1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
|
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package compute
import (
"errors"
"fmt"
"hash/maphash"
"reflect"
"strconv"
"strings"
"unicode"
"github.com/apache/arrow-go/v18/arrow"
"github.com/apache/arrow-go/v18/arrow/array"
)
var (
ErrEmpty = errors.New("cannot traverse empty field path")
ErrNoChildren = errors.New("trying to get child of type with no children")
ErrIndexRange = errors.New("index out of range")
ErrMultipleMatches = errors.New("multiple matches")
ErrNoMatch = errors.New("no match")
ErrInvalid = errors.New("field ref invalid")
)
func getFields(typ arrow.DataType) []arrow.Field {
if nested, ok := typ.(arrow.NestedType); ok {
return nested.Fields()
}
return nil
}
type listvals interface {
ListValues() arrow.Array
}
func getChildren(arr arrow.Array) (ret []arrow.Array) {
switch arr := arr.(type) {
case *array.Struct:
ret = make([]arrow.Array, arr.NumField())
for i := 0; i < arr.NumField(); i++ {
ret[i] = arr.Field(i)
}
case listvals:
ret = []arrow.Array{arr.ListValues()}
}
return
}
// FieldPath represents a path to a nested field using indices of child fields.
// For example, given the indices {5, 9, 3} the field could be retrieved with:
// schema.Field(5).Type().(*arrow.StructType).Field(9).Type().(*arrow.StructType).Field(3)
//
// Attempting to retrieve a child field using a FieldPath which is not valid for a given
// schema will get an error such as an out of range index, or an empty path.
//
// FieldPaths provide for drilling down to potentially nested children for convenience
// of accepting a slice of fields, a schema or a datatype (which should contain child fields).
//
// A fieldpath can also be used to retrieve a child arrow.Array or column from a record batch.
type FieldPath []int
func (f FieldPath) String() string {
if len(f) == 0 {
return "FieldPath(empty)"
}
var b strings.Builder
b.WriteString("FieldPath(")
for _, i := range f {
fmt.Fprint(&b, i)
b.WriteByte(' ')
}
ret := b.String()
return ret[:len(ret)-1] + ")"
}
// Get retrieves the corresponding nested child field by drilling through the schema's
// fields as per the field path.
func (f FieldPath) Get(s *arrow.Schema) (*arrow.Field, error) {
return f.GetFieldFromSlice(s.Fields())
}
// GetFieldFromSlice treats the slice as the top layer of fields, so the first value
// in the field path will index into the slice, and then drill down from there.
func (f FieldPath) GetFieldFromSlice(fields []arrow.Field) (*arrow.Field, error) {
if len(f) == 0 {
return nil, ErrEmpty
}
var (
depth = 0
out *arrow.Field
)
for _, idx := range f {
if len(fields) == 0 {
return nil, fmt.Errorf("%w: %s", ErrNoChildren, out.Type)
}
if idx < 0 || idx >= len(fields) {
return nil, fmt.Errorf("%w: indices=%s", ErrIndexRange, f[:depth+1])
}
out = &fields[idx]
fields = getFields(out.Type)
depth++
}
return out, nil
}
func (f FieldPath) getArray(arrs []arrow.Array) (arrow.Array, error) {
if len(f) == 0 {
return nil, ErrEmpty
}
var (
depth = 0
out arrow.Array
)
for _, idx := range f {
if len(arrs) == 0 {
return nil, fmt.Errorf("%w: %s", ErrNoChildren, out.DataType())
}
if idx < 0 || idx >= len(arrs) {
return nil, fmt.Errorf("%w. indices=%s", ErrIndexRange, f[:depth+1])
}
out = arrs[idx]
arrs = getChildren(out)
depth++
}
return out, nil
}
// GetFieldFromType returns the nested field from a datatype by drilling into it's
// child fields.
func (f FieldPath) GetFieldFromType(typ arrow.DataType) (*arrow.Field, error) {
return f.GetFieldFromSlice(getFields(typ))
}
// GetField is equivalent to GetFieldFromType(field.Type)
func (f FieldPath) GetField(field arrow.Field) (*arrow.Field, error) {
return f.GetFieldFromType(field.Type)
}
// GetColumn will return the correct child array by traversing the fieldpath
// going to the nested arrays of the columns in the record batch.
func (f FieldPath) GetColumn(batch arrow.Record) (arrow.Array, error) {
return f.getArray(batch.Columns())
}
func (f FieldPath) findAll(fields []arrow.Field) []FieldPath {
_, err := f.GetFieldFromSlice(fields)
if err == nil {
return []FieldPath{f}
}
return nil
}
// a nameref represents a FieldRef by name of the field
type nameRef string
func (n nameRef) String() string {
return "Name(" + string(n) + ")"
}
func (ref nameRef) findAll(fields []arrow.Field) []FieldPath {
out := []FieldPath{}
for i, f := range fields {
if f.Name == string(ref) {
out = append(out, FieldPath{i})
}
}
return out
}
func (ref nameRef) hash(h *maphash.Hash) { h.WriteString(string(ref)) }
type matches struct {
prefixes []FieldPath
refs []*arrow.Field
}
func (m *matches) add(prefix, suffix FieldPath, fields []arrow.Field) {
f, err := suffix.GetFieldFromSlice(fields)
if err != nil {
panic(err)
}
m.refs = append(m.refs, f)
m.prefixes = append(m.prefixes, append(prefix, suffix...))
}
// refList represents a list of references to use to determine which nested
// field is being referenced. allowing combinations of field indices and names
type refList []FieldRef
func (r refList) String() string {
var b strings.Builder
b.WriteString("Nested(")
for _, f := range r {
fmt.Fprint(&b, f)
b.WriteByte(' ')
}
ret := b.String()
return ret[:len(ret)-1] + ")"
}
func (ref refList) hash(h *maphash.Hash) {
for _, r := range ref {
r.hash(h)
}
}
func (ref refList) findAll(fields []arrow.Field) []FieldPath {
if len(ref) == 0 {
return nil
}
m := matches{}
for _, list := range ref[0].FindAll(fields) {
m.add(FieldPath{}, list, fields)
}
for _, r := range ref[1:] {
next := matches{}
for i, f := range m.refs {
for _, match := range r.FindAllField(*f) {
next.add(m.prefixes[i], match, getFields(f.Type))
}
}
m = next
}
return m.prefixes
}
type refImpl interface {
fmt.Stringer
findAll(fields []arrow.Field) []FieldPath
hash(h *maphash.Hash)
}
// FieldRef is a descriptor of a (potentially nested) field within a schema.
//
// Unlike FieldPath (which is exclusively indices of child fields), FieldRef
// may reference a field by name. It can be constructed from either
// a field index, field name, or field path.
//
// Nested fields can be referenced as well, given the schema:
//
// arrow.NewSchema([]arrow.Field{
// {Name: "a", Type: arrow.StructOf(arrow.Field{Name: "n", Type: arrow.Null})},
// {Name: "b", Type: arrow.PrimitiveTypes.Int32},
// })
//
// the following all indicate the nested field named "n":
//
// FieldRefPath(FieldPath{0, 0})
// FieldRefList("a", 0)
// FieldRefList("a", "n")
// FieldRefList(0, "n")
// NewFieldRefFromDotPath(".a[0]")
//
// FieldPaths matching a FieldRef are retrieved with the FindAll* functions
// Multiple matches are possible because field names may be duplicated within
// a schema. For example:
//
// aIsAmbiguous := arrow.NewSchema([]arrow.Field{
// {Name: "a", Type: arrow.PrimitiveTypes.Int32},
// {Name: "a", Type: arrow.PrimitiveTypes.Float32},
// })
// matches := FieldRefName("a").FindAll(aIsAmbiguous)
// assert.Len(matches, 2)
// assert.True(matches[0].Get(aIsAmbiguous).Equals(aIsAmbiguous.Field(0))
// assert.True(matches[1].Get(aIsAmbiguous).Equals(aIsAmbiguous.Field(1))
type FieldRef struct {
impl refImpl
}
// FieldRefPath constructs a FieldRef from a given FieldPath
func FieldRefPath(p FieldPath) FieldRef {
return FieldRef{impl: p}
}
// FieldRefIndex is a convenience function to construct a FieldPath reference
// of a single index
func FieldRefIndex(i int) FieldRef {
return FieldRef{impl: FieldPath{i}}
}
// FieldRefName constructs a FieldRef by name
func FieldRefName(n string) FieldRef {
return FieldRef{impl: nameRef(n)}
}
// FieldRefList takes an arbitrary number of arguments which can be either
// strings or ints. This will panic if anything other than a string or int
// is passed in.
func FieldRefList(elems ...interface{}) FieldRef {
list := make(refList, len(elems))
for i, e := range elems {
switch e := e.(type) {
case string:
list[i] = FieldRefName(e)
case int:
list[i] = FieldRefIndex(e)
}
}
return FieldRef{impl: list}
}
// NewFieldRefFromDotPath parses a dot path into a field ref.
//
// dot_path = '.' name
//
// | '[' digit+ ']'
// | dot_path+
//
// Examples
//
// ".alpha" => FieldRefName("alpha")
// "[2]" => FieldRefIndex(2)
// ".beta[3]" => FieldRefList("beta", 3)
// "[5].gamma.delta[7]" => FieldRefList(5, "gamma", "delta", 7)
// ".hello world" => FieldRefName("hello world")
// `.\[y\]\\tho\.\` => FieldRef(`[y]\tho.\`)
//
// Note: when parsing a name, a '\' preceding any other character will be
// dropped from the resulting name. therefore if a name must contain the characters
// '.', '\', '[' or ']' then they must be escaped with a preceding '\'.
func NewFieldRefFromDotPath(dotpath string) (out FieldRef, err error) {
if len(dotpath) == 0 {
return out, fmt.Errorf("%w dotpath was empty", ErrInvalid)
}
parseName := func() string {
var name string
for {
idx := strings.IndexAny(dotpath, `\[.`)
if idx == -1 {
name += dotpath
dotpath = ""
break
}
if dotpath[idx] != '\\' {
// subscript for a new field ref
name += dotpath[:idx]
dotpath = dotpath[idx:]
break
}
if len(dotpath) == idx+1 {
// dotpath ends with a backslash; consume it all
name += dotpath
dotpath = ""
break
}
// append all characters before backslash, then the character which follows it
name += dotpath[:idx] + string(dotpath[idx+1])
dotpath = dotpath[idx+2:]
}
return name
}
children := make([]FieldRef, 0)
for len(dotpath) > 0 {
subscript := dotpath[0]
dotpath = dotpath[1:]
switch subscript {
case '.':
// next element is a name
children = append(children, FieldRef{nameRef(parseName())})
case '[':
subend := strings.IndexFunc(dotpath, func(r rune) bool { return !unicode.IsDigit(r) })
if subend == -1 || dotpath[subend] != ']' {
return out, fmt.Errorf("%w: dot path '%s' contained an unterminated index", ErrInvalid, dotpath)
}
idx, _ := strconv.Atoi(dotpath[:subend])
children = append(children, FieldRef{FieldPath{idx}})
dotpath = dotpath[subend+1:]
default:
return out, fmt.Errorf("%w: dot path must begin with '[' or '.' got '%s'", ErrInvalid, dotpath)
}
}
out.flatten(children)
return
}
func (f FieldRef) hash(h *maphash.Hash) { f.impl.hash(h) }
// Hash produces a hash of this field reference and takes in a seed so that
// it can maintain consistency across multiple places / processes /etc.
func (f FieldRef) Hash(seed maphash.Seed) uint64 {
h := maphash.Hash{}
h.SetSeed(seed)
f.hash(&h)
return h.Sum64()
}
// IsName returns true if this fieldref is a name reference
func (f *FieldRef) IsName() bool {
_, ok := f.impl.(nameRef)
return ok
}
// IsFieldPath returns true if this FieldRef uses a fieldpath
func (f *FieldRef) IsFieldPath() bool {
_, ok := f.impl.(FieldPath)
return ok
}
// IsNested returns true if this FieldRef expects to represent
// a nested field.
func (f *FieldRef) IsNested() bool {
switch impl := f.impl.(type) {
case nameRef:
return false
case FieldPath:
return len(impl) > 1
default:
return true
}
}
// Name returns the name of the field this references if it is
// a Name reference, otherwise the empty string
func (f *FieldRef) Name() string {
n, _ := f.impl.(nameRef)
return string(n)
}
// FieldPath returns the fieldpath that this FieldRef uses, otherwise
// an empty FieldPath if it's not a FieldPath reference
func (f *FieldRef) FieldPath() FieldPath {
p, _ := f.impl.(FieldPath)
return p
}
func (f *FieldRef) Equals(other FieldRef) bool {
return reflect.DeepEqual(f.impl, other.impl)
}
func (f *FieldRef) flatten(children []FieldRef) {
out := make([]FieldRef, 0, len(children))
var populate func(refImpl)
populate = func(refs refImpl) {
switch r := refs.(type) {
case nameRef:
out = append(out, FieldRef{r})
case FieldPath:
out = append(out, FieldRef{r})
case refList:
for _, c := range r {
populate(c.impl)
}
}
}
populate(refList(children))
if len(out) == 1 {
f.impl = out[0].impl
} else {
f.impl = refList(out)
}
}
// FindAll returns all the fieldpaths which this FieldRef matches in the given
// slice of fields.
func (f FieldRef) FindAll(fields []arrow.Field) []FieldPath {
return f.impl.findAll(fields)
}
// FindAllField returns all the fieldpaths that this FieldRef matches against
// the type of the given field.
func (f FieldRef) FindAllField(field arrow.Field) []FieldPath {
return f.impl.findAll(getFields(field.Type))
}
// FindOneOrNone is a convenience helper that will either return 1 fieldpath,
// or an empty fieldpath, and will return an error if there are multiple matches.
func (f FieldRef) FindOneOrNone(schema *arrow.Schema) (FieldPath, error) {
matches := f.FindAll(schema.Fields())
if len(matches) > 1 {
return nil, fmt.Errorf("%w for %s in %s", ErrMultipleMatches, f, schema)
}
if len(matches) == 0 {
return nil, nil
}
return matches[0], nil
}
// FindOneOrNoneRecord is like FindOneOrNone but for the schema of a record,
// returning an error only if there are multiple matches.
func (f FieldRef) FindOneOrNoneRecord(root arrow.Record) (FieldPath, error) {
return f.FindOneOrNone(root.Schema())
}
// FindOne returns an error if the field isn't matched or if there are multiple matches
// otherwise it returns the path to the single valid match.
func (f FieldRef) FindOne(schema *arrow.Schema) (FieldPath, error) {
matches := f.FindAll(schema.Fields())
if len(matches) == 0 {
return nil, fmt.Errorf("%w for %s in %s", ErrNoMatch, f, schema)
}
if len(matches) > 1 {
return nil, fmt.Errorf("%w for %s in %s", ErrMultipleMatches, f, schema)
}
return matches[0], nil
}
// GetAllColumns gets all the matching column arrays from the given record that
// this FieldRef references.
func (f FieldRef) GetAllColumns(root arrow.Record) ([]arrow.Array, error) {
out := make([]arrow.Array, 0)
for _, m := range f.FindAll(root.Schema().Fields()) {
n, err := m.GetColumn(root)
if err != nil {
return nil, err
}
out = append(out, n)
}
return out, nil
}
// GetOneField will return a pointer to a field or an error if it is not found
// or if there are multiple matches.
func (f FieldRef) GetOneField(schema *arrow.Schema) (*arrow.Field, error) {
match, err := f.FindOne(schema)
if err != nil {
return nil, err
}
return match.GetFieldFromSlice(schema.Fields())
}
// GetOneOrNone will return a field or a nil if the field is found or not, and
// only errors if there are multiple matches.
func (f FieldRef) GetOneOrNone(schema *arrow.Schema) (*arrow.Field, error) {
match, err := f.FindOneOrNone(schema)
if err != nil {
return nil, err
}
if len(match) == 0 {
return nil, nil
}
return match.GetFieldFromSlice(schema.Fields())
}
// GetOneColumnOrNone returns either a nil or the referenced array if it can be
// found, erroring only if there is an ambiguous multiple matches.
func (f FieldRef) GetOneColumnOrNone(root arrow.Record) (arrow.Array, error) {
match, err := f.FindOneOrNoneRecord(root)
if err != nil {
return nil, err
}
if len(match) == 0 {
return nil, nil
}
return match.GetColumn(root)
}
func (f FieldRef) String() string {
return "FieldRef." + f.impl.String()
}
|