1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
|
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//go:build go1.18
package exprs
import (
"context"
"fmt"
"unsafe"
"github.com/apache/arrow-go/v18/arrow"
"github.com/apache/arrow-go/v18/arrow/array"
"github.com/apache/arrow-go/v18/arrow/compute"
"github.com/apache/arrow-go/v18/arrow/compute/exec"
"github.com/apache/arrow-go/v18/arrow/decimal128"
"github.com/apache/arrow-go/v18/arrow/endian"
"github.com/apache/arrow-go/v18/arrow/internal/debug"
"github.com/apache/arrow-go/v18/arrow/memory"
"github.com/apache/arrow-go/v18/arrow/scalar"
"github.com/substrait-io/substrait-go/v3/expr"
"github.com/substrait-io/substrait-go/v3/extensions"
"github.com/substrait-io/substrait-go/v3/types"
)
func makeExecBatch(ctx context.Context, schema *arrow.Schema, partial compute.Datum) (out compute.ExecBatch, err error) {
// cleanup if we get an error
defer func() {
if err != nil {
for _, v := range out.Values {
if v != nil {
v.Release()
}
}
}
}()
if partial.Kind() == compute.KindRecord {
partialBatch := partial.(*compute.RecordDatum).Value
batchSchema := partialBatch.Schema()
out.Values = make([]compute.Datum, schema.NumFields())
out.Len = partialBatch.NumRows()
for i, field := range schema.Fields() {
idxes := batchSchema.FieldIndices(field.Name)
switch len(idxes) {
case 0:
out.Values[i] = compute.NewDatum(scalar.MakeNullScalar(field.Type))
case 1:
col := partialBatch.Column(idxes[0])
if !arrow.TypeEqual(col.DataType(), field.Type) {
// referenced field was present but didn't have expected type
// we'll cast this case for now
col, err = compute.CastArray(ctx, col, compute.SafeCastOptions(field.Type))
if err != nil {
return compute.ExecBatch{}, err
}
defer col.Release()
}
out.Values[i] = compute.NewDatum(col)
default:
err = fmt.Errorf("%w: exec batch field '%s' ambiguous, more than one match",
arrow.ErrInvalid, field.Name)
return compute.ExecBatch{}, err
}
}
return
}
part, ok := partial.(compute.ArrayLikeDatum)
if !ok {
return out, fmt.Errorf("%w: MakeExecBatch from %s", arrow.ErrNotImplemented, partial)
}
// wasteful but useful for testing
if part.Type().ID() == arrow.STRUCT {
switch part := part.(type) {
case *compute.ArrayDatum:
arr := part.MakeArray().(*array.Struct)
defer arr.Release()
batch := array.RecordFromStructArray(arr, nil)
defer batch.Release()
return makeExecBatch(ctx, schema, compute.NewDatumWithoutOwning(batch))
case *compute.ScalarDatum:
out.Len = 1
out.Values = make([]compute.Datum, schema.NumFields())
s := part.Value.(*scalar.Struct)
dt := s.Type.(*arrow.StructType)
for i, field := range schema.Fields() {
idx, found := dt.FieldIdx(field.Name)
if !found {
out.Values[i] = compute.NewDatum(scalar.MakeNullScalar(field.Type))
continue
}
val := s.Value[idx]
if !arrow.TypeEqual(val.DataType(), field.Type) {
// referenced field was present but didn't have the expected
// type. for now we'll cast this
val, err = val.CastTo(field.Type)
if err != nil {
return compute.ExecBatch{}, err
}
}
out.Values[i] = compute.NewDatum(val)
}
return
}
}
return out, fmt.Errorf("%w: MakeExecBatch from %s", arrow.ErrNotImplemented, partial)
}
// ToArrowSchema takes a substrait NamedStruct and an extension set (for
// type resolution mapping) and creates the equivalent Arrow Schema.
func ToArrowSchema(base types.NamedStruct, ext ExtensionIDSet) (*arrow.Schema, error) {
fields := make([]arrow.Field, len(base.Names))
for i, typ := range base.Struct.Types {
dt, nullable, err := FromSubstraitType(typ, ext)
if err != nil {
return nil, err
}
fields[i] = arrow.Field{
Name: base.Names[i],
Type: dt,
Nullable: nullable,
}
}
return arrow.NewSchema(fields, nil), nil
}
type (
regCtxKey struct{}
extCtxKey struct{}
)
func WithExtensionRegistry(ctx context.Context, reg *ExtensionIDRegistry) context.Context {
return context.WithValue(ctx, regCtxKey{}, reg)
}
func GetExtensionRegistry(ctx context.Context) *ExtensionIDRegistry {
v, ok := ctx.Value(regCtxKey{}).(*ExtensionIDRegistry)
if !ok {
v = DefaultExtensionIDRegistry
}
return v
}
func WithExtensionIDSet(ctx context.Context, ext ExtensionIDSet) context.Context {
return context.WithValue(ctx, extCtxKey{}, ext)
}
func GetExtensionIDSet(ctx context.Context) ExtensionIDSet {
v, ok := ctx.Value(extCtxKey{}).(ExtensionIDSet)
if !ok {
return NewExtensionSet(
expr.NewEmptyExtensionRegistry(extensions.GetDefaultCollectionWithNoError()),
GetExtensionRegistry(ctx))
}
return v
}
func literalToDatum(mem memory.Allocator, lit expr.Literal, ext ExtensionIDSet) (compute.Datum, error) {
switch v := lit.(type) {
case *expr.PrimitiveLiteral[bool]:
return compute.NewDatum(scalar.NewBooleanScalar(v.Value)), nil
case *expr.PrimitiveLiteral[int8]:
return compute.NewDatum(scalar.NewInt8Scalar(v.Value)), nil
case *expr.PrimitiveLiteral[int16]:
return compute.NewDatum(scalar.NewInt16Scalar(v.Value)), nil
case *expr.PrimitiveLiteral[int32]:
return compute.NewDatum(scalar.NewInt32Scalar(v.Value)), nil
case *expr.PrimitiveLiteral[int64]:
return compute.NewDatum(scalar.NewInt64Scalar(v.Value)), nil
case *expr.PrimitiveLiteral[float32]:
return compute.NewDatum(scalar.NewFloat32Scalar(v.Value)), nil
case *expr.PrimitiveLiteral[float64]:
return compute.NewDatum(scalar.NewFloat64Scalar(v.Value)), nil
case *expr.PrimitiveLiteral[string]:
return compute.NewDatum(scalar.NewStringScalar(v.Value)), nil
case *expr.PrimitiveLiteral[types.Timestamp]:
return compute.NewDatum(scalar.NewTimestampScalar(arrow.Timestamp(v.Value), &arrow.TimestampType{Unit: arrow.Microsecond})), nil
case *expr.PrimitiveLiteral[types.TimestampTz]:
return compute.NewDatum(scalar.NewTimestampScalar(arrow.Timestamp(v.Value),
&arrow.TimestampType{Unit: arrow.Microsecond, TimeZone: TimestampTzTimezone})), nil
case *expr.PrimitiveLiteral[types.Date]:
return compute.NewDatum(scalar.NewDate32Scalar(arrow.Date32(v.Value))), nil
case *expr.PrimitiveLiteral[types.Time]:
return compute.NewDatum(scalar.NewTime64Scalar(arrow.Time64(v.Value), &arrow.Time64Type{Unit: arrow.Microsecond})), nil
case *expr.PrimitiveLiteral[types.FixedChar]:
length := int(v.Type.(*types.FixedCharType).Length)
return compute.NewDatum(scalar.NewExtensionScalar(
scalar.NewFixedSizeBinaryScalar(memory.NewBufferBytes([]byte(v.Value)),
&arrow.FixedSizeBinaryType{ByteWidth: length}), fixedChar(int32(length)))), nil
case *expr.ByteSliceLiteral[[]byte]:
return compute.NewDatum(scalar.NewBinaryScalar(memory.NewBufferBytes(v.Value), arrow.BinaryTypes.Binary)), nil
case *expr.ByteSliceLiteral[types.UUID]:
return compute.NewDatum(scalar.NewExtensionScalar(scalar.NewFixedSizeBinaryScalar(
memory.NewBufferBytes(v.Value), uuid().(arrow.ExtensionType).StorageType()), uuid())), nil
case *expr.ByteSliceLiteral[types.FixedBinary]:
return compute.NewDatum(scalar.NewFixedSizeBinaryScalar(memory.NewBufferBytes(v.Value),
&arrow.FixedSizeBinaryType{ByteWidth: int(v.Type.(*types.FixedBinaryType).Length)})), nil
case *expr.NullLiteral:
dt, _, err := FromSubstraitType(v.Type, ext)
if err != nil {
return nil, err
}
return compute.NewDatum(scalar.MakeNullScalar(dt)), nil
case *expr.ListLiteral:
var elemType arrow.DataType
values := make([]scalar.Scalar, len(v.Value))
for i, val := range v.Value {
d, err := literalToDatum(mem, val, ext)
if err != nil {
return nil, err
}
defer d.Release()
values[i] = d.(*compute.ScalarDatum).Value
if elemType != nil {
if !arrow.TypeEqual(values[i].DataType(), elemType) {
return nil, fmt.Errorf("%w: %s has a value whose type doesn't match the other list values",
arrow.ErrInvalid, v)
}
} else {
elemType = values[i].DataType()
}
}
bldr := array.NewBuilder(memory.DefaultAllocator, elemType)
defer bldr.Release()
if err := scalar.AppendSlice(bldr, values); err != nil {
return nil, err
}
arr := bldr.NewArray()
defer arr.Release()
return compute.NewDatum(scalar.NewListScalar(arr)), nil
case *expr.MapLiteral:
dt, _, err := FromSubstraitType(v.Type, ext)
if err != nil {
return nil, err
}
mapType, ok := dt.(*arrow.MapType)
if !ok {
return nil, fmt.Errorf("%w: map literal with non-map type", arrow.ErrInvalid)
}
keys, values := make([]scalar.Scalar, len(v.Value)), make([]scalar.Scalar, len(v.Value))
for i, kv := range v.Value {
k, err := literalToDatum(mem, kv.Key, ext)
if err != nil {
return nil, err
}
defer k.Release()
scalarKey := k.(*compute.ScalarDatum).Value
v, err := literalToDatum(mem, kv.Value, ext)
if err != nil {
return nil, err
}
defer v.Release()
scalarValue := v.(*compute.ScalarDatum).Value
if !arrow.TypeEqual(mapType.KeyType(), scalarKey.DataType()) {
return nil, fmt.Errorf("%w: key type mismatch for %s, got key with type %s",
arrow.ErrInvalid, mapType, scalarKey.DataType())
}
if !arrow.TypeEqual(mapType.ItemType(), scalarValue.DataType()) {
return nil, fmt.Errorf("%w: value type mismatch for %s, got value with type %s",
arrow.ErrInvalid, mapType, scalarValue.DataType())
}
keys[i], values[i] = scalarKey, scalarValue
}
keyBldr, valBldr := array.NewBuilder(mem, mapType.KeyType()), array.NewBuilder(mem, mapType.ItemType())
defer keyBldr.Release()
defer valBldr.Release()
if err := scalar.AppendSlice(keyBldr, keys); err != nil {
return nil, err
}
if err := scalar.AppendSlice(valBldr, values); err != nil {
return nil, err
}
keyArr, valArr := keyBldr.NewArray(), valBldr.NewArray()
defer keyArr.Release()
defer valArr.Release()
kvArr, err := array.NewStructArray([]arrow.Array{keyArr, valArr}, []string{"key", "value"})
if err != nil {
return nil, err
}
defer kvArr.Release()
return compute.NewDatumWithoutOwning(scalar.NewMapScalar(kvArr)), nil
case *expr.StructLiteral:
fields := make([]scalar.Scalar, len(v.Value))
names := make([]string, len(v.Value))
for i, l := range v.Value {
lit, err := literalToDatum(mem, l, ext)
if err != nil {
return nil, err
}
fields[i] = lit.(*compute.ScalarDatum).Value
}
s, err := scalar.NewStructScalarWithNames(fields, names)
return compute.NewDatum(s), err
case *expr.ProtoLiteral:
switch v := v.Value.(type) {
case *types.Decimal:
if len(v.Value) != arrow.Decimal128SizeBytes {
return nil, fmt.Errorf("%w: decimal literal had %d bytes (expected %d)",
arrow.ErrInvalid, len(v.Value), arrow.Decimal128SizeBytes)
}
var val decimal128.Num
data := (*(*[arrow.Decimal128SizeBytes]byte)(unsafe.Pointer(&val)))[:]
copy(data, v.Value)
if endian.IsBigEndian {
// reverse the bytes
for i := len(data)/2 - 1; i >= 0; i-- {
opp := len(data) - 1 - i
data[i], data[opp] = data[opp], data[i]
}
}
return compute.NewDatum(scalar.NewDecimal128Scalar(val,
&arrow.Decimal128Type{Precision: v.Precision, Scale: v.Scale})), nil
case *types.UserDefinedLiteral: // not yet implemented
case *types.IntervalYearToMonth:
bldr := array.NewInt32Builder(memory.DefaultAllocator)
defer bldr.Release()
typ := intervalYear()
bldr.Append(v.Years)
bldr.Append(v.Months)
arr := bldr.NewArray()
defer arr.Release()
return &compute.ScalarDatum{Value: scalar.NewExtensionScalar(
scalar.NewFixedSizeListScalar(arr), typ)}, nil
case *types.IntervalDayToSecond:
bldr := array.NewInt32Builder(memory.DefaultAllocator)
defer bldr.Release()
typ := intervalDay()
bldr.Append(v.Days)
bldr.Append(v.Seconds)
arr := bldr.NewArray()
defer arr.Release()
return &compute.ScalarDatum{Value: scalar.NewExtensionScalar(
scalar.NewFixedSizeListScalar(arr), typ)}, nil
case *types.VarChar:
return compute.NewDatum(scalar.NewExtensionScalar(
scalar.NewStringScalar(v.Value), varChar(int32(v.Length)))), nil
}
}
return nil, arrow.ErrNotImplemented
}
// ExecuteScalarExpression executes the given substrait expression using the provided datum as input.
// It will first create an exec batch using the input schema and the datum.
// The datum may have missing or incorrectly ordered columns while the input schema
// should describe the expected input schema for the expression. Missing fields will
// be replaced with null scalars and incorrectly ordered columns will be re-ordered
// according to the schema.
//
// You can provide an allocator to use through the context via compute.WithAllocator.
//
// You can provide the ExtensionIDSet to use through the context via WithExtensionIDSet.
func ExecuteScalarExpression(ctx context.Context, inputSchema *arrow.Schema, expression expr.Expression, partialInput compute.Datum) (compute.Datum, error) {
if expression == nil {
return nil, arrow.ErrInvalid
}
batch, err := makeExecBatch(ctx, inputSchema, partialInput)
if err != nil {
return nil, err
}
defer func() {
for _, v := range batch.Values {
v.Release()
}
}()
return executeScalarBatch(ctx, batch, expression, GetExtensionIDSet(ctx))
}
// ExecuteScalarSubstrait uses the provided Substrait extended expression to
// determine the expected input schema (replacing missing fields in the partial
// input datum with null scalars and re-ordering columns if necessary) and
// ExtensionIDSet to use. You can provide the extension registry to use
// through the context via WithExtensionRegistry, otherwise the default
// Arrow registry will be used. You can provide a memory.Allocator to use
// the same way via compute.WithAllocator.
func ExecuteScalarSubstrait(ctx context.Context, expression *expr.Extended, partialInput compute.Datum) (compute.Datum, error) {
if expression == nil {
return nil, arrow.ErrInvalid
}
var toExecute expr.Expression
switch len(expression.ReferredExpr) {
case 0:
return nil, fmt.Errorf("%w: no referred expression to execute", arrow.ErrInvalid)
case 1:
if toExecute = expression.ReferredExpr[0].GetExpr(); toExecute == nil {
return nil, fmt.Errorf("%w: measures not implemented", arrow.ErrNotImplemented)
}
default:
return nil, fmt.Errorf("%w: only single referred expression implemented", arrow.ErrNotImplemented)
}
reg := GetExtensionRegistry(ctx)
set := NewExtensionSet(expr.NewExtensionRegistry(expression.Extensions,
extensions.GetDefaultCollectionWithNoError()), reg)
sc, err := ToArrowSchema(expression.BaseSchema, set)
if err != nil {
return nil, err
}
return ExecuteScalarExpression(WithExtensionIDSet(ctx, set), sc, toExecute, partialInput)
}
func execFieldRef(ctx context.Context, e *expr.FieldReference, input compute.ExecBatch, ext ExtensionIDSet) (compute.Datum, error) {
if e.Root != expr.RootReference {
return nil, fmt.Errorf("%w: only RootReference is implemented", arrow.ErrNotImplemented)
}
ref, ok := e.Reference.(expr.ReferenceSegment)
if !ok {
return nil, fmt.Errorf("%w: only direct references are implemented", arrow.ErrNotImplemented)
}
expectedType, _, err := FromSubstraitType(e.GetType(), ext)
if err != nil {
return nil, err
}
var param compute.Datum
if sref, ok := ref.(*expr.StructFieldRef); ok {
if sref.Field < 0 || sref.Field >= int32(len(input.Values)) {
return nil, arrow.ErrInvalid
}
param = input.Values[sref.Field]
ref = ref.GetChild()
}
out, err := GetReferencedValue(compute.GetAllocator(ctx), ref, param, ext)
if err == compute.ErrEmpty {
out = compute.NewDatum(param)
} else if err != nil {
return nil, err
}
if !arrow.TypeEqual(out.(compute.ArrayLikeDatum).Type(), expectedType) {
return nil, fmt.Errorf("%w: referenced field %s was %s, but should have been %s",
arrow.ErrInvalid, ref, out.(compute.ArrayLikeDatum).Type(), expectedType)
}
return out, nil
}
func executeScalarBatch(ctx context.Context, input compute.ExecBatch, exp expr.Expression, ext ExtensionIDSet) (compute.Datum, error) {
if !exp.IsScalar() {
return nil, fmt.Errorf("%w: ExecuteScalarExpression cannot execute non-scalar expressions",
arrow.ErrInvalid)
}
switch e := exp.(type) {
case expr.Literal:
return literalToDatum(compute.GetAllocator(ctx), e, ext)
case *expr.FieldReference:
return execFieldRef(ctx, e, input, ext)
case *expr.Cast:
if e.Input == nil {
return nil, fmt.Errorf("%w: cast without argument to cast", arrow.ErrInvalid)
}
arg, err := executeScalarBatch(ctx, input, e.Input, ext)
if err != nil {
return nil, err
}
defer arg.Release()
dt, _, err := FromSubstraitType(e.Type, ext)
if err != nil {
return nil, fmt.Errorf("%w: could not determine type for cast", err)
}
var opts *compute.CastOptions
switch e.FailureBehavior {
case types.BehaviorThrowException:
opts = compute.UnsafeCastOptions(dt)
case types.BehaviorUnspecified:
return nil, fmt.Errorf("%w: cast behavior unspecified", arrow.ErrInvalid)
case types.BehaviorReturnNil:
return nil, fmt.Errorf("%w: cast behavior return nil", arrow.ErrNotImplemented)
}
return compute.CastDatum(ctx, arg, opts)
case *expr.ScalarFunction:
var (
err error
allScalar = true
args = make([]compute.Datum, e.NArgs())
argTypes = make([]arrow.DataType, e.NArgs())
)
for i := 0; i < e.NArgs(); i++ {
switch v := e.Arg(i).(type) {
case types.Enum:
args[i] = compute.NewDatum(scalar.NewStringScalar(string(v)))
case expr.Expression:
args[i], err = executeScalarBatch(ctx, input, v, ext)
if err != nil {
return nil, err
}
defer args[i].Release()
if args[i].Kind() != compute.KindScalar {
allScalar = false
}
default:
return nil, arrow.ErrNotImplemented
}
argTypes[i] = args[i].(compute.ArrayLikeDatum).Type()
}
_, conv, ok := ext.DecodeFunction(e.FuncRef())
if !ok {
return nil, arrow.ErrNotImplemented
}
fname, opts, err := conv(e)
if err != nil {
return nil, err
}
ectx := compute.GetExecCtx(ctx)
fn, ok := ectx.Registry.GetFunction(fname)
if !ok {
return nil, arrow.ErrInvalid
}
if fn.Kind() != compute.FuncScalar {
return nil, arrow.ErrInvalid
}
k, err := fn.DispatchBest(argTypes...)
if err != nil {
return nil, err
}
var newArgs []compute.Datum
// cast arguments if necessary
for i, arg := range args {
if !arrow.TypeEqual(argTypes[i], arg.(compute.ArrayLikeDatum).Type()) {
if newArgs == nil {
newArgs = make([]compute.Datum, len(args))
copy(newArgs, args)
}
newArgs[i], err = compute.CastDatum(ctx, arg, compute.SafeCastOptions(argTypes[i]))
if err != nil {
return nil, err
}
defer newArgs[i].Release()
}
}
if newArgs != nil {
args = newArgs
}
kctx := &exec.KernelCtx{Ctx: ctx, Kernel: k}
init := k.GetInitFn()
kinitArgs := exec.KernelInitArgs{Kernel: k, Inputs: argTypes, Options: opts}
if init != nil {
kctx.State, err = init(kctx, kinitArgs)
if err != nil {
return nil, err
}
}
executor := compute.NewScalarExecutor()
if err := executor.Init(kctx, kinitArgs); err != nil {
return nil, err
}
batch := compute.ExecBatch{Values: args}
if allScalar {
batch.Len = 1
} else {
batch.Len = input.Len
}
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
ch := make(chan compute.Datum, ectx.ExecChannelSize)
go func() {
defer close(ch)
if err = executor.Execute(ctx, &batch, ch); err != nil {
cancel()
}
}()
result := executor.WrapResults(ctx, ch, false)
if err == nil {
debug.Assert(executor.CheckResultType(result) == nil, "invalid result type")
}
if ctx.Err() == context.Canceled && result != nil {
result.Release()
result = nil
}
return result, err
}
return nil, arrow.ErrNotImplemented
}
|