.emitResult(output, data)
}
// fully preallocating, but not contiguously
// we (maybe) preallocate only for the output of processing
// the current chunk
for err == nil {
if input, _, next = s.iter(); !next {
break
}
output = *s.prepareOutput(int(input.Len))
if err = s.executeSingleSpan(&input, &output); err != nil {
output.Release()
return
}
err = s.emitResult(&output, data)
}
return
}
func (s *scalarExecutor) executeSingleSpan(input *exec.ExecSpan, out *exec.ExecResult) error {
switch {
case out.Type.ID() == arrow.NULL:
out.Nulls = out.Len
case s.kernel.GetNullHandling() == exec.NullIntersection:
if !s.elideValidityBitmap {
propagateNulls(s.ctx, input, out)
}
case s.kernel.GetNullHandling() == exec.NullNoOutput:
out.Nulls = 0
}
return s.kernel.Exec(s.ctx, input, out)
}
func (s *scalarExecutor) setupPrealloc(totalLen int64, args []Datum) error {
s.numOutBuf = len(s.outType.Layout().Buffers)
outTypeID := s.outType.ID()
// default to no validity pre-allocation for the following cases:
// - Output Array is NullArray
// - kernel.NullHandling is ComputeNoPrealloc or OutputNotNull
s.preallocValidity = false
if outTypeID != arrow.NULL {
switch s.kernel.GetNullHandling() {
case exec.NullComputedPrealloc:
s.preallocValidity = true
case exec.NullIntersection:
s.elideValidityBitmap = true
for _, a := range args {
nullGen := getNullGenDatum(a) == nullGenAllValid
s.elideValidityBitmap = s.elideValidityBitmap && nullGen
}
s.preallocValidity = !s.elideValidityBitmap
case exec.NullNoOutput:
s.elideValidityBitmap = true
}
}
if s.kernel.GetMemAlloc() == exec.MemPrealloc {
s.dataPrealloc = addComputeDataPrealloc(s.outType, s.dataPrealloc)
}
// validity bitmap either preallocated or elided, and all data buffers allocated
// this is basically only true for primitive types that are not dict-encoded
s.preallocAllBufs =
((s.preallocValidity || s.elideValidityBitmap) && len(s.dataPrealloc) == (s.numOutBuf-1) &&
!arrow.IsNested(outTypeID) && outTypeID != arrow.DICTIONARY)
// contiguous prealloc only possible on non-nested types if all
// buffers are preallocated. otherwise we have to go chunk by chunk
//
// some kernels are also unable to write into sliced outputs, so
// we respect the kernel's attributes
s.preallocContiguous =
(s.ectx.PreallocContiguous && s.kernel.CanFillSlices() &&
s.preallocAllBufs)
return nil
}
func (s *scalarExecutor) emitResult(resultData *exec.ArraySpan, data chan<- Datum) error {
var output Datum
if len(resultData.Buffers[0].Buf) != 0 {
resultData.UpdateNullCount()
}
if s.allScalars {
// we boxed scalar inputs as ArraySpan so now we have to unbox the output
arr := resultData.MakeArray()
defer arr.Release()
sc, err := scalar.GetScalar(arr, 0)
if err != nil {
return err
}
if r, ok := sc.(scalar.Releasable); ok {
defer r.Release()
}
output = NewDatum(sc)
} else {
d := resultData.MakeData()
defer d.Release()
output = NewDatum(d)
}
data <- output
return nil
}
func checkAllIsValue(vals []Datum) error {
for _, v := range vals {
if !DatumIsValue(v) {
return fmt.Errorf("%w: tried executing function with non-value type: %s",
arrow.ErrInvalid, v)
}
}
return nil
}
func checkIfAllScalar(batch *ExecBatch) bool {
for _, v := range batch.Values {
if v.Kind() != KindScalar {
return false
}
}
return batch.NumValues() > 0
}
// iterateExecSpans sets up and returns a function which can iterate a batch
// according to the chunk sizes. If the inputs contain chunked arrays, then
// we will find the min(chunk sizes, maxChunkSize) to ensure we return
// contiguous spans to execute on.
//
// the iteration function returns the next span to execute on, the current
// position in the full batch, and a boolean indicating whether or not
// a span was actually returned (there is data to process).
func iterateExecSpans(batch *ExecBatch, maxChunkSize int64, promoteIfAllScalar bool) (haveAllScalars bool, itr spanIterator, err error) {
if batch.NumValues() > 0 {
inferred, allArgsSame := inferBatchLength(batch.Values)
if inferred != batch.Len {
return false, nil, fmt.Errorf("%w: value lengths differed from execbatch length", arrow.ErrInvalid)
}
if !allArgsSame {
return false, nil, fmt.Errorf("%w: array args must all be the same length", arrow.ErrInvalid)
}
}
var (
args []Datum = batch.Values
haveChunked bool
chunkIdxes = make([]int, len(args))
valuePositions = make([]int64, len(args))
valueOffsets = make([]int64, len(args))
pos, length int64 = 0, batch.Len
)
haveAllScalars = checkIfAllScalar(batch)
maxChunkSize = exec.Min(length, maxChunkSize)
span := exec.ExecSpan{Values: make([]exec.ExecValue, len(args)), Len: 0}
for i, a := range args {
switch arg := a.(type) {
case *ScalarDatum:
span.Values[i].Scalar = arg.Value
case *ArrayDatum:
span.Values[i].Array.SetMembers(arg.Value)
valueOffsets[i] = int64(arg.Value.Offset())
case *ChunkedDatum:
// populate from first chunk
carr := arg.Value
if len(carr.Chunks()) > 0 {
arr := carr.Chunk(0).Data()
span.Values[i].Array.SetMembers(arr)
valueOffsets[i] = int64(arr.Offset())
} else {
// fill as zero len
exec.FillZeroLength(carr.DataType(), &span.Values[i].Array)
}
haveChunked = true
}
}
if haveAllScalars && promoteIfAllScalar {
exec.PromoteExecSpanScalars(span)
}
nextChunkSpan := func(iterSz int64, span exec.ExecSpan) int64 {
for i := 0; i < len(args) && iterSz > 0; i++ {
// if the argument is not chunked, it's either a scalar or an array
// in which case it doesn't influence the size of the span
chunkedArg, ok := args[i].(*ChunkedDatum)
if !ok {
continue
}
arg := chunkedArg.Value
if len(arg.Chunks()) == 0 {
iterSz = 0
continue
}
var curChunk arrow.Array
for {
curChunk = arg.Chunk(chunkIdxes[i])
if valuePositions[i] == int64(curChunk.Len()) {
// chunk is zero-length, or was exhausted in the previous
// iteration, move to next chunk
chunkIdxes[i]++
curChunk = arg.Chunk(chunkIdxes[i])
span.Values[i].Array.SetMembers(curChunk.Data())
valuePositions[i] = 0
valueOffsets[i] = int64(curChunk.Data().Offset())
continue
}
break
}
iterSz = exec.Min(int64(curChunk.Len())-valuePositions[i], iterSz)
}
return iterSz
}
return haveAllScalars, func() (exec.ExecSpan, int64, bool) {
if pos == length {
return exec.ExecSpan{}, pos, false
}
iterationSize := exec.Min(length-pos, maxChunkSize)
if haveChunked {
iterationSize = nextChunkSpan(iterationSize, span)
}
span.Len = iterationSize
for i, a := range args {
if a.Kind() != KindScalar {
span.Values[i].Array.SetSlice(valuePositions[i]+valueOffsets[i], iterationSize)
valuePositions[i] += iterationSize
}
}
pos += iterationSize
debug.Assert(pos <= length, "bad state for iteration exec span")
return span, pos, true
}, nil
}
var (
// have a pool of scalar executors to avoid excessive object creation
scalarExecPool = sync.Pool{
New: func() any { return &scalarExecutor{} },
}
vectorExecPool = sync.Pool{
New: func() any { return &vectorExecutor{} },
}
)
func checkCanExecuteChunked(k *exec.VectorKernel) error {
if k.ExecChunked == nil {
return fmt.Errorf("%w: vector kernel cannot execute chunkwise and no chunked exec function defined", arrow.ErrInvalid)
}
if k.NullHandling == exec.NullIntersection {
return fmt.Errorf("%w: null pre-propagation is unsupported for chunkedarray execution in vector kernels", arrow.ErrInvalid)
}
return nil
}
type vectorExecutor struct {
nonAggExecImpl
iter spanIterator
results []*exec.ArraySpan
iterLen int64
allScalars bool
}
func (v *vectorExecutor) Execute(ctx context.Context, batch *ExecBatch, data chan<- Datum) (err error) {
final := v.kernel.(*exec.VectorKernel).Finalize
if final != nil {
if v.results == nil {
v.results = make([]*exec.ArraySpan, 0, 1)
} else {
v.results = v.results[:0]
}
}
// some vector kernels have a separate code path for handling chunked
// arrays (VectorKernel.ExecChunked) so we check for any chunked
// arrays. If we do and an ExecChunked function is defined
// then we call that.
hasChunked := haveChunkedArray(batch.Values)
v.numOutBuf = len(v.outType.Layout().Buffers)
v.preallocValidity = v.kernel.GetNullHandling() != exec.NullComputedNoPrealloc &&
v.kernel.GetNullHandling() != exec.NullNoOutput
if v.kernel.GetMemAlloc() == exec.MemPrealloc {
v.dataPrealloc = addComputeDataPrealloc(v.outType, v.dataPrealloc)
}
if v.kernel.(*exec.VectorKernel).CanExecuteChunkWise {
v.allScalars, v.iter, err = iterateExecSpans(batch, v.ectx.ChunkSize, true)
v.iterLen = batch.Len
var (
input exec.ExecSpan
next bool
)
if v.iterLen == 0 {
input.Values = make([]exec.ExecValue, batch.NumValues())
for i, v := range batch.Values {
exec.FillZeroLength(v.(ArrayLikeDatum).Type(), &input.Values[i].Array)
}
err = v.exec(&input, data)
}
for err == nil {
if input, _, next = v.iter(); !next {
break
}
err = v.exec(&input, data)
}
if err != nil {
return
}
} else {
// kernel cannot execute chunkwise. if we have any chunked arrays,
// then execchunked must be defined or we raise an error
if hasChunked {
if err = v.execChunked(batch, data); err != nil {
return
}
} else {
// no chunked arrays. we pack the args into an execspan
// and call regular exec code path
span := ExecSpanFromBatch(batch)
if checkIfAllScalar(batch) {
exec.PromoteExecSpanScalars(*span)
}
if err = v.exec(span, data); err != nil {
return
}
}
}
if final != nil {
// intermediate results require post-processing after execution is
// completed (possibly involving some accumulated state)
output, err := final(v.ctx, v.results)
if err != nil {
return err
}
for _, r := range output {
d := r.MakeData()
defer d.Release()
data <- NewDatum(d)
}
}
return nil
}
func (v *vectorExecutor) WrapResults(ctx context.Context, out <-chan Datum, hasChunked bool) Datum {
// if kernel doesn't output chunked, just grab the one output and return it
if !v.kernel.(*exec.VectorKernel).OutputChunked {
var output Datum
select {
case <-ctx.Done():
return nil
case output = <-out:
}
// we got an output datum, but let's wait for the channel to
// close so we don't have any race conditions
select {
case <-ctx.Done():
output.Release()
return nil
case <-out:
return output
}
}
// if execution yielded multiple chunks then the result is a chunked array
var (
output Datum
acc []arrow.Array
)
toChunked := func() {
out := output.(ArrayLikeDatum).Chunks()
acc = make([]arrow.Array, 0, len(out))
for _, o := range out {
if o.Len() > 0 {
acc = append(acc, o)
}
}
if output.Kind() != KindChunked {
output.Release()
}
output = nil
}
// get first output
select {
case <-ctx.Done():
return nil
case output = <-out:
if output == nil || ctx.Err() != nil {
return nil
}
// if the inputs contained at least one chunked array
// then we want to return chunked output
if hasChunked {
toChunked()
}
}
for {
select {
case <-ctx.Done():
// context is done, either cancelled or a timeout.
// either way, we end early and return what we've got so far.
return output
case o, ok := <-out:
if !ok { // channel closed, wrap it up
if output != nil {
return output
}
for _, c := range acc {
defer c.Release()
}
chkd := arrow.NewChunked(v.outType, acc)
defer chkd.Release()
return NewDatum(chkd)
}
// if we get multiple batches of output, then we need
// to return it as a chunked array.
if acc == nil {
toChunked()
}
defer o.Release()
if o.Len() == 0 { // skip any empty batches
continue
}
acc = append(acc, o.(*ArrayDatum).MakeArray())
}
}
}
func (v *vectorExecutor) exec(span *exec.ExecSpan, data chan<- Datum) (err error) {
out := v.prepareOutput(int(span.Len))
if v.kernel.GetNullHandling() == exec.NullIntersection {
if err = propagateNulls(v.ctx, span, out); err != nil {
return
}
}
if err = v.kernel.Exec(v.ctx, span, out); err != nil {
return
}
return v.emitResult(out, data)
}
func (v *vectorExecutor) emitResult(result *exec.ArraySpan, data chan<- Datum) (err error) {
if v.kernel.(*exec.VectorKernel).Finalize == nil {
d := result.MakeData()
defer d.Release()
data <- NewDatum(d)
} else {
v.results = append(v.results, result)
}
return nil
}
func (v *vectorExecutor) execChunked(batch *ExecBatch, out chan<- Datum) error {
if err := checkCanExecuteChunked(v.kernel.(*exec.VectorKernel)); err != nil {
return err
}
output := v.prepareOutput(int(batch.Len))
input := make([]*arrow.Chunked, len(batch.Values))
for i, v := range batch.Values {
switch val := v.(type) {
case *ArrayDatum:
chks := val.Chunks()
input[i] = arrow.NewChunked(val.Type(), chks)
chks[0].Release()
defer input[i].Release()
case *ChunkedDatum:
input[i] = val.Value
default:
return fmt.Errorf("%w: handling with exec chunked", arrow.ErrNotImplemented)
}
}
result, err := v.kernel.(*exec.VectorKernel).ExecChunked(v.ctx, input, output)
if err != nil {
return err
}
if len(result) == 0 {
empty := output.MakeArray()
defer empty.Release()
out <- &ChunkedDatum{Value: arrow.NewChunked(output.Type, []arrow.Array{empty})}
return nil
}
for _, r := range result {
if err := v.emitResult(r, out); err != nil {
return err
}
}
return nil
}
|